

July 28, 2022

TECHNICAL MEMORANDUM

To: Jeff Cattaneo, San Benito County Water District

From: Chad Taylor, PG, CHG, Brent Johnson, PG, Gus Yates, PG, CHG, and Iris Priestaf,

PhD

Re: North San Benito Managed Aquifer Recharge Feasibility and Location

Assessment Study, North San Benito Groundwater Basin, San Benito and Santa

Clara Counties

By increasing groundwater declines during dry periods, climate change and growth in urban and agricultural water demand could undermine the sustainability of groundwater conditions in the North San Benito Groundwater Basin (Basin). Those declines can be offset by increasing the amount of recharge during wet periods, provided that the recharged water remains in storage until the next drought. The study presented in this technical memorandum (TM) addresses questions of how additional managed aquifer recharge (MAR) can be achieved in the Basin. Unlike some basins with highly permeable alluvial fans and recharge forebays, the most useful recharge areas in the North San Benito Basin may not be obvious. Moreover, the best areas are likely to represent the sum of many factors. Therefore, a systematic and precise analysis of geographically distributed recharge factors has been developed in this study.

Recharge factors for all water supplies and potential recharge methods were evaluated throughout the Basin using best available data to develop geographic recharge feasibility rankings. The rankings were used to identify the best locations for future MAR projects by recharge type. Assessment of MAR feasibility considered these locations along with water supply source availability and general benefits. This assessment included review of water supply availability and benefits to groundwater sustainability using the Basin numerical groundwater model. The assessment results indicated that injection wells and/or aquifer storage and recovery wells (ASR) are the most practical and effective MAR options for the Basin. Injection and ASR MAR project options were developed in coordination with the San Benito County Water District (SBCWD) and these future MAR projects were further evaluated using the Basin numerical model. This allowed for assessment of the long-term effects of MAR projects and comparison to future conditions without increased MAR in the Basin.

The modeling tasks identified potential locations for future injection MAR and/or ASR facilities and these locations were evaluated further. This evaluation included water quality analysis from groundwater samples collected from existing wells near the injection and ASR project locations and engineering feasibility analysis for injection MAR and ASR.

1. PROJECT BACKGROUND

Since its founding in 1953, SBCWD has actively managed water resources in San Benito County. This management, focused on conjunctive use of groundwater and surface water sources, was formalized in 1998 through adoption of its Groundwater Management Plan (GWMP), subsequently updated in 2004. In 2014, the State of California passed the Sustainable Groundwater Management Act (SGMA) to empower local agencies to adopt Groundwater Sustainability Plans (GSPs) that are tailored to the resources and needs of their communities. SGMA also empowers local agencies to form a Groundwater Sustainability Agency (GSA) for managing groundwater resources in a sustainable manner. SBCWD and Valley Water both formed GSAs, which collaborated on preparation of a GSP for the entire North San Benito Basin, including portions in Santa Clara County. This study focused on the San Benito County portion of the Basin.

In recent years, SBCWD has been using four existing percolation facilities to recharge imported Central Valley Project (CVP) water. The locations are shown in **Figure 1**. Prior to around 2004, CVP water was percolated in local creek channels to supplement recharge. That practice was later prohibited due to the risk of introducing invasive non-native aquatic species present in San Luis Reservoir into local watersheds. Accordingly, three of the percolation facilities are off-channel ponds, which are the Frog Pond near Arroyo de las Viboras (approximate capacity of one cubic foot per second, cfs), a pond near the San Benito River at Union Road (approximate capacity five cfs), and ponds next to the San Benito River at the new Highway 156 bridge (approximate capacity four cfs). The fourth site percolates five to ten cfs through the bed of Tres Pinos Creek between the Southside Road bridges, but only at times when there is no natural flow in that reach and no connection to the San Benito River. Together, these facilities can percolate about 4,000 acre-feet per year (AFY) of surplus CVP water.

SBCWD GSA requested and received grant funding from the California Department of Water Resources (DWR) Round 3, Sustainable Groundwater Planning Grant Program. The purpose of these funds is to invest in surface and groundwater infrastructure to mitigate drought and achieve regional sustainability.

2. PHYSICAL SETTING AND HYDROGEOLOGY

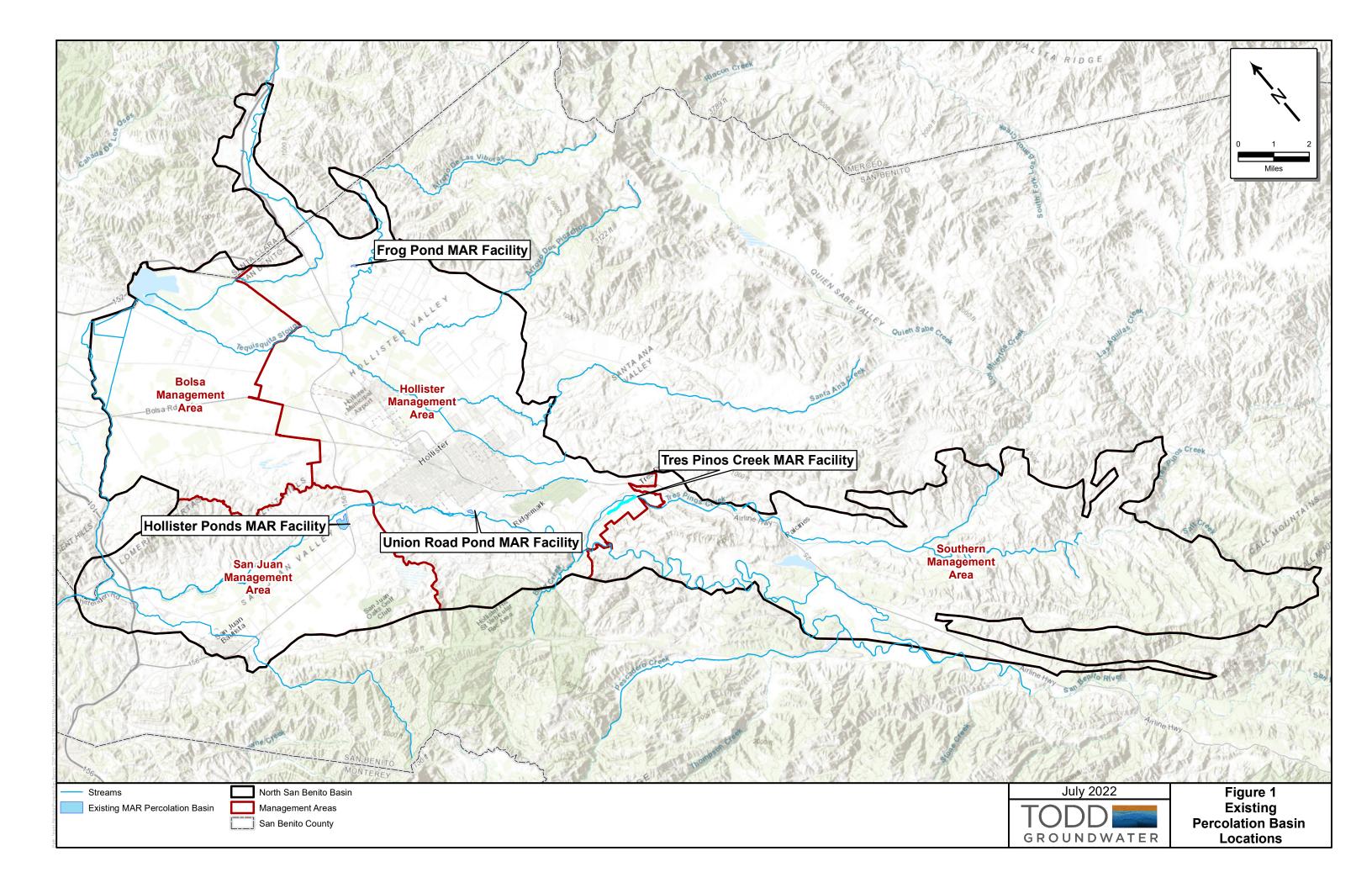
The Basin includes valley areas characterized by productive agriculture, urban areas including the City of Hollister and the City of San Juan Bautista, rural communities, and upland areas with grazing land. The Basin is characterized by unconsolidated to semi-consolidated sediments that were deposited in alluvial fan and stream environments from a variety of source rocks and directions. These deposits interfinger in the subsurface so that regional zones of low or high permeability have not been distinguished. The valley portions contain unconsolidated alluvial deposits—clay, silt, sand, and gravel—that store and transmit significant quantities of groundwater. These geologic deposits also underlie some upland areas but generally are more consolidated and less permeable than in the valley areas. The Principal aquifers include the unconsolidated alluvial deposits in the valley areas and generally range from 0 to 300 feet thick. Secondary aquifers include the older, less permeable deposits that

2

underlie the valleys at depth, crop out in portions of the valley areas, and occur in upland areas with thickness up to several thousand feet.

The Basin boundaries are defined mostly by geology (contacts with relatively impermeable consolidated rocks) and by faults that may form barriers to groundwater flow. Faults crossing the Basin, most notably the Calaveras Fault, are partial barriers to groundwater and also are important because they may offset bedrock and affect the local depth of the Basin.

Unlike most Basin boundaries, the northern boundary with the Santa Clara County Llagas Subbasin is defined by the county line. Like the northernmost portion of the North San Benito Basin, the Llagas Subbasin underlies a relatively flat valley and consists of unconsolidated alluvial sediments. The North San Benito and Llagas basins are hydrologically connected with groundwater flow across the boundary.


The Basin is situated within the Pajaro River watershed. Main tributaries to the Pajaro River include the San Benito River, Tres Pinos Creek, and Pacheco Creek, among others. These streams are dry over most of their lengths for much of the year, flowing mainly during wet winter conditions.

Groundwater recharge occurs over the entire surface of the Basin, in varying intensities. Dispersed recharge over broad areas derives from deep percolation of rainfall and applied irrigation water. Subsurface inflow to the Basin occurs from surrounding consolidated formations and from the Llagas Subbasin. Percolation from streams is a major source of recharge. Percolation from ponds also occurs, including percolation from wastewater treatment plant disposal ponds. Recharge also occurs through SBCWD's existing MAR programs, which have a long history of percolating available imported and surface water to augment recharge.

Wells represent by far the largest discharges from the Basin. Natural outflow from the Basin consists of groundwater discharge into streams. The primary exit points are groundwater seepage into the lower ends of the Pajaro and San Benito Rivers as they approach the northwestern end of the Basin and enter the bedrock canyon leading to the coast.

Groundwater is present in the principal and secondary aquifers that generally are not distinguished in the Basin. Groundwater in Basin aquifers occurs under unconfined to confined (pressurized) conditions, and areas with artesian flowing wells have been mapped. However, distinct vertical zones have not been mapped, so groundwater level maps and hydrographs generally represent a range of depth zones. In addition, most monitored wells in the Basin are production wells with considerable screen lengths. Nonetheless, these generally represent the productive zones of the Basin.

Groundwater elevations change in response to wet years and droughts, groundwater pumping, importation of water, and managed aquifer recharge programs. The current monitoring network for groundwater elevations provides little information about vertical groundwater gradients within the Basin. Flowing artesian wells have been reported historically and in recent years clearly indicate that upward gradients and flow exist locally.

Groundwater quality in the Basin has been described as highly mineralized and of marginal water quality for drinking and agricultural purposes. The mineralized water quality is typical of other relatively small Coast Range groundwater basins and reflects the geology of the watershed and relatively low permeability of groundwater basin sediments. Groundwater in the Basin has also been impacted by human activities including agricultural, urban, and industrial land uses.

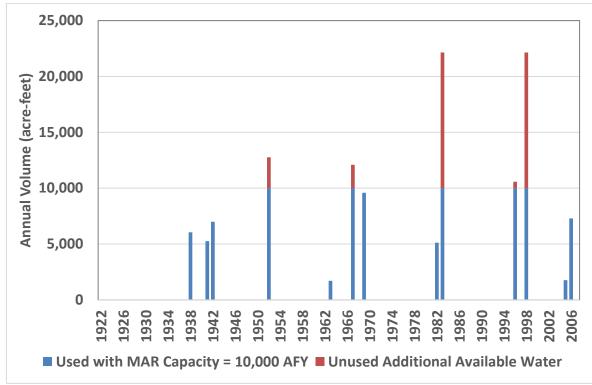
Interconnection of groundwater and surface water occurs wherever the water table intersects the land surface and groundwater discharges into a stream channel or spring. In the North San Benito GSP, locations of interconnected surface water and groundwater have been evaluated and existing wells have been identified for monitoring near-stream groundwater levels. In addition, dedicated shallow monitoring wells have been installed as part of this GSP and monitoring has been initiated.

3. MANAGED AQUIFER RECHARGE WATER SOURCES

This assessment considered potential water sources for MAR in general terms of availability and capture of additional supply, environmental factors, water rights, feasibility, and cost. Sources addressed include local streamflow, urban stormwater, and imported water from the Central Valley Project (CVP). Each is summarized below.

3.1 Local Streamflow

Natural streamflow in the Basin already recharges groundwater as it flows through existing channels, and it is noted that construction of in-stream recharge facilities is disruptive to riparian ecosystems. To minimize such impacts, local streamflow would need to be diverted to offsite percolation basins or other MAR locations to increase recharge through MAR. From the standpoint of hydrology and hydrogeology, the best opportunities would likely be along Tres Pinos Creek or the San Benito River, which are the largest streams in the Basin. Drawbacks to these streams include the cost of constructing a diversion facility capable of functioning at low flows in a broad, sandy channel and capable of withstanding flood flows. Water rights issues, permitting and land costs could also be unfavorable. The Pajaro River is larger, but is only present along the northern boundary of the Basin and diversions would pose complex environmental and other issues. Smaller streams would offer lower yield potential and/or have other limitations. Therefore, local streamflow was not considered further as a potential source for MAR in the Basin.


3.2 Urban Stormwater

Percolation of urban stormwater is another potential supply option. Assessment of the urban stormwater system in the City of Hollister revealed that the existing system already captures and diverts stormwater to a network of detention ponds or ephemeral stream channels, both which facilitate recharge. Accordingly, no significant supply is available for new MAR projects. As a result, urban stormwater runoff was not considered further as source of MAR water supply.

3.3 Imported Central Valley Project Water

Another source of water for MAR is surplus CVP water available in wet years. In general, SBCWD's agricultural customers tend not to buy CVP water beyond about 50 percent of the contract amount. At that point, water quality and pressurized delivery benefits no longer outweigh the higher cost relative to using groundwater. Local CVP agricultural allocations typically exceed 50 percent only in sequences of wet years when local rainfall is also high. Figure 2 shows simulated amounts of agricultural CVP allocation in excess of 50 percent of SBCWD's contract amount during 1922 to 2007. These amounts are based on output from DWR's CalSim2 model of statewide CVP and State Water Project operations (DWR 2020a). Surplus CVP water is available in 13 out of 86 years, in amounts ranging from 1,700 to 21,000 acre-feet (AF). The ability to capture and store water depends on total MAR facility capacity. For example, if the storage capacity is 5,000 AFY, then there would be eleven years when the capacity was fully used and two years when it was partially used. The total volume of water stored over the 86 years would be 58,484 AF. By comparison, if the facility capacity is 10,000 AFY, then the capacity would be fully used in full five years and partially used in 8 years. The total volume stored would be 92,864 AF. This is the capacity selected by SBCWD for evaluation purposes, and it is represented by the blue bar segments in the figure.

4. MANAGED AQUIFER RECHARGE METHODS

Three MAR methods were considered: injection wells, percolation basins, and temporary flooding of agricultural fields (AgMAR). Each method has benefits and drawbacks, as discussed below.

4.1 Injection Wells

Injection wells could provide significant MAR capacity, given identification of suitable locations. Advantages of this MAR method include low land costs, avoidance of surface percolation rate limitations, long potential recharge season, and two water quality benefits. First, injection wells avoid moving poor-quality shallow groundwater down to deep water-supply aquifers; and second, injection can potentially dilute the mineral content of native groundwater and thereby improve quality of water pumped from nearby downgradient water supply wells. Disadvantages include the high capital cost for an injection well, ongoing energy costs, the need to filter and possibly chemically treat water prior to injection, and the potential need to treat recovered water if it has mixed with native groundwater.

While the MAR potential of a single injection well may be limited, the total capacity of injection wells can be increased by increasing the number of wells. For analysis purposes, it is assumed here that injection wells will have a capacity of 500 gallons per minute (gpm). Injection wells must be periodically backflushed to reverse gradual clogging, ideally at a rate double the injection rate. This would mean wells capable of pumping at 1,000 gpm, which is a reasonable assumption for local production wells.

4.2 Percolation Basins

As noted above, SBCWD already operates several percolation basins for MAR. Additional percolation basins could be constructed to increase the total MAR capacity. Disadvantages of dedicated basins are the relatively low percolation rates of many soils in the area and the high cost of land for a facility that is used only sporadically. Former gravel pits may provide unique opportunities to create percolation facilities where few other productive uses are possible. Those could be evaluated on a case-by-case basis as opportunities arise.

4.3 Temporary Agricultural Field Flooding (AgMAR)

Flooding of agricultural fields for 1 to 2 months in the winter of wet years—which is when surplus CVP water is typically available—could provide a large area for percolation and be compatible with farming at all other times. In concept, willing growers would lease a field to SBCWD for a few months outside the main growing season in years with available surplus CVP water. Fields with existing CVP turnouts would be preferred. Water could be applied at a rate roughly equal to the soil infiltration rate, initiating deep percolation. Alternatively, low berms could be constructed around the field, and the field could be inundated with 1 to 2 feet of water, which would then be allowed to percolate. Assuming the fields would be out of

production for three months in each of the 11 recharge years¹, it would reduce the time available for farming by only 3.5 percent over the 86-year period. This efficient dual-use arrangement could decrease the land cost for percolation, and a large area is potentially available for enrollment.

One drawback to this MAR method is the need to find a relatively large number of willing landowners and execute lease agreements with all of them. Another drawback is that sporadically percolating a relatively large volume of water through an agricultural field would accelerate the rate at which accumulated salts (and potentially nitrates and other agricultural chemicals) in the soil are transported down to aquifers used by water supply wells. In light of these drawbacks, SBCWD decided not to pursue this recharge mechanism. However, partial assessment of potential AgMAR recharge is presented below.

5. HYDROGEOLOGIC RECHARGE SUITABILITY ASSESSMENT

To assess MAR options throughout the Basin, an indexed geographic analysis of spatial datasets was developed. This analysis focused on spatial factors relevant to each MAR method and included: 1) development and assessment of spatial datasets for parameters affecting the MAR methods, 2) qualitative classification of each dataset to create indices relevant to recharge, and 3) combination of the individual indices with other relevant parameters to generate MAR-type-specific map overlays representing recharge suitability throughout the Basin.

5.1 Individual Recharge Suitability Indices

As a first step in developing indices for recharge, data relating to the following MAR parameters were collected, developed, and analyzed in individual datasets:

- Unsaturated Zone Thickness Recharge Suitability
- Subsurface Hydraulic Conductivity
- Aguitard Presence
- Surficial Soil Hydraulic Conductivity Recharge Suitability
- Crop Mapping and Land Use
- Percolation Basin (Surface Recharge) Land Use
- AgMAR Crop Type
- Soil Agricultural Groundwater Banking Index (SAGBI)
- Existing Aggregate Quarry
- Proximity to CVP Supply Source

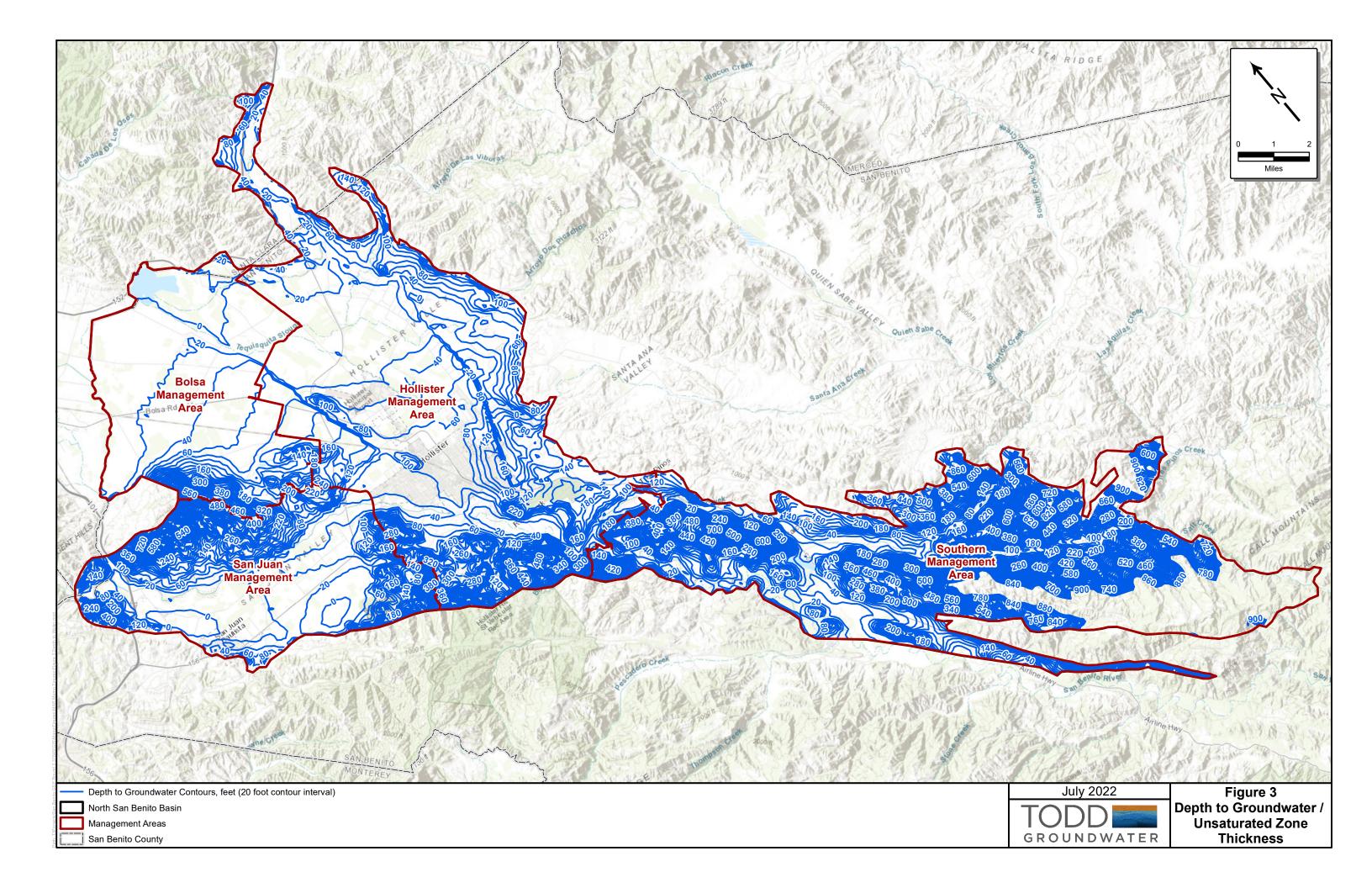
For each dataset, values representing recharge potential were identified based on quantitative assessment of the effect on recharge of each data type. Working collaboratively with SBCWD

¹ Although there are 13 years of surplus CVP water, existing percolation basin capacity would recharge the entire amount in two of those years, leaving 11 years of operation for the additional 6,000 AFY of recharge capacity.

staff, each dataset was indexed into six categories representing recharge potential with values ranging from very poor to very good. Assigning integer values (1 through 6) allows spatial representation in GIS software as grid datasets (rasters) and combination with indexed values for other parameters in an index-overlay assessment. The resulting Recharge Suitability Indices are discussed below and summarized in Tables 1 through 6.

5.1.1 Unsaturated Zone Thickness Recharge Suitability Index

The thickness of the unsaturated zone is equivalent to depth to water, which fluctuates with shallow groundwater elevations over space and time. Groundwater recharge feasibility is directly proportional to the thickness of the unsaturated zone; the thicker the unsaturated zone, the more space there is for newly recharged water.


Depth to groundwater surfaces for wet conditions in the Basin were taken from the Basin numerical groundwater model (Todd 2020). Water year 1998 was selected because it represented a period of high groundwater elevation in areas with the closest proximity to source water infrastructure.

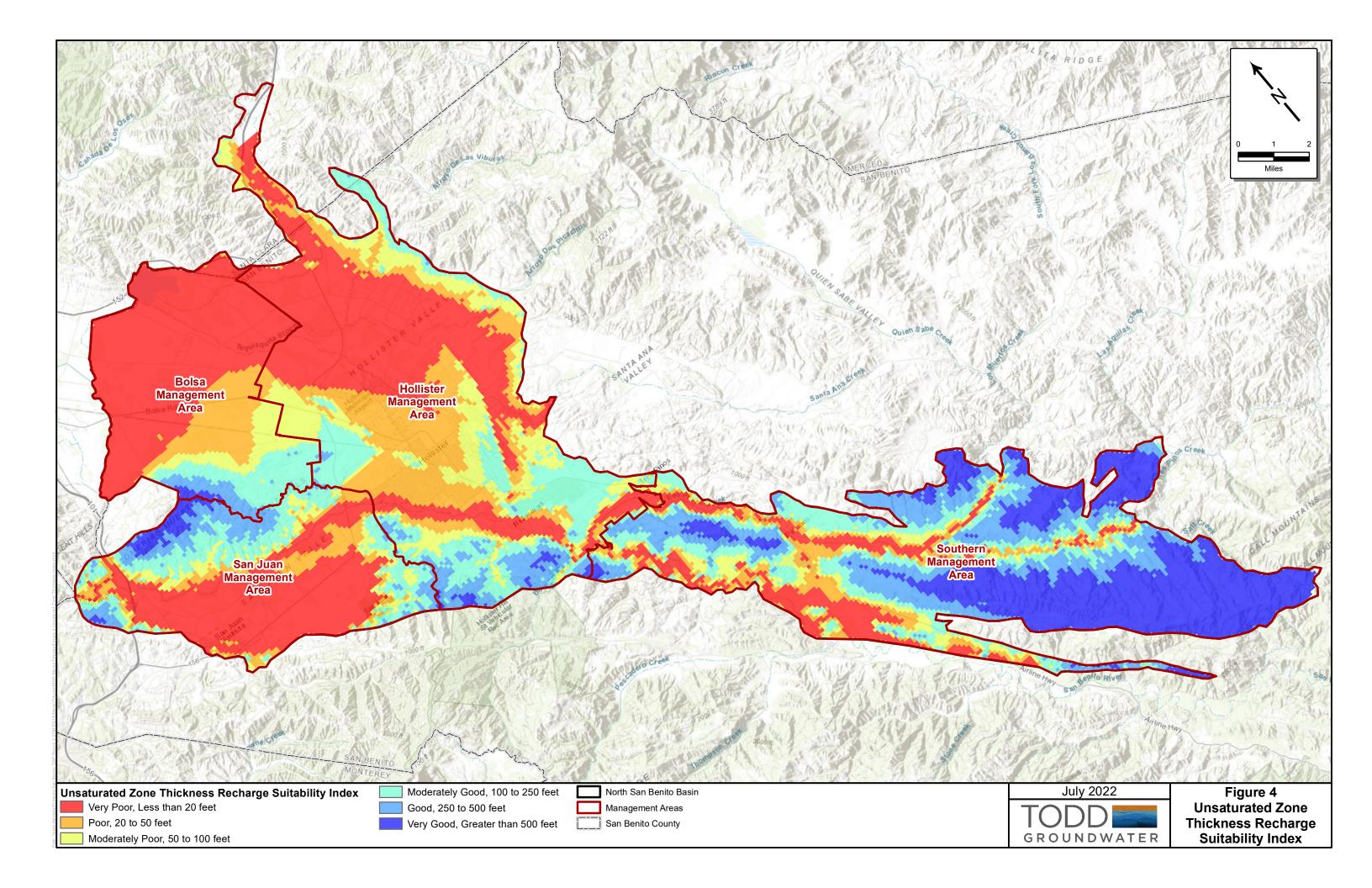

The depth to water coverage is shown on **Figure 3**. The modeled values for depth to water/unsaturated zone thickness were assessed and classified into six groups representing recharge potential of very poor, poor, moderately poor, moderately good, good, and very good. The unsaturated zone thickness classes and corresponding index values are listed in **Table 1**. This division considered both relative values within the Basin and general hydrogeologic principals relating to groundwater recharge feasibility. While not shown on Figure 3, a minimum depth to groundwater of 20 feet also was defined.

Table 1. Unsaturated Zone Thickness Recharge Index Values

Depth to Water / Unsaturated Zone Thickness Range	Qualitative Index Value	Index Integer Value
Less than 20 feet	Very Poor	1
20 to 50 feet	Poor	2
50 to 100 feet	Moderately Poor	3
100 to 250 feet	Moderately Good	4
250 to 500 feet	Good	5
Greater than 500 feet	Very Good	6

Grid datasets representing this index were created to represent unsaturated zone thickness MAR suitability throughout the Basin, as shown on **Figure 4**.

5.1.2 Hydraulic Conductivity Recharge Suitability Index Development

Hydraulic conductivity is a measure of the capacity of a porous media to transmit water. Groundwater aquifers generally have higher capacity to transmit water horizontally than vertically, so hydraulic conductivity is separated into horizontal and vertical components when modeling natural systems. The rate at which water travels laterally in a groundwater system is governed by horizontal hydraulic conductivity and the rate at which it moves vertically is governed by the vertical hydraulic conductivity. When large volumes of water are recharged in discrete locations, there is a tendency for groundwater mounds to develop beneath the recharge areas. This can lead to decreased recharge rates or rejection of recharge water. However, water moves laterally away from a recharge source in areas with higher horizontal hydraulic conductivity. Therefore, it is important to also consider relative horizontal hydraulic conductivity when selecting recharge locations.

5.1.2.1 Groundwater Mounding Analysis

It is not possible to accurately estimate real-world effects of discrete area recharge on groundwater elevations without a thorough representation of these parameters. However, simplified analytical methods are available for assessing generalized groundwater elevation changes. Application of the Hantush equation (1967) is an industry standard approach for estimating the height of a groundwater recharge mound as a function of time and distance from the recharge area, as illustrated below in **Figure 5**. The Hantush equation is a two-dimensional approximation that assumes that the underlying aquifer is unconfined, homogeneous, isotropic, and effectively infinite in areal extent. The analysis does not account for travel time, lateral flow of recharge water through the unsaturated zone, a sloping groundwater table, aquifer boundaries (such as surface water bodies, bedrock, or faults), or aquifer stresses, such as pumping. Nonetheless, the Hantush equation is suitable for approximation of groundwater mounding beneath a hypothetical field that may be used for recharge.

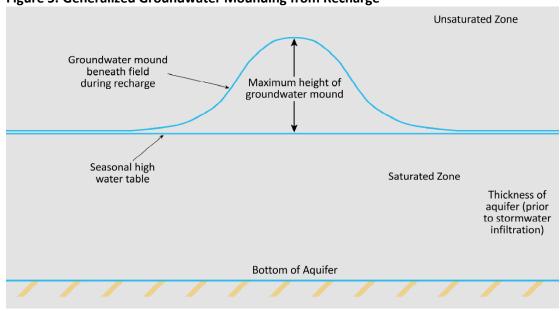


Figure 5. Generalized Groundwater Mounding from Recharge

The Hantush equation was solved using the mounding function for a ten-acre rectangular recharge area. An Excel macro developed by the USGS (Carleton 2010) was used to solve the following equation:

$$Z(r,t) = h_m^2 - h_i^2 = (V/2\pi K)(w(u_0) + (1 - e^{(-u_0)})/u_0)$$

where,

Z(r,t) = Height of the mound above initial height of water table with respect to distance from center of recharge area over time

 h_m = Height of mound above aquifer base

 h_i = Initial height of water table above aquifer base

V = V Volume of recharge water expressed as wpr², where w is the vertical

infiltration rate from a circular recharge area of radius, r

 K_H = Horizontal hydraulic conductivity of the aquifer

w(u) = Theis well function for nonleaky aquifers

 $u_0 = R^2/4ntR$, where n = Kb/Sn and $b = 0.5(h_i(0) + h(t))$,

where S = Specific yield of the unsaturated zone, t = time since start of

recharge, and b = constant of linearization

A series of solutions to the Hantush equation were calculated to examine scenarios representing the range of possible combinations of hydrogeologic conditions present within the Basin. In each case, the recharge area was simulated as ten-acre square. As shown in the Hantush equation, the development of a groundwater mound is largely dependent on the vertical infiltration rate (w), specific yield (S) of the unsaturated zone, and the horizontal hydraulic conductivity (K_H) . The saturated aquifer thickness in the Basin is very large, but for this analysis it was assumed that the recharge effects would be limited to the top 200 feet of saturated thickness.

Twenty combinations of subsurface conditions were simulated using hydraulic conductivity values taken from Layer 1 of the Basin numerical groundwater model (Todd 2020). Calculations were completed for each of these scenarios using a fixed infiltration rate of 2 feet per day (ft/day). It was assumed that these recharge rates are over and above evapotranspiration demands. All Hantush simulations were completed assuming a recharge period of 60 days.

The estimated mound height under the recharge area after 60 days varied from just under 16 feet to just over 413 feet. In general, the more permeable the subsurface the lower the mound. This relationship suggests that the mound from recharge in lower permeability areas will rise higher as the flow of water away from the MAR site is slower. While groundwater mound heights are greater in less permeable material, the effects will take a longer time to propagate horizontally. The same volume of water is added to these scenarios, therefore the net volumetric benefit to the groundwater aquifer is the same.

The results shown in **Table 2** present the maximum height of groundwater mounding for each hydraulic conductivity value.

Table 2. Groundwater Recharge Mound Heights and Hydraulic Conductivity

Horizontal Hydraulic Conductivity (feet/day)	Estimated Maximum Mound Height at 60 days (feet)
1	413.3
3	235.3
5	175.3
7	142.7
10	113.6
12	100.7
15	86.5
20	70.8
30	52.8
40	42.6
50	35.9
60	31.2
70	27.6
80	24.8
90	22.6
100	20.8
110	19.2
120	17.9
130	16.8
140	15.8

5.1.2.2 Subsurface Hydraulic Conductivity Index

The effects of horizontal hydraulic conductivity on MAR in the Basin were assessed using values from Layer 1 of the Basin numerical model (Todd 2020) and the mounding analysis discussed above. The distribution of horizontal hydraulic conductivity in shallow aquifer materials in the Basin are shown on **Figure 6**. Vertical hydraulic conductivity estimates were not used as a recharge suitability index metric; the presence of widespread aquitards was identified as a more important factor for recharge.

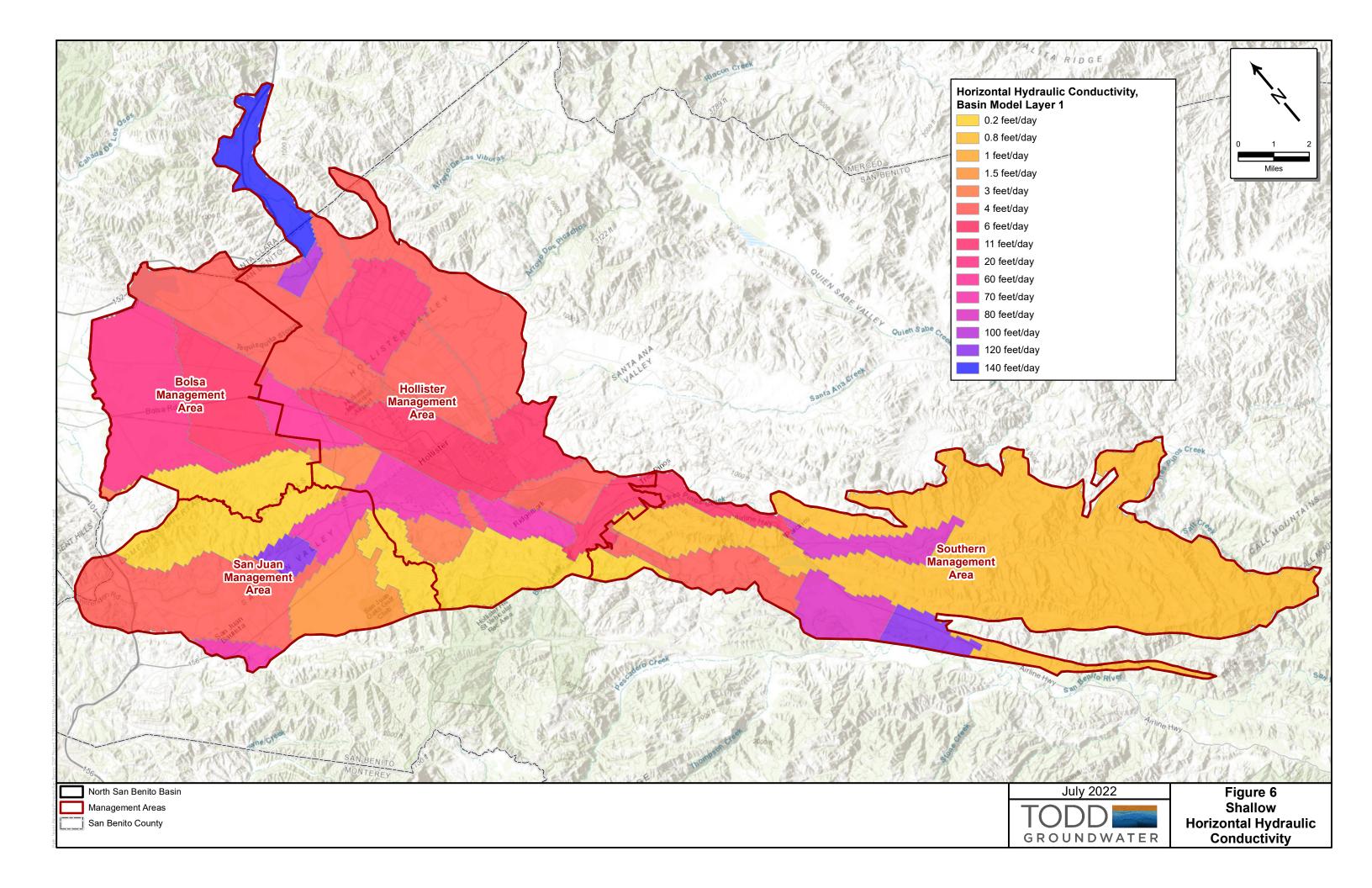
The recharge potential of a specific hydraulic conductivity was ranked based on the results of the groundwater mounding assessment. Hydraulic conductivities that produced a groundwater mound greater than 100 feet in height were classified as having very poor recharge potential. Accordingly, a groundwater mound height of 100 feet was used as an endpoint to define the unsaturated zone thickness recharge suitability index. As indicated in **Table 3** and mapped in

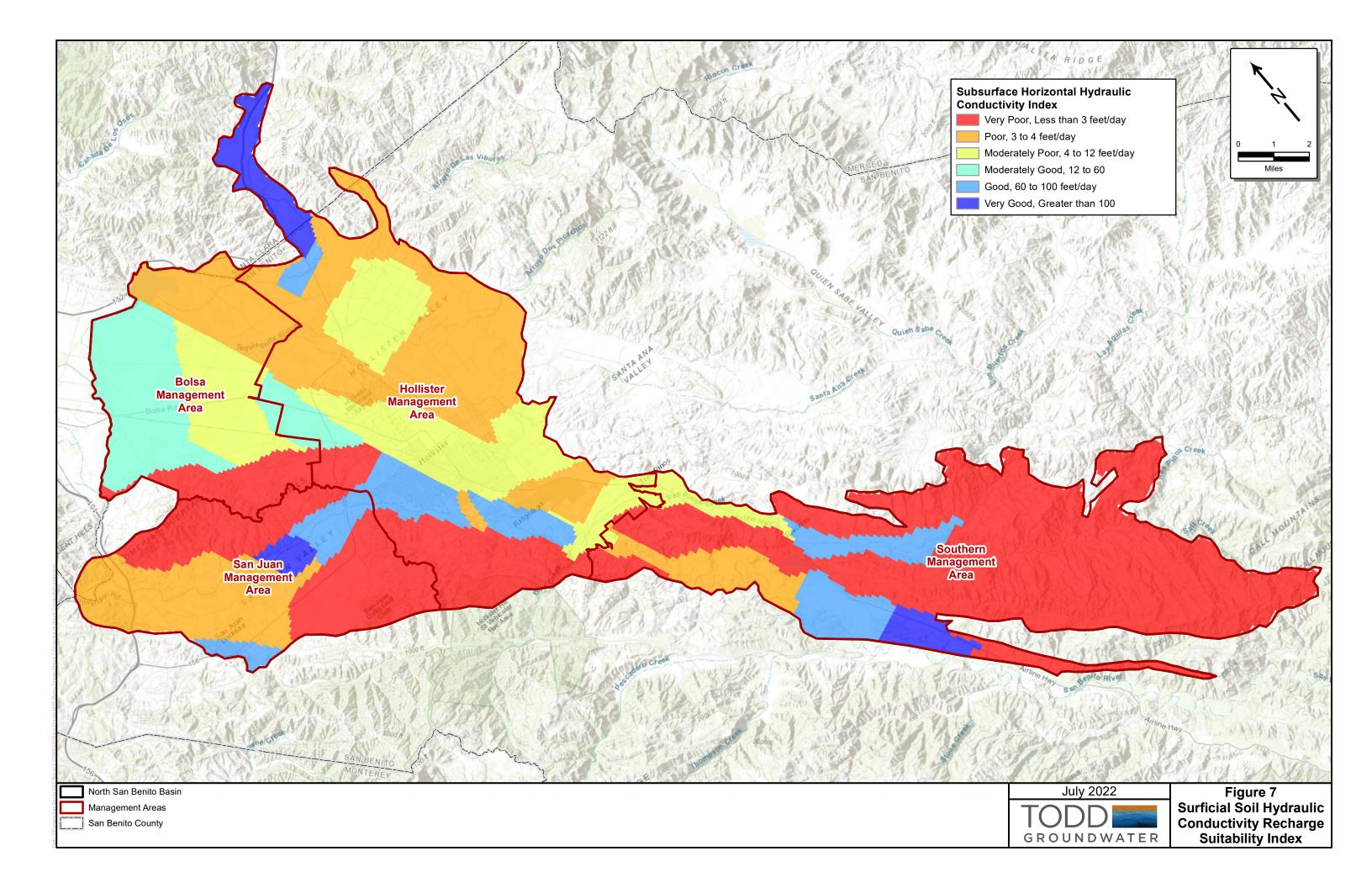
Figure 7, hydraulic conductivity values resulting in mounds from 70 to 100 feet were considered poor, from 40 to 70 feet were moderately poor, from 30 to 40 feet were moderately good, 20 to 30 feet were good, and those that mounded less than 20 feet were very good.

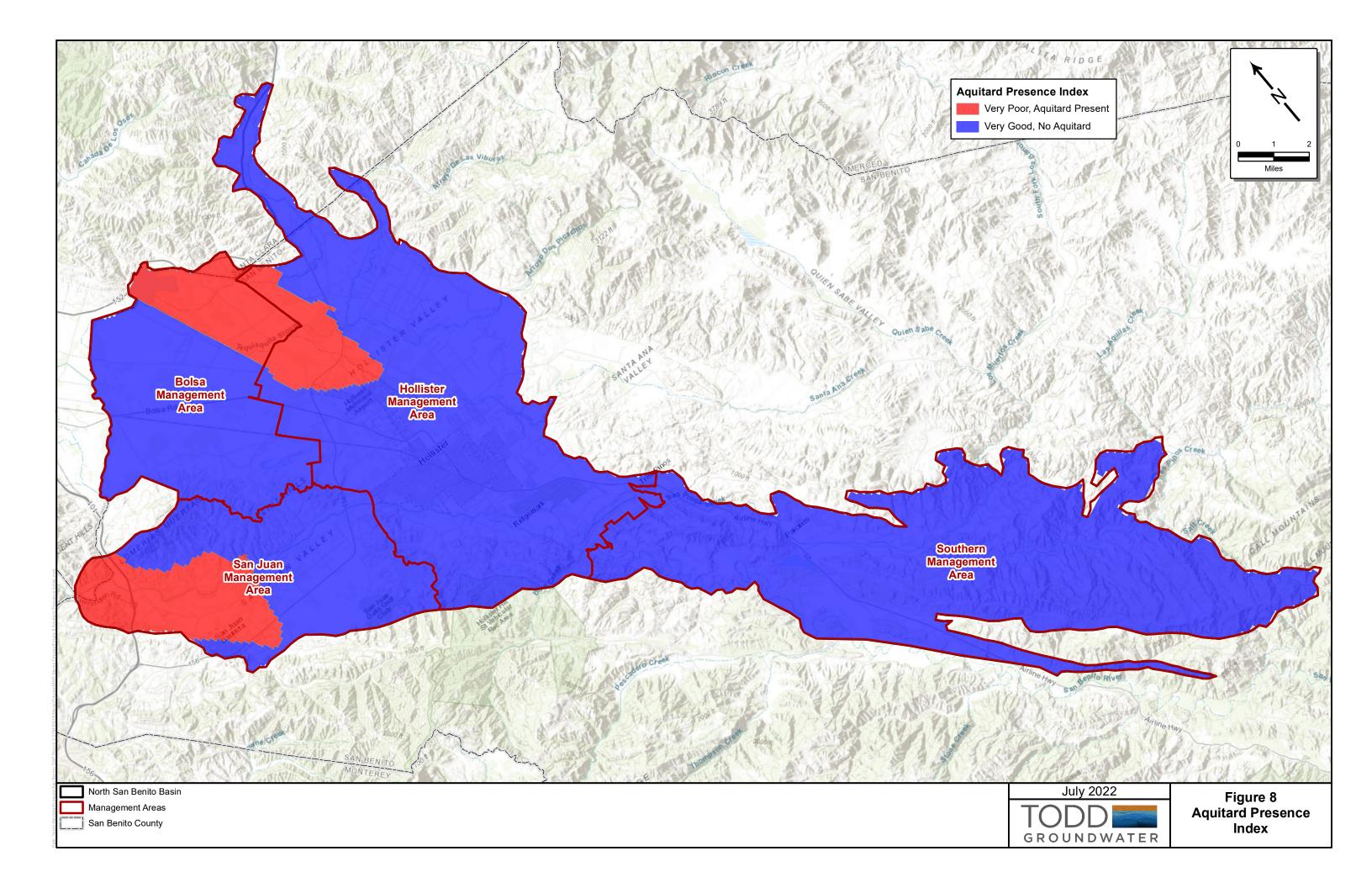
Table 3. Horizontal Hydraulic Conductivity Recharge Index Values

Horizontal Hydraulic Conductivity Range	Qualitative Index Value	Index Integer Value
Less than 3 feet/day	Very Poor	1
3 to 4 feet/day	Poor	2
4 to 12 feet/day	Moderately Poor	3
12 to 60 feet/day	Moderately Good	4
60 to 100 feet/day	Good	5
Greater than 100 feet/day	Very Good	6

5.1.2.3 Aguitard Presence Index


Aquitards are local or regional units of low permeability that limit vertical flow of groundwater. Portions of the basin are underlain by impermeable zones as shown on **Figure 8**. These zones are modeled as Layer 2 in the Basin numerical groundwater model (Todd 2020). The vertical hydraulic conductivity for Layer 2 was indexed either permeable or impermeable. Areas with the impermeable aquitard were assigned an integer value of 1 and all other areas were assigned an integer value of 6.


5.1.3 Surficial Soil Hydraulic Conductivity Recharge Suitability Index


The ability of undisturbed surface soils to transmit water to the subsurface is critical to evaluating recharge potential. If water is unable to adequately pass through near surface soils, it may not percolate to groundwater. It also can have negative effects on agriculture and infrastructure.

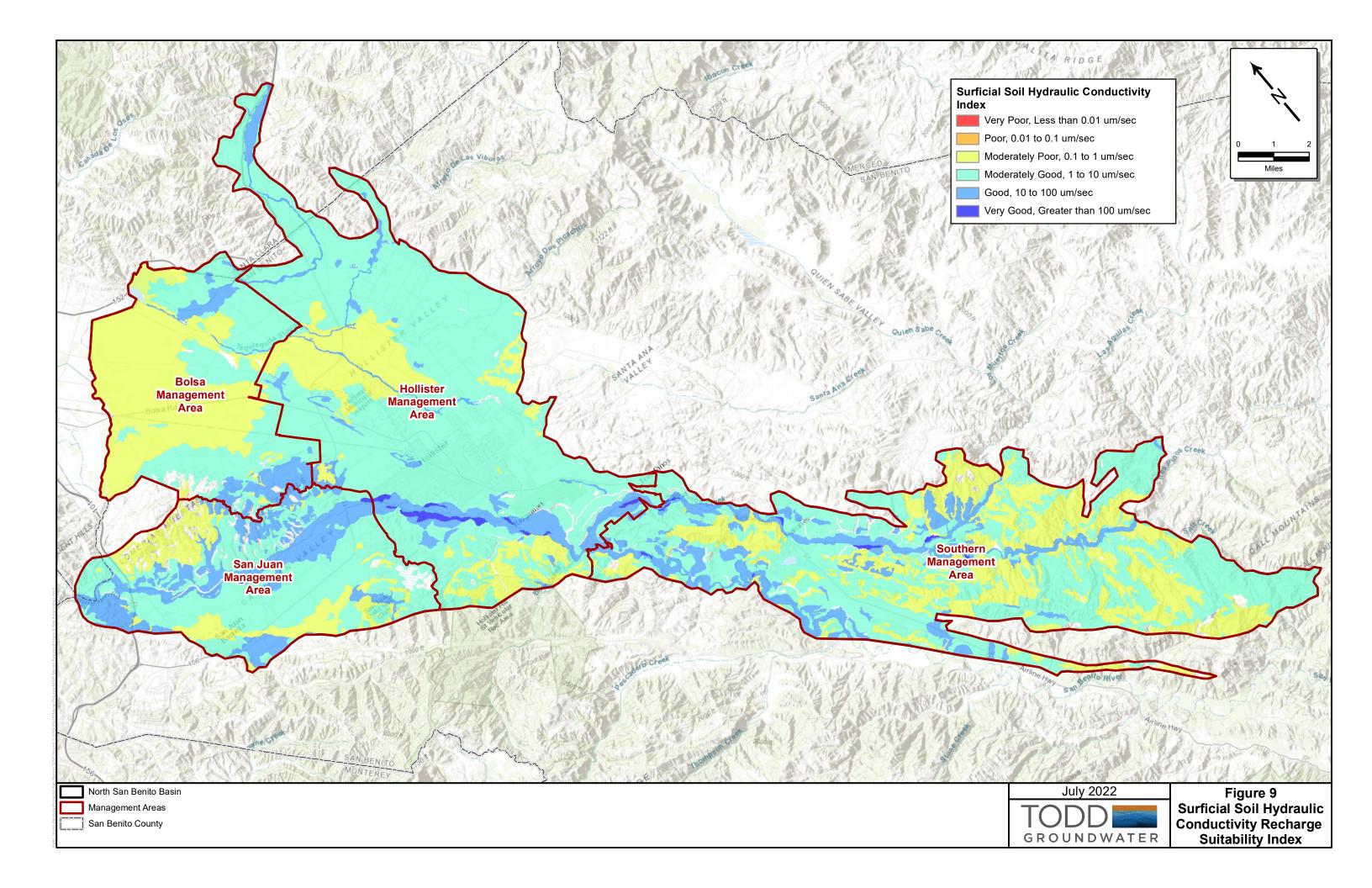
Saturated hydraulic conductivity (Ksat) is a soil property that represents the rate at which pores in a saturated soil transmit water. Estimated and measured soil Ksat values were obtained from the United States Department of Agriculture (USDA) Soil Survey Geographic Database (SSURGO) (USDA 2018). These values are based on measured soil characteristics, field observations, porosity, soil structure, and soil texture.

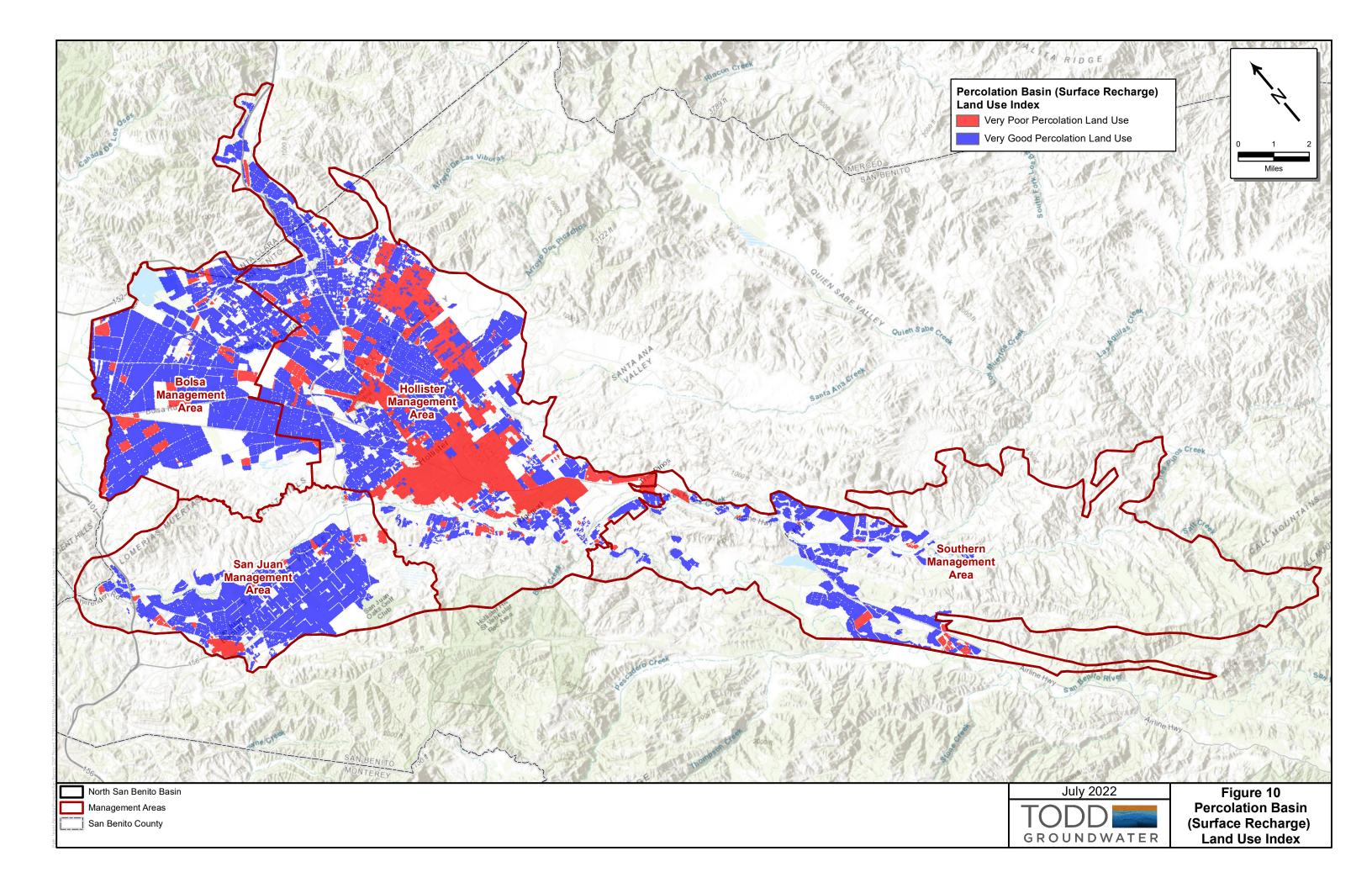
Estimated and measured Ksat values in the SSURGO database are expressed in terms of micrometers per second (μ m/sec). The weighted average Ksat for a 60-inch section of soil was calculated from SSURGO on a percent composition basis and the resulting values were organized into six groups based on relative percolation capacity and assigned integer values as shown in **Table 4** and mapped in **Figure 9**.

Table 4. Saturated Hydraulic Conductivity Recharge Index Values

Saturated Hydraulic Conductivity Range	Qualitative Index Value	Index Integer Value
0.00 to 0.01 μm/sec	Very Poor	1
0.01 to 0.1 μm/sec	Poor	2
0.1 to 1.0 μm/sec	Moderately Poor	3
1.0 to 10 μm/sec	Moderately Good	4
10 to 100 μm/sec	Good	5
100 to 705 μm/sec	Very Good	6

5.1.4 Crop Mapping and Land Use Recharge Indices


To properly evaluate surface recharge MAR in the form of percolation basins and/or AgMAR, an accurate accounting of land use and crop types is necessary. Modern remote sensing techniques make it possible to accurately identify land use using satellite imagery and other tools. Statewide land use and crop mapping datasets from 2016 were used to identify recharge potential for surface recharge and for AgMAR (DWR 2020b).


5.1.4.1 Percolation Basin (Surface Recharge) Land Use Index

The 2016 land use mapping was used to distinguish between urban hardscape and agricultural areas. Land use was indexed as either very poor or very good recharge potential accordingly. Unclassified areas, urban, and native riparian vegetation were assumed to have a very poor recharge potential and assigned an integer value of 1. All other mapped active agricultural areas were assumed to have very good recharge potential and assigned an integer value of six. Figure 10 shows the very good areas in blue and urban/very poor areas in red; the remainder is unclassified/very poor and mostly includes upland areas.

5.1.4.2 AgMAR Crop Type Index

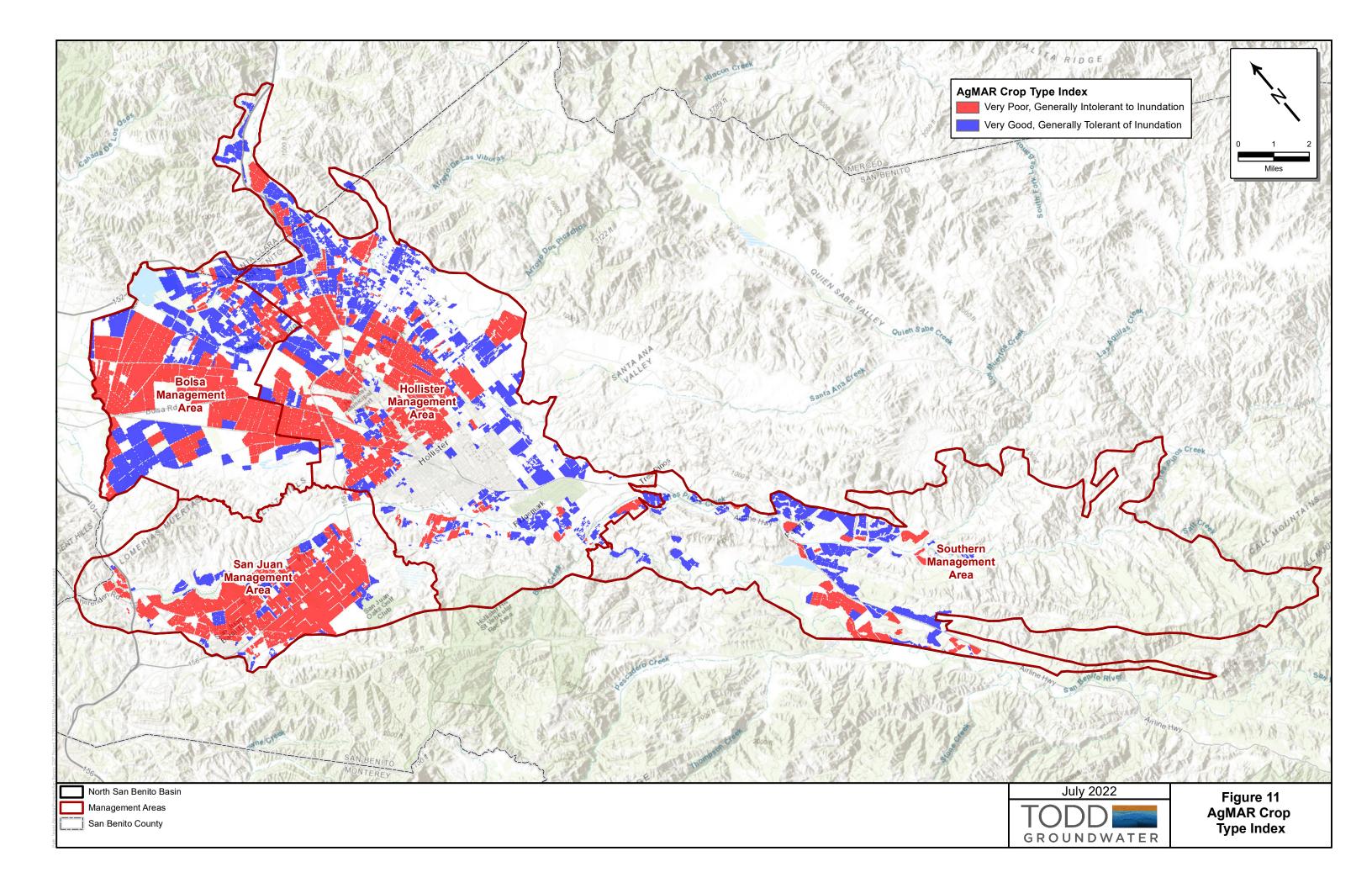

2016 crop mapping data were also used to evaluate the suitability of agricultural areas for AgMAR. Not all crops respond well to inundation; some crops are sensitive to saturated soils in the root zone, even for short periods, while others can accommodate periods of flooding. To identify land use-based recharge suitability, available literature was reviewed relating to inundation tolerance of mapped crop types shown in **Table 5**. The land use data was indexed as either very poor (index value of 1) or very good (index value of 6) based on published inundation tolerance. The crop types mapped in the Basin and their assigned recharge suitability index are shown in **Table 5** and on **Figure 11**.

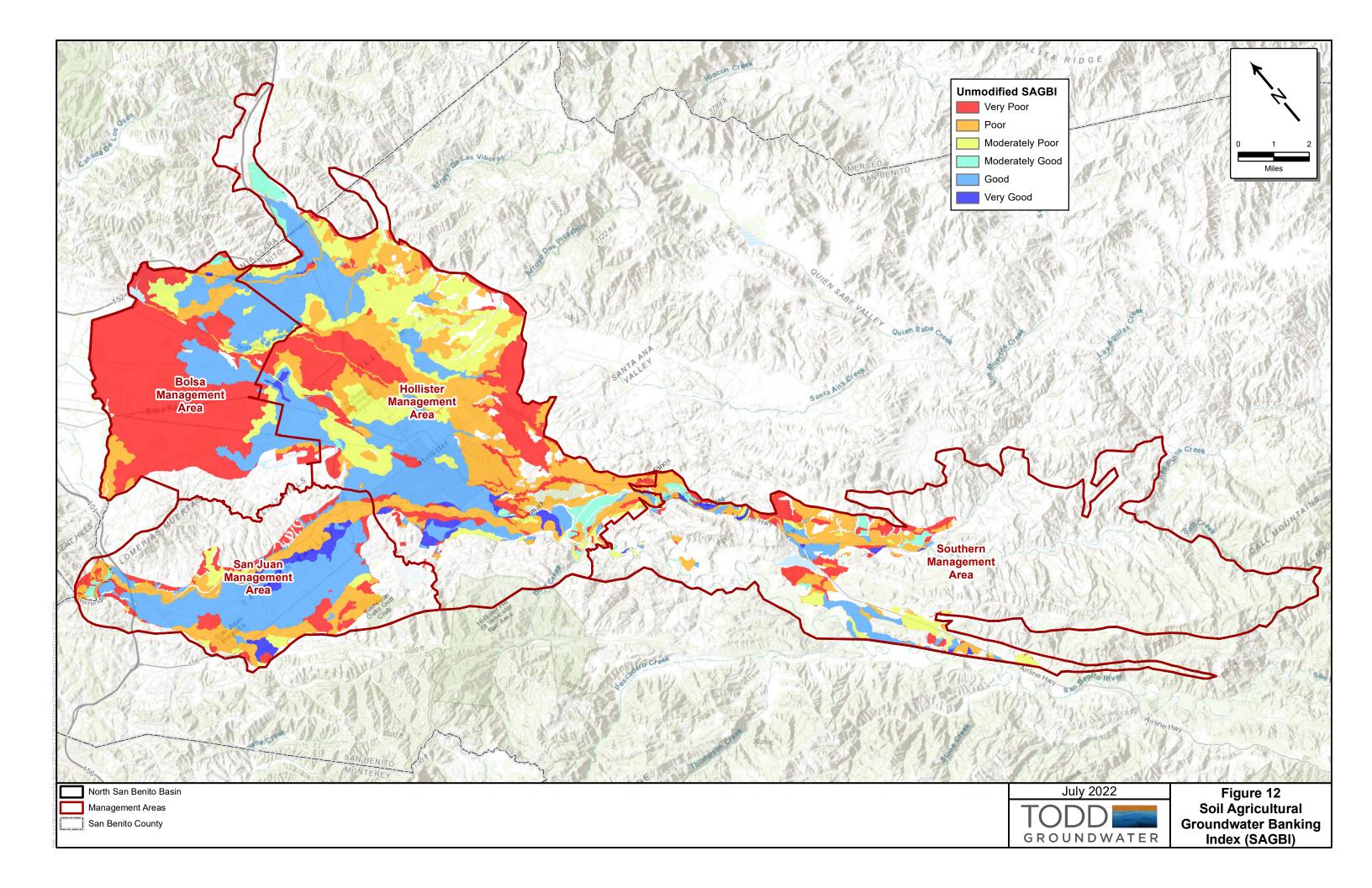
Table 5. Crop Type and Land Use Index Values

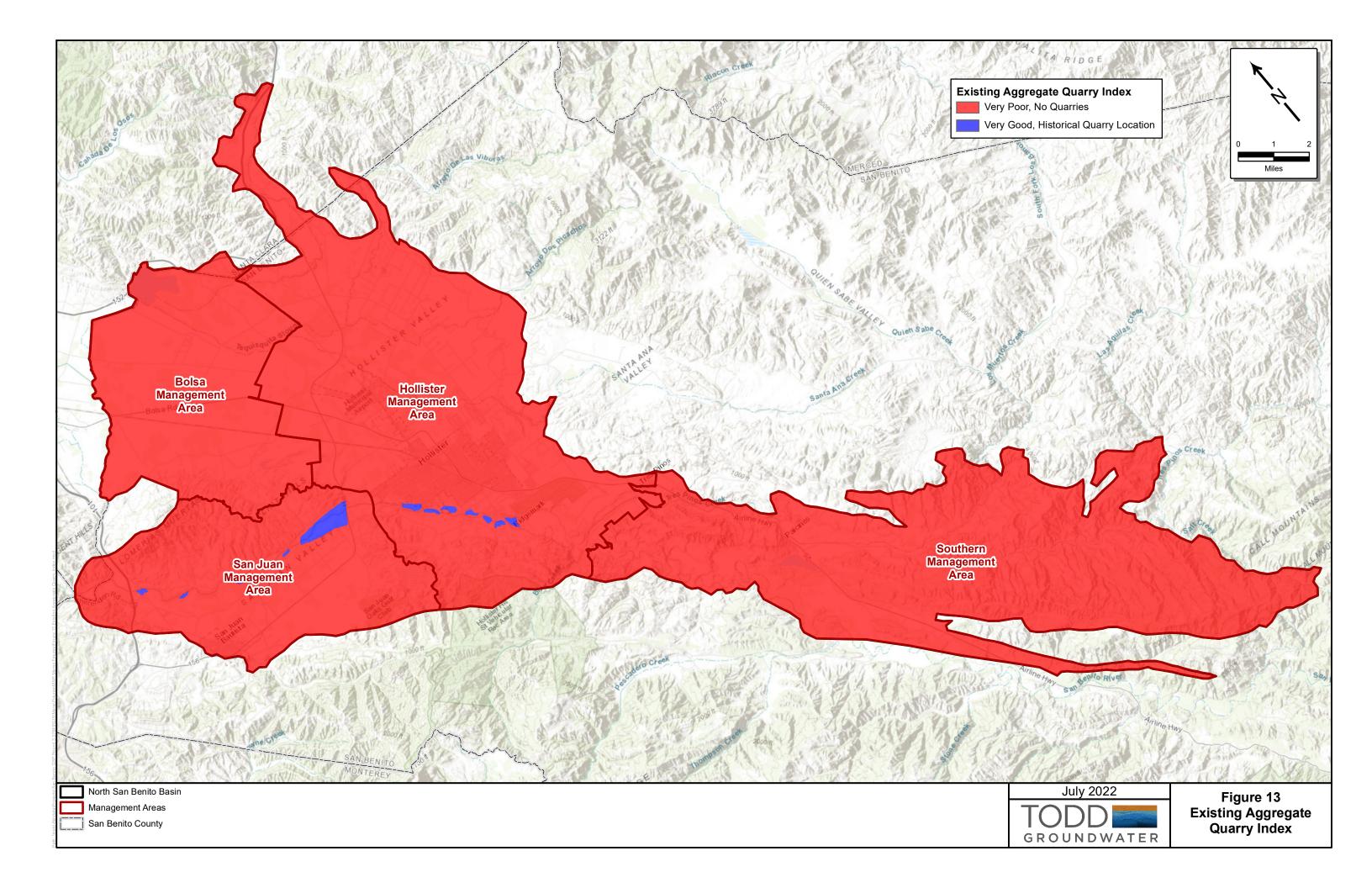
	Generally	Index	
	Tolerant to	Integer	
Land Use and Crop Type	Inundation?	Value	Literature Source
Apples	Yes	6	Schaffer et al. 1992
Bush Berries	No	1	Schaffer et al. 1992
Cherries	Yes	6	Schaffer et al. 1992
Citrus	Yes	6	Schaffer et al. 1992
Cole Crops	No	1	Rubatzky and Yamaguchi 1997
Corn, Sorghum and Sudan	Yes	6	RMC 2015
Flowers, Nursery and Christmas Tree Farms	No	1	Vreugdenhil 2006
Grapes	Yes	6	Schaffer et al., 1992
Greenhouse		1	
Idle		1	
Lettuce/Leafy Greens	No	1	Higashio 2012
Managed Wetland	No	1	
Miscellaneous Deciduous	No	1	Vreugdenhil et al. 2006
Miscellaneous Grain and Hay	Yes	6	RMC 2015
Miscellaneous Grasses	Yes	6	Assumed flood tolerant
Miscellaneous Truck Crops	No	1	Nonspecific, complex to assess
Mixed Pasture	Yes	6	RMC 2015
Olives	No	1	Kourigialas 2016
Plums, Prunes and Apricots	Yes	6	Schaffer et al. 1992
Tomatoes	Yes	6	RMC 2015
Urban	No	1	Assume hardscape
Walnuts	Yes	6	Schaffer et al. 1992
Young Perennials	Yes	6	RMC 2015

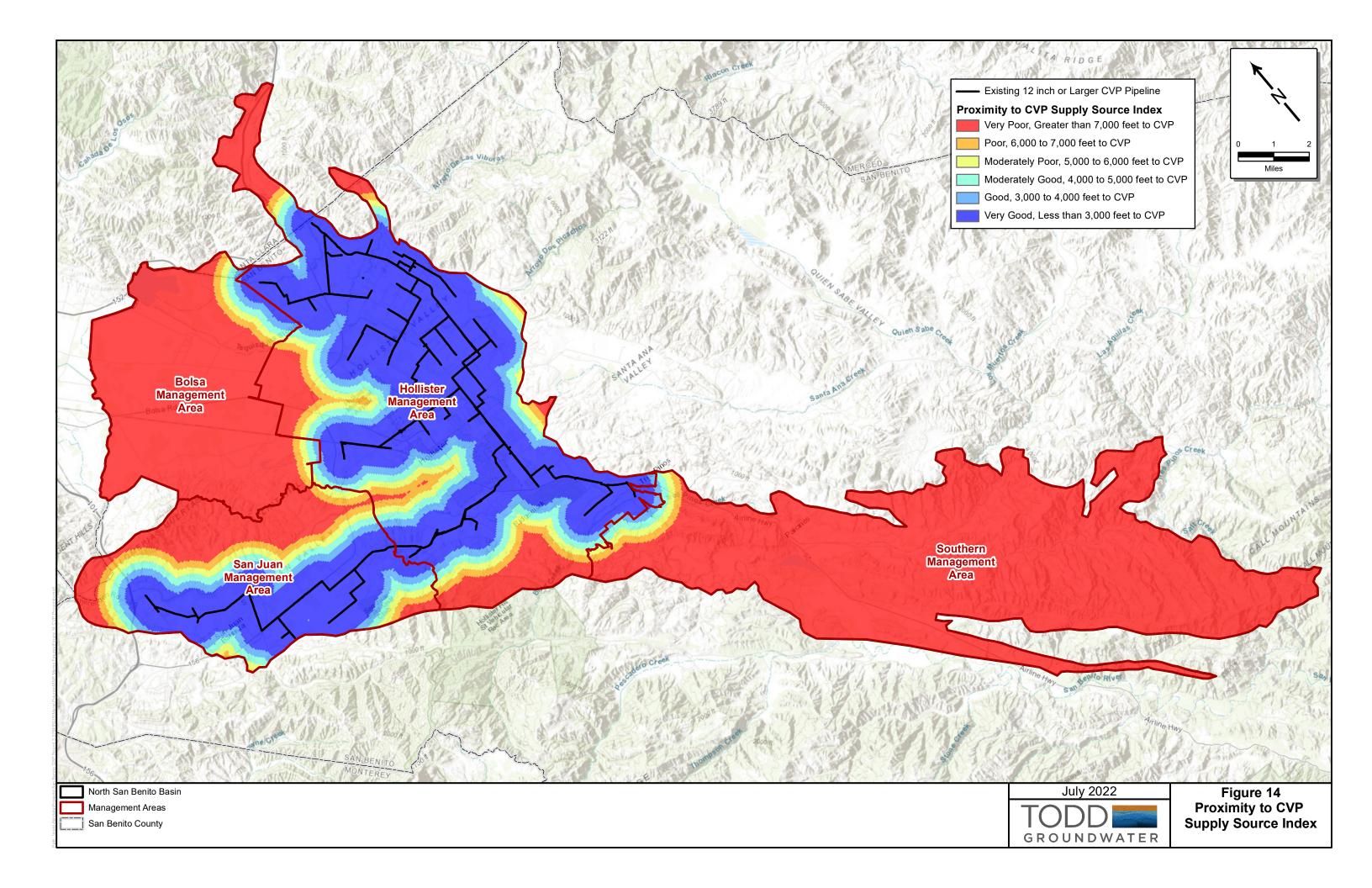
5.1.5 Soil Agricultural Groundwater Banking Index (SAGBI)

The SAGBI dataset was also used to evaluate AgMAR potential. SAGBI is a suitability index for groundwater recharge on agricultural land (O'Geen et al. 2015). It is based on five factors important to successful recharge on agricultural land: deep percolation, root zone residence time, topography, chemical limitations, and soil surface condition. The SAGBI dataset is normalized on a 100-point rating system that is commonly divided into six groups, consistent with the index scale used for the other parameters developed for this assessment.

The SAGBI dataset is available in two versions: modified and unmodified. The modified version assumes that all restrictive layers present in shallow soils have been removed or changed by excavation and/or tillage and no longer present a barrier to the percolation of groundwater. Such excavation and/or tillage are common in areas that have long been used for agriculture, especially those with permanent crops. The unmodified version of SAGBI assumes no modification of restrictive layers. The modified and unmodified versions of SAGBI were reviewed to assess the accuracy of the modified version in the Basin. This assessment showed that most of the SAGBI areas that differ between the two versions were in urban or unimproved areas. As a result, the unmodified version of SAGBI was used in this MAR feasibility assessment (Figure 12).


5.1.6 Existing Aggregate Quarry Index


Sand and gravel quarries were included in our evaluation of potential sites for surface recharge. Open pit mining of sand and gravel from ancestral and modern stream channels has the potential to provide sites with highly permeable lithology, previously excavated pits, and close proximity to source water. Locations of known sand and gravel pits adjacent to the San Benito River were included in the surface water recharge index as either very poor or very good recharge potential. Mapped sand and gravel pits were assigned an integer value of six and all other areas were assigned a value of one, as shown on **Figure 13**.


5.1.7 Proximity to CVP Supply Source Index

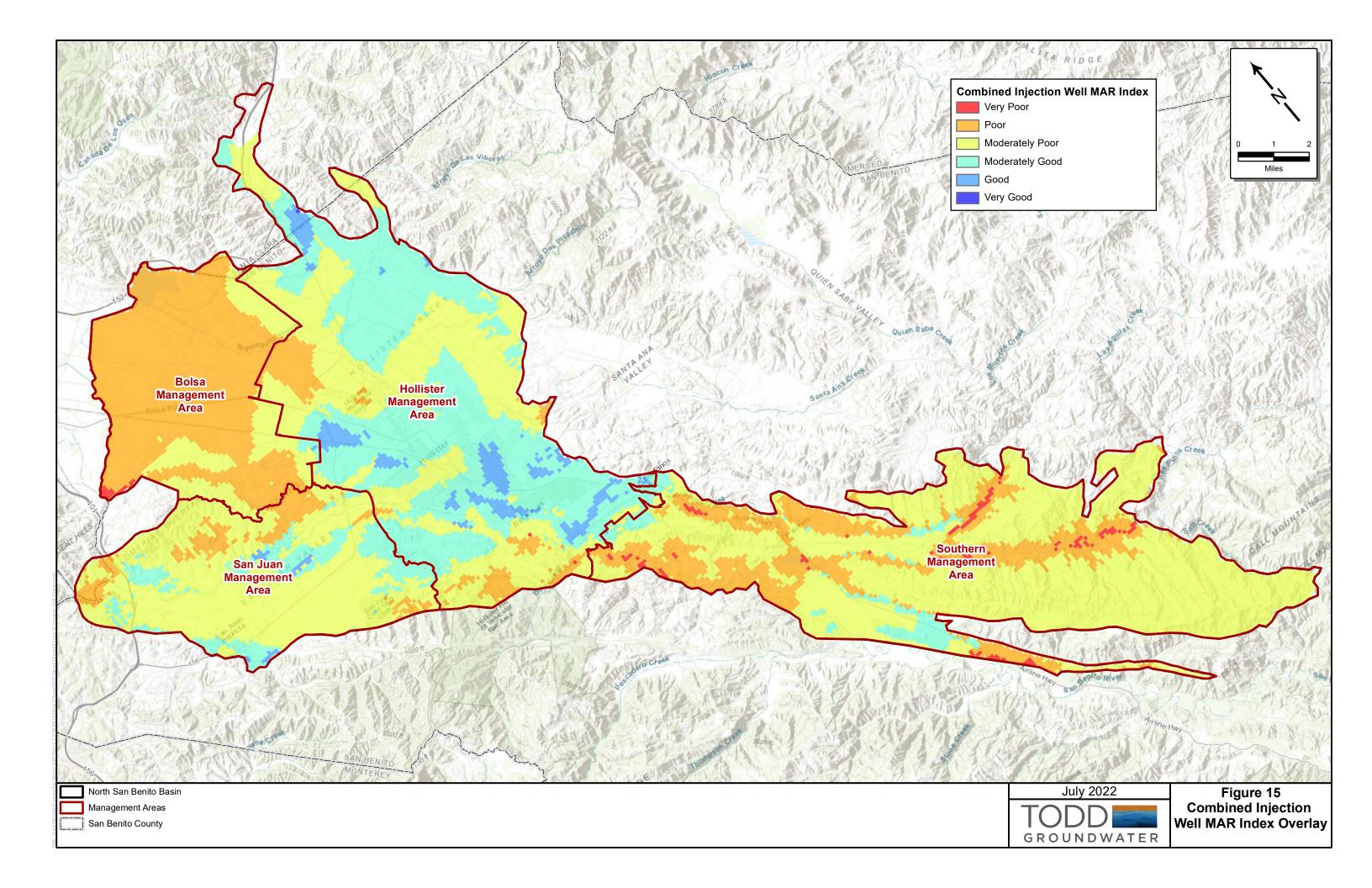
The viability of a MAR project is strongly dependent on the proximity, quality, and quantity of water that is available. As discussed above, three potential water sources were identified for MAR: local streamflow, urban stormwater runoff, and imported CVP. However, assessment of these water sources indicated that CVP is most suitable as a potential source for new MAR projects.

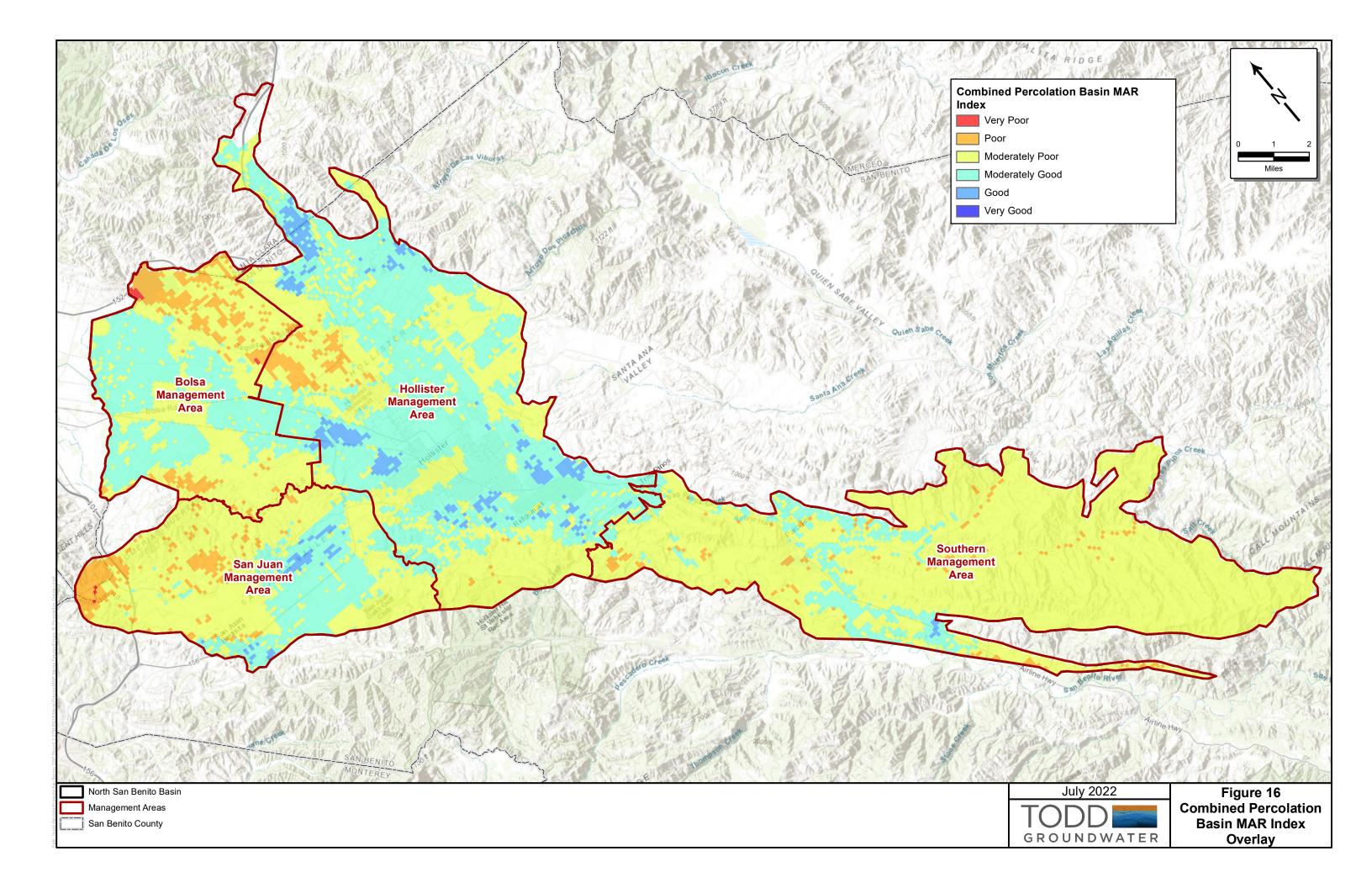
Accordingly, proximity to existing CVP infrastructure was identified as a component of the recharge index for the Basin. Existing conveyance infrastructure for the delivery of CVP water in San Benito County is depicted on **Figure 14.** In discussions with SBCWD, a minimum pipe diameter of 12 inches was identified for MAR projects. Pipes with a diameter less than 12 inches would not be able to supply water at an adequate flow rate for recharge projects. SBCWD also identified 3,000 feet from existing pipelines as the maximum practical distance for new MAR projects. As a result, conduits and mains with a diameter of 12 inches or greater were identified throughout the Basin and a grid dataset (raster) of distance from each suitable pipeline was created. The grid dataset was indexed for use in the recharge ranking system using the distance classifications shown in **Table 6**.

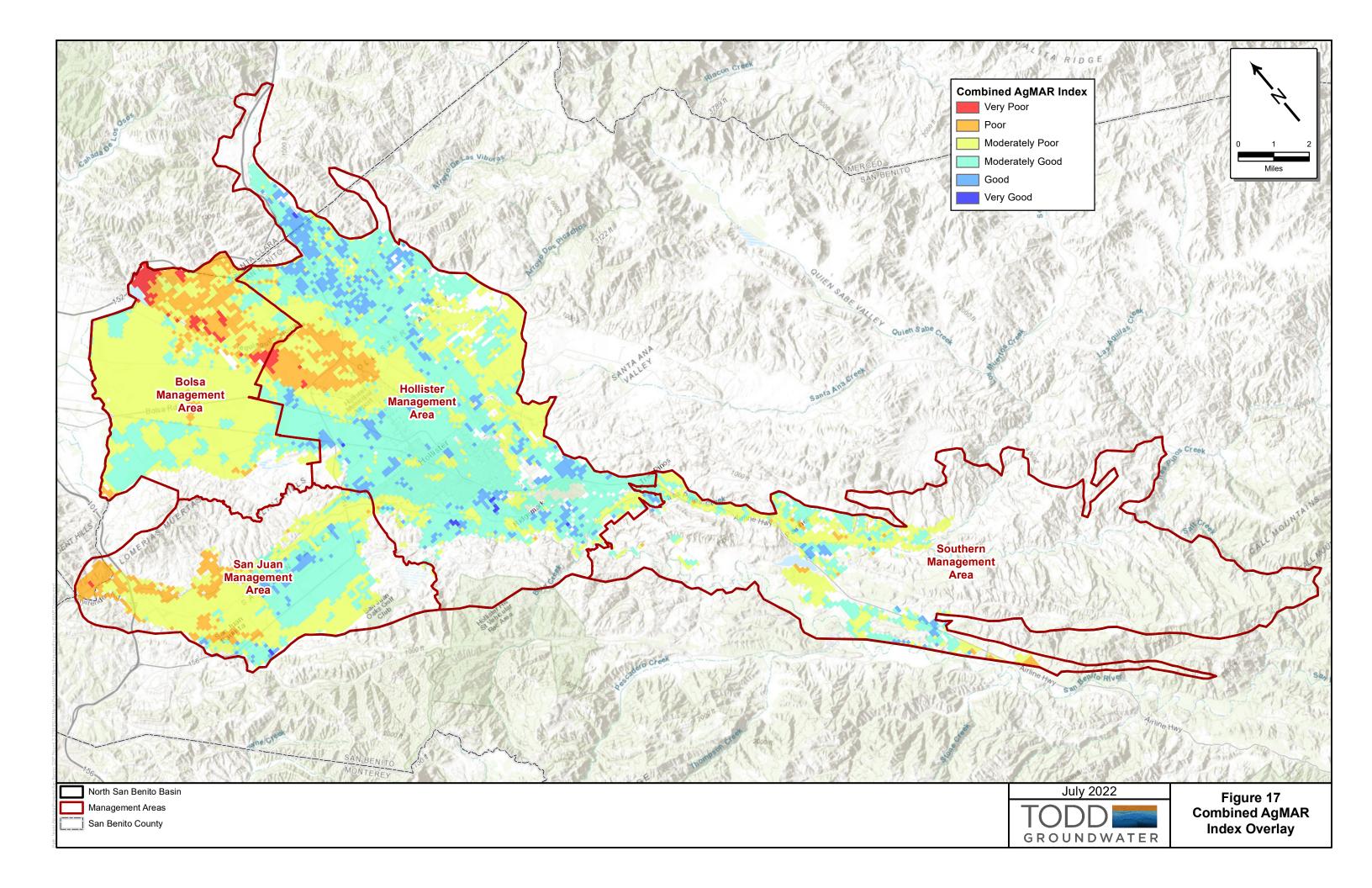
Table 6. Distance to Conveyance Index Values

Distance to Existing Pipeline at least 12 inches in Diameter	Index	Index Integer Value
Greater than 7,000 feet	Very Poor	1
6,000 to 7,000 feet	Poor	2
5,000 to 6,000 feet	Moderately Poor	3
4,000 to 5,000 feet	Moderately Good	4
3,000 to 4,000 feet	Good	5
Less than 3,000 feet	Very Good	6

5.2 Combined Index-Overlay Assessment Tools


The indices described above were combined in multiple ways to create tools for Basin-wide geographic assessment of recharge potential by MAR type. Individual hydrogeologic suitability coverages were created for injection wells (subsurface recharge), percolation basins (surface recharge), and AgMAR. These suitability index coverages were constructed by merging different combinations of the individual indices using GIS software tools. The GIS grid datasets representing each index were summed using raster calculation tools and then grouped back into six classes with values dependent on the number of individual indices used. Maps showing the potential injection well MAR index, percolation basin MAR index, and AgMAR index are presented as **Figures 15 to 17**, respectively.


5.2.1 Injection Well MAR Index


The injection well MAR index identifies areas with the highest potential for direct groundwater recharge through injection wells. Included in this index are the individual indices for unsaturated zone thickness, subsurface hydraulic conductivity, and proximity to CVP supply source indices. The maximum possible index value for the injection well MAR index is 18 (because it includes 3 individual indices). However, as shown on **Figure 15** the values in the index range between 3 and 16 and most of the Basin shows moderately poor to poor injection well MAR potential. The Bolsa and Southern Management Areas have the lowest injection well MAR potential. In the Southern Management Area very poor zones are focused along stream channels. The highest density of moderately good or greater injection well MAR potential is observed in the Hollister and San Juan Management Areas. The Hollister Management Area appears to have the highest recharge potential of the four management areas.

5.2.2 Percolation Basin MAR Index

A percolation basin MAR index was developed to evaluate the feasibility for construction and operation of percolation ponds. This index focuses on the feasibility of efficiently and effectively infiltrating water from the surface to the aquifer. Included in this index are the individual indices for unsaturated zone thickness, subsurface hydraulic conductivity, aquitard presence, surficial soil hydraulic conductivity, percolation basin land use, proximity to CVP supply source, and existing aggregate quarries.

The percolation basin MAR index is shown on **Figure 16** with a range of index values from 6 to 32. The maximum possible index value for this combined index is 42 and no areas of the Basin reached an index value indicating very good percolation basin MAR potential. The lowest potential is observed in the Bolsa Management Area followed by the Southern Management Area. The Hollister Management Area has the overall highest recharge.

5.2.3 AgMAR Index

AgMAR potential is a function of available storage space, subsurface conductivity, land use, water supply availability, and surface infiltration capacity. As a result, the AgMAR Index includes the individual unsaturated zone thickness, subsurface hydraulic conductivity, aquitard presence, AgMAR crop type index, proximity to CVP supply source, and the SAGBI indices. The combined AgMAR index is shown on **Figure 17** and has an index value range of 6 to 31, with no locations reaching the maximum index value of 36. The Southern Management Area has little agriculture and is generally not suitable for AgMAR. The Hollister Management Area has the highest potential AgMAR, despite a zone of very poor to moderately poor potential trending north-south across the Bolsa and into the Hollister Management Area.

6. POTENTIAL MAR PROJECT SCREENING ANALYSIS

The areas identified for MAR by all three methods were further evaluated in a screening level analysis that used the Basin numerical groundwater model (Todd 2020). This screening analysis simulated MAR in various parts of the Basin to assess the amount of water-level mounding, identify the geographic extent of noticeable water-level effects surrounding each facility, and determine how long the recharge from a single recharge year is retained in the Basin. Locations of hypothetical injection wells, percolation basins, and AgMAR were selected in areas identified as relatively high suitability from the index-overlay method described above. The facilities were placed in four general regions: the Hollister Management Area between Arroyo de las Viboras and Union Road / Airline Highway, the Hollister Management Area south of Arroyo de las Viboras and Union / Airline, the Zone 6 part of the Bolsa Management Area, and the eastern part of San Juan Management Area. Operations of injection wells and percolation basins in those regions were simulated separately in two screening-level simulations.

Plans for this screening simulation are described in detail in a TM titled *Draft Specifications for Managed Aquifer Recharge Modeling Scenarios, North San Benito Basin Round 3 Managed Aquifer Recharge Evaluation* (Todd 2021).

Each of the MAR facilities was simulated to recharge 6,000 AFY in the years when excess CVP water is assumed to be available. Any one of these new MAR facilities combined with the existing SBCWD MAR capacity would meet the 10,000 AFY total MAR goal. The results are not presented here but led to the following conclusions that informed the development of subsequent, refined scenarios:

 Increases in groundwater levels were generally noticeable only within 1 to 2 miles of the recharge location.

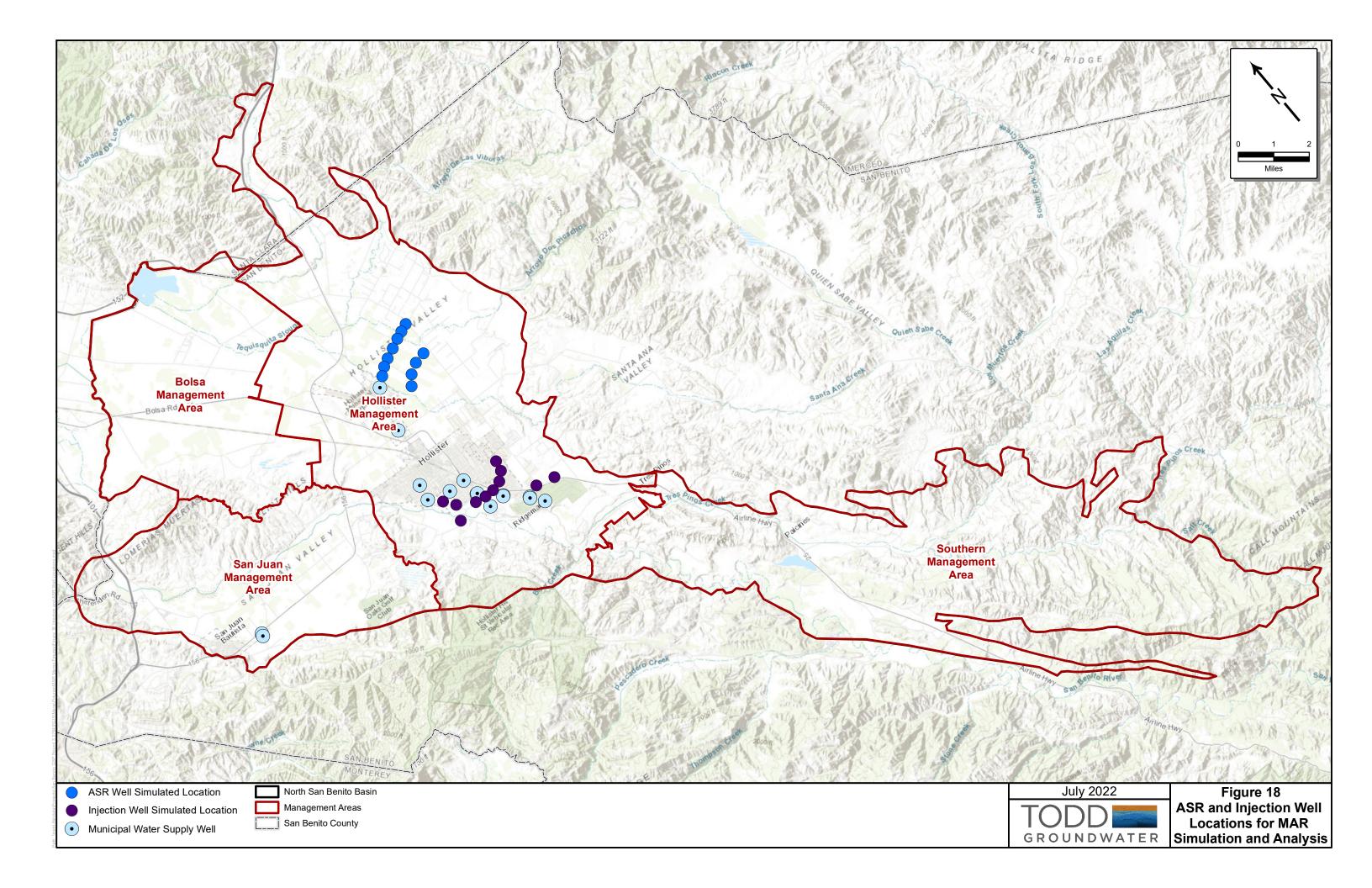
- Water-level increases of tens of feet occurred at model cells containing recharge facilities.
- Water-level rises dissipated rapidly following a recharge year, remaining detectable for 2 to 5 years thereafter.
- Water-level rises receded more rapidly in locations closer to head-dependent boundaries such as stream reaches that are hydraulically connected to groundwater.

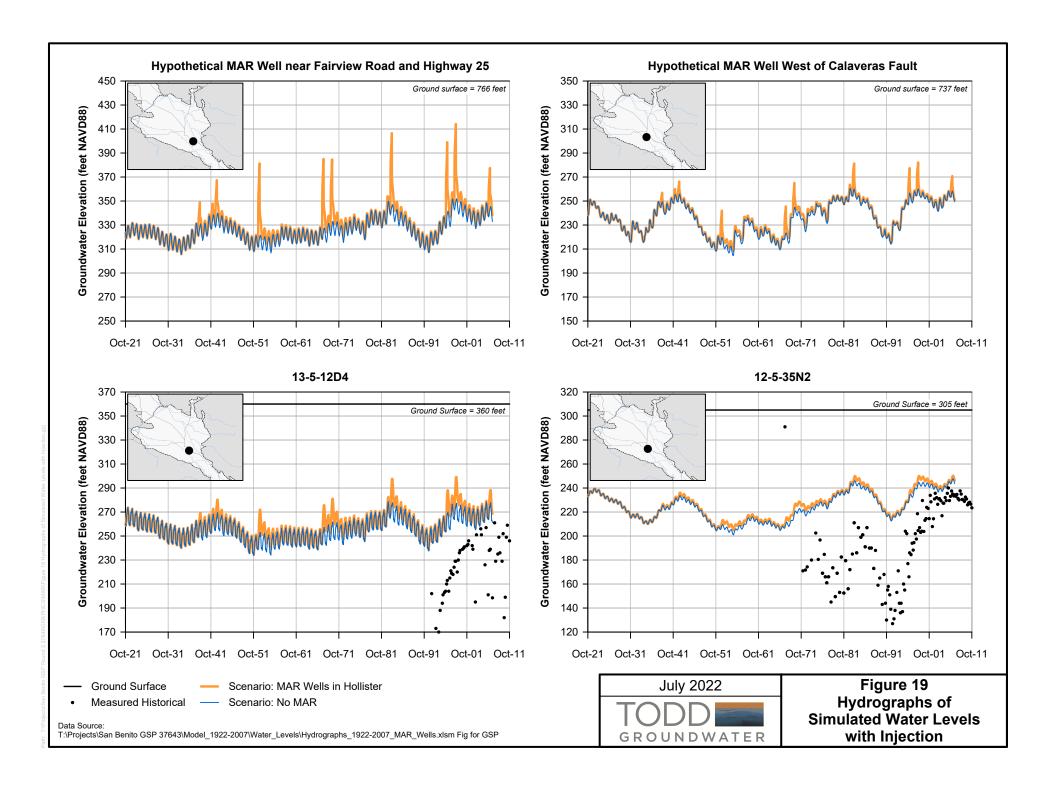
7. SELECTED MAR SCENARIO SIMULATIONS AND ANALYSES

Two injection well MAR scenarios were developed for evaluation. The first is injection-only MAR and the second scenario involves wells that inject and extract water, a strategy termed aquifer storage and recovery or ASR. The first scenario involves eleven MAR injection wells located along CVP distribution pipelines at locations close to and roughly upgradient of City of Hollister (Hollister) and Sunnyslope County Water District (Sunnyslope) municipal supply wells (**Figure 18**). This arrangement maximizes the water-quality benefit of injection by allowing the recharged water to be recovered at nearby existing potable supply wells, before it has mixed into a large volume of native groundwater. The total recharge in the injection-only scenario was 6,000 AFY in years when excess CVP water is assumed to be available. As above, this injection volume meets the desired 10,000 AFY of total MAR when combined with the SBCWD's current 4,000 AFY MAR capacity

In the second scenario involving ASR, a treatment plant would be built near eleven ASR wells to treat the water up to injectable quality before injection and to treat extracted water to drinking water standards before piping it into the City of Hollister's potable water distribution system. To achieve flow and pressure objectives in the distribution system, SBCWD is focused on locations near the north end of Hollister. For this scenario, seven ASR wells were hypothetically located 1,500 feet apart along Fallon Road between Highway 156 and Fairview Road (Figure 18). This is the estimated minimum spacing needed to avoid excessive well interference. Fallon Road has a CVP pipeline that could supply the treatment plant, and its right of way could provide well locations that eliminate the need to negotiate access with private landowners. Also, Fallon Road is roughly parallel to the regional groundwater flow direction. This maximizes the probability that injected water could be recovered later at one of the wells. Another four ASR wells were hypothetically located along another existing CVP distribution pipeline parallel to Fallon Road but about one mile to the south. This row of wells is also aligned with the regional flow gradient, and it was assumed that it would be easier to expand SBCWD's existing easements (for the CVP pipeline) to include ASR wells rather than negotiate new easements with a new set of landowners.

For the ASR scenario, the amounts and timing of injection are the same as for the MAR injection-only scenario. Extraction is assumed to occur in all non-injection years at a rate that balances the injected and extracted volumes over the course of an 86-year simulation period. Thus, injection of a total of 45,408 AF occurs during 11 years over the 86-year timeline, which averages 528 AFY. Extraction of the same volume of water occurs in 75 of the 86 years at a rate of 605 AFY.

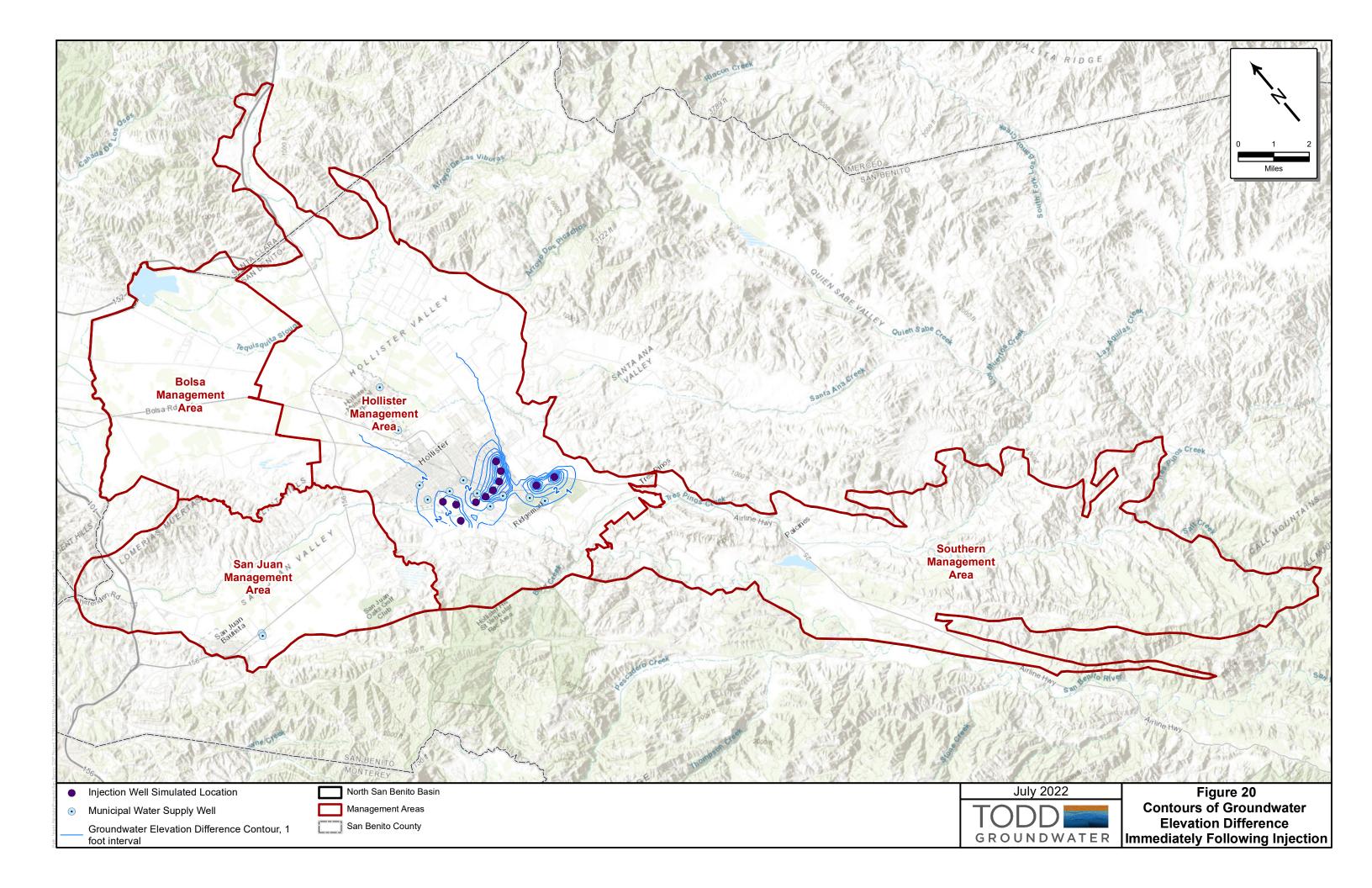

The two injection well scenarios reflect additional siting considerations, including where recharge is most needed and how long the recharged water can be retained in storage before being lost to groundwater outflow. Because of the relatively large recharge capacity of the San Benito River, the San Juan Management Area does not experience drought-related water-level declines as large or prolonged as in the Hollister Management Area. Also, one of the existing CVP percolation basins and the City of Hollister's reclaimed water percolation ponds supplement recharge in the San Juan Management Area. Recharge anywhere along Pacheco Creek tends to be lost quickly to groundwater discharge back into the creek, Tequisquita Slough, or San Felipe Lake. Thus, the supplemental recharge is not retained in storage as reliably as it is farther south. The region that has the greatest need of supplemental recharge and retains it the longest is the region that was slowest to recover following historical overdraft during the 1940s to 1970s: the area east of the Calaveras Fault between about Fallon Road and Tres Pinos Creek. The injection well and ASR scenarios are both in that region.

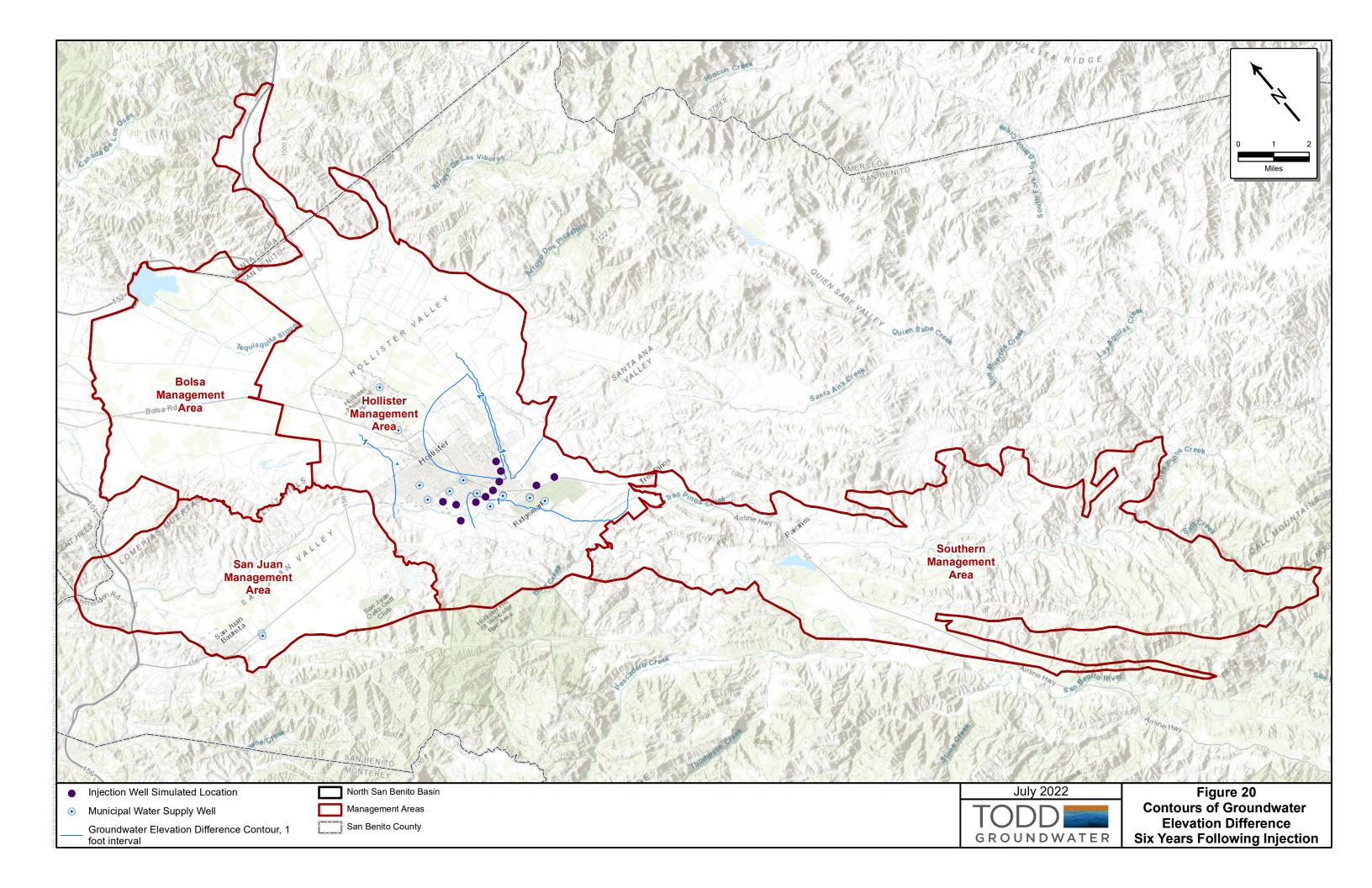

7.1 Results of Scenario Simulations

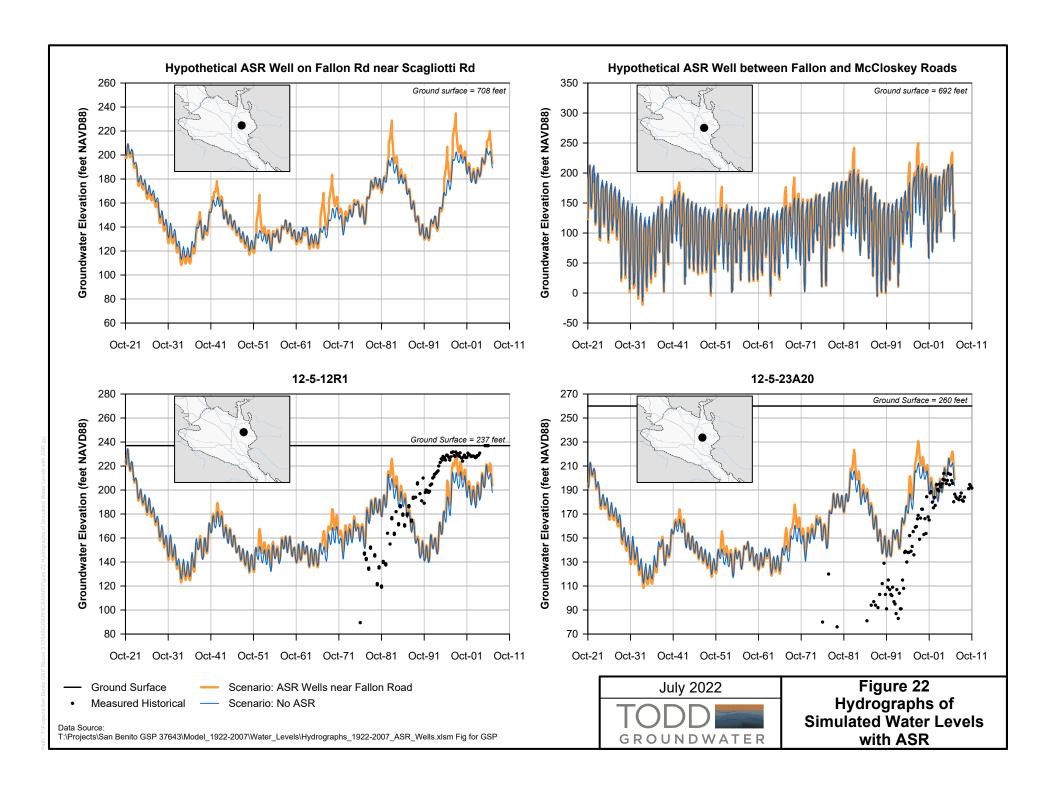
The effects of the injection well and ASR well scenarios were each simulated and compared to a reference simulation that consisted of the future baseline simulation plus future growth and climate change. One scenario at a time, the reference simulation was modified to include the injection wells or the ASR wells. Almost all aspects of the reference simulation remained unchanged in the scenarios, including land use, dispersed recharge, bedrock inflow, stream inflows, wastewater percolation and agricultural pumping. For the injection well scenario, the only change was the addition of injection at the injection well sites, which was concentrated into a four-month season (November-February). All groundwater pumping remained unchanged. For the ASR scenario, the changes were injection and extraction at the ASR wells and a small decrease by a uniform percentage among all other City of Hollister municipal wells to compensate for the production from the ASR wells. To test the effect of spreading injection out over a longer season, injection was assumed to occur over nine months during each injection year (June-February).

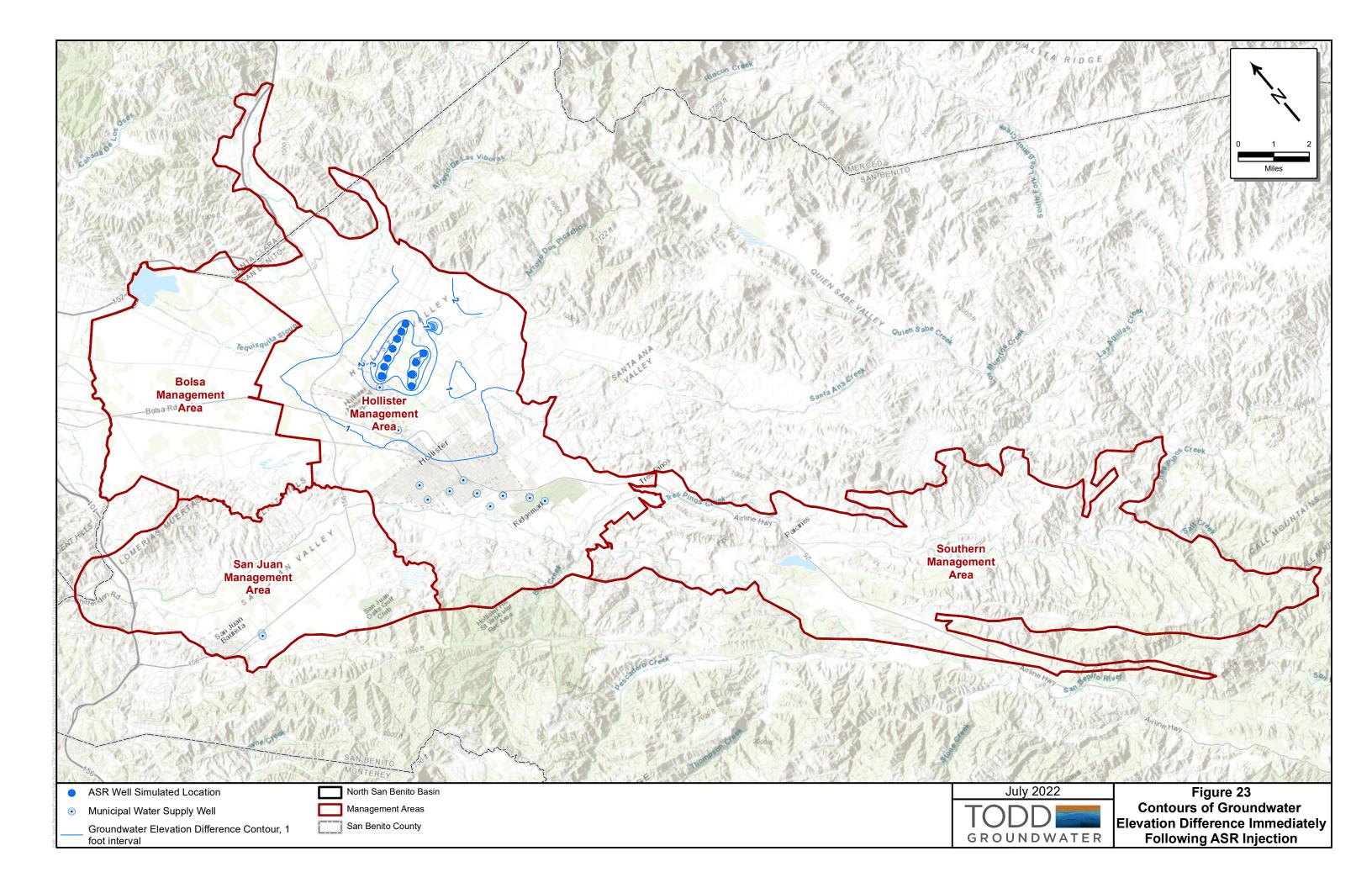
7.1.1 Water Levels

Figure 19 shows hydrographs of simulated water levels at four wells in Hollister for the reference simulation and the injection well scenario. Two of the wells are hypothetical MAR injection wells: MAR Well IW-11 near the intersection of Fairview Road and Highway 25, and MAR Well IW-8 west of the Calaveras Fault near San Benito Street north of Union Road. At IW-11, water levels rose on the order of 60 feet in injection years. This large water-level rise is due partly to the relatively low hydraulic conductivity of the aquifer system at that location (4 ft/d in the model). The simulated water-level rise is the average rise over the total area of the model cell (5.7 acres). Water-level rise in the immediate vicinity of the well would be much larger than the average. This indicates that spreading injection out over nine months would likely be necessary to prevent excessively high water levels in the injection well. IW-8 is located west of the Calaveras Fault near the San Benito River, where aquifer hydraulic conductivity is much higher (70 ft/d in the model). There, the water-level rise in injection years was only 20 feet. Hydrographs for two nearby wells with historical water-level data are also shown in the figure. Water-level rises at those wells were 5-20 feet, with the range correlating with distance from nearby injection wells.

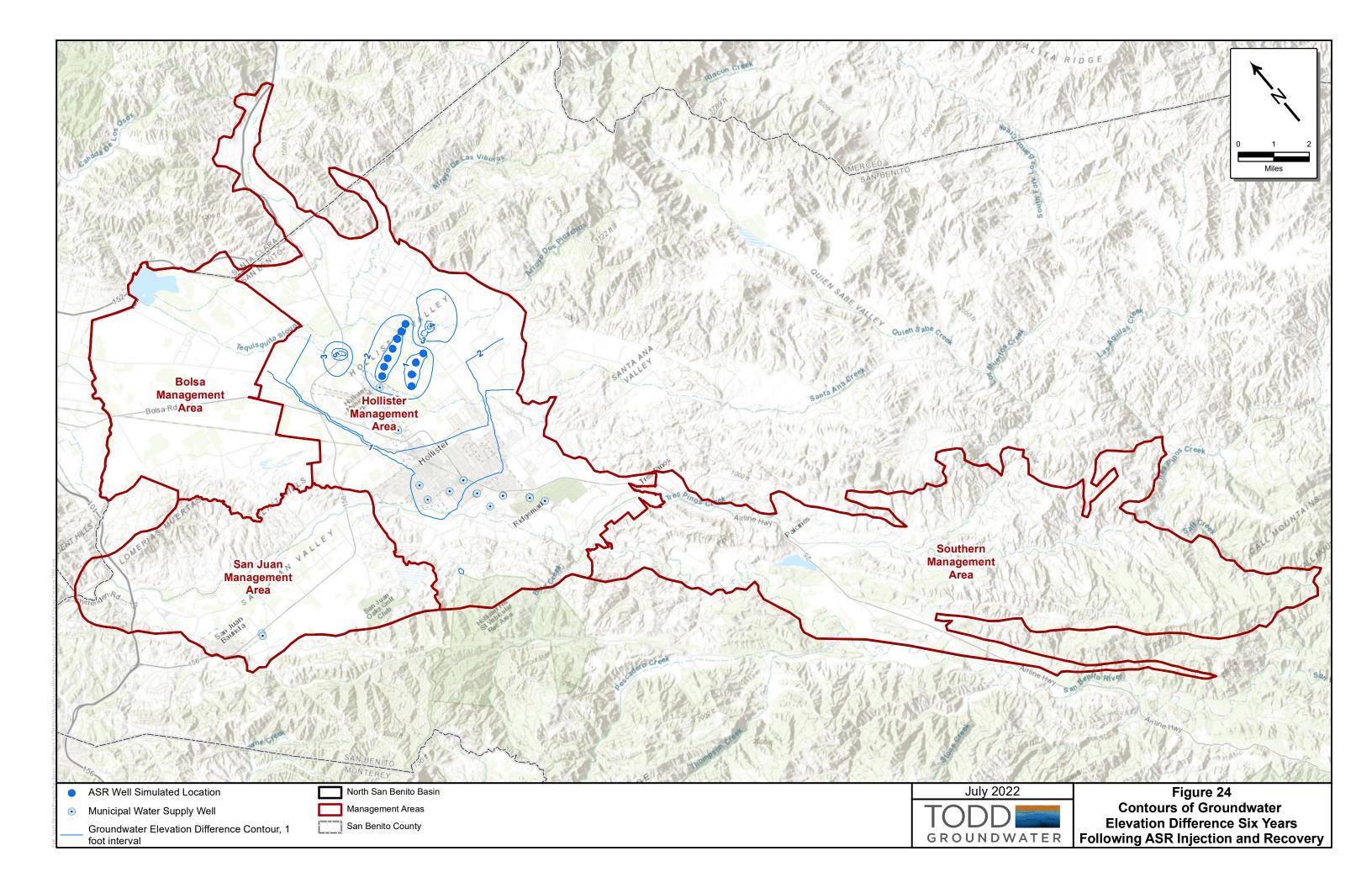





The persistence of injected water in storage is better shown by contouring differences in water levels between scenarios. **Figure 20** shows contours of the change in water levels (relative to the reference simulation) resulting from injection of 6,000 AF uniformly among the wells over a four-month period. This period corresponds to February 1983 hydrology, a wet period. Prominent water level mounds up to 16 feet high can be seen around individual injection wells. The mounding decreases to less than 2 feet within 0.5 mile and is generally less than 0.5 foot at locations one mile or more from the injection wells. The presence of faults sharply truncates the mounding in some directions. To test the residence time of the stored water, contours were also compared six years later (November 1988 hydrology), as shown in **Figure 21**. The influence of injection was still present at that time, with water levels up to 2.7 ft higher than for the baseline scenario near the east end of the arc of injection wells. The effect of injection had spread substantially during the six years following injection. The water-level increases gradually decreased to 1.5 feet at distances 2 miles north of the row of wells. Faults continued to restrict the spread of the mounding to the east and west.


For the ASR well scenario, hydrographs for four wells near Fallon Road are shown in **Figure 22**. Two of the hydrographs are at hypothetical ASR wells (ASR-5 and ASR-10), where prominent spikes in water levels are visible during injection years (for example, 1938, 1952, 1969 and 1983). Water levels at those wells decline back to near baseline levels within about 4 years. During longer periods between injection years, water levels drop below the baseline levels because of extraction at the ASR wells. Overall, this scenario is water-budget neutral: increased recharge from injection is balanced in subsequent years by increased extractions, with the latter spread out over all the municipal wells. Hydrographs of water levels at two nearby wells with measured historical water levels are also shown (wells 12S/5E-12R1 and 12S/5E-23A20). At those wells, water levels are higher for several years following injection years and are never lower than the baseline water levels. That is because these two wells are not municipal wells, so they experience the effect of substantial nearby injection more than the effect of smaller nearby increases in extraction during intervening years.

The persistence of injected water in storage is indicated by a contour map of differences in water levels between the ASR well scenario and the reference simulation. The contour map shown in **Figure 23** is for February 1983 hydrology, which follows injection of 6,000 AF of CVP water over 9 months. Water level mounding around individual ASR wells diminishes from about 6 feet in the model cell where the well is located to less than 2 feet within 0.5 mile. There is a cone of depression around one of the hypothetical additional municipal water wells east of the ASR well group. This resulted from the ASR scenario operating assumptions. When ASR wells are injecting, the rest of the municipal supply wells pump slightly more than they otherwise would, and vice versa when the ASR wells are extracting. The mounding around individual ASR wells is smaller in this scenario than in the injection-only scenario because the same annual volume of water was injected over nine months rather than four months. The longer operating season is preferable not only to minimize well interference but also to decrease the number of wells needed and their required injection rates.



A contour map of conditions six years after ASR well injection (November 1988 hydrology) is shown in **Figure 24**. The ASR wells were extracting at a low rate from 1983 to 1988 and developed a local water-level trough withing the broader water-level mound that remained from the 1983 injection event. This pattern clearly confirms the long-term storage of water following injection. The residual mounding was on the order of 2.5 feet above the baseline scenario over a region extending several miles from the ASR wells. The center of the local trough was of a similar magnitude, lowering water levels back to around the baseline elevations.

7.2 Water Budgets and Storage

For the injection well scenario, all groundwater extraction in the model remained the same as in the reference simulation. The model automatically balances the increased recharge from injection with increases in storage, groundwater discharge to streams, riparian vegetation evapotranspiration (ET), and outflow to other Management Areas. For the ASR well scenario, pumping was increased in non-recharge years to balance the amount of injection in recharge years. There was no net increase in recharge over the span of the entire simulation, but in individual years recharge and pumping were higher or lower than in the reference simulation. The locations of pumping also changed, as some City of Hollister pumping shifted from the normal supply wells to the ASR wells in non-injection years.

Table 7 compares the average annual water budgets for the injection well and ASR well scenarios with the growth plus climate change reference simulation. Separate tables are shown for each management area. All three water budgets were essentially the same in the Southern Management Area, which had no MAR facilities and is upgradient of where the simulated MAR facilities were located. The biggest water budget effects were in the Hollister Management Area, where all the simulated MAR facilities were located. Recharge at MAR percolation basins was the same for all three scenarios because they are existing facilities that were assumed to have first priority for recharging surplus CVP water in the two MAR scenarios. The amounts and timing of CVP water injection were the same for the injection well and ASR well scenarios. The differences between those scenarios were the locations of the wells and the extraction simulated at the ASR wells in non-injection years. For the injection well scenario, the increase in total recharge contributed by the injection wells (528 AFY) was balanced over the 86-year simulation primarily by decreased percolation from streams (44 percent), increased groundwater outflow to streams (17 percent), decreased outflow to the Bolsa and San Juan Management Areas (14 percent), increased groundwater storage (about 13 percent), and decreased inflow from the Southern Management Area (10 percent).

The ASR well scenario had the same total amount of injection and extraction as the injection well scenario because the ASR wells do not increase municipal water demand. Extraction from the ASR wells in non-injection years was simply extraction that was shifted in location from the normal municipal wells to the ASR wells. Because of the differences in timing and location of injection and pumping, the ASR well scenario had a slightly different effect on the average annual Hollister Management Area water balance than the injection well scenario. The 528 AFY increase in recharge contributed by injection was balanced primarily by decreased percolation from streams (37 percent), increased outflow to the Bolsa and San Juan Management Areas (20 percent), increased groundwater storage (18 percent), decreased inflow from the Southern Management Area (15 percent), and increased groundwater discharge to streams (13 percent).

Although all the simulated MAR facilities were located in the Hollister Management Area, small water budget effects occurred in the San Juan and Bolsa Management Areas. In the San Juan Management Area, the ASR well scenario produced a small (61 AFY) increase in subsurface inflow from the Hollister Management Area, most of which was offset by a decrease in percolation from the San Benito River (associated with reduced pumping at Hollister municipal wells near the San Benito River) and increased groundwater discharge to the river at the west end of the Management Area. In the Bolsa Management Area, the injection well scenario had essentially no effect on the water budget. The ASR well scenario decreased percolation from streams by a small amount (29 AFY) because some of the pumping at two hypothetical future City of Hollister wells near Pacheco Creek (near the Bolsa Management Area boundary) was shifted to the ASR wells. Subsurface inflow from the Hollister Management Area increased by 46 AFY, which was balanced roughly equally by decreased subsurface inflow from the Llagas Subbasin and decreased groundwater discharge to the Pajaro River.

All the above changes in water budgets are relatively small, because on an average annual basis the injected CVP water represents only about 1 percent of total inflows to the Hollister Management Area. The spillover effects on water budgets in the San Juan and Bolsa Management Areas represent even smaller percentages of those budgets.

Figure 25 shows cumulative storage change in the four Management Areas for the reference simulation, injection well scenario and ASR well scenario. For practical purposes, storage changes in the Southern and Bolsa Management Areas were identical for all three scenarios. In the Hollister Management Area, cumulative storage change was essentially the same as in the reference simulation until the first recharge year (hydrologic year 1938), at which point storage began increasing with each successive injection year. The largest difference from the reference simulation was in 1969-1972, when cumulative storage was approximately 12,000 AF greater. This difference is small in the context of the total range of storage variation, which was about 280,000 AF. A very similar pattern occurred in the San Juan Management Area, but at a smaller magnitude. The maximum difference between the MAR scenarios and the reference simulation was about 3,200 AF in 1972.

Table 7. Water Budgets for Injection and ASR Well Scenarios

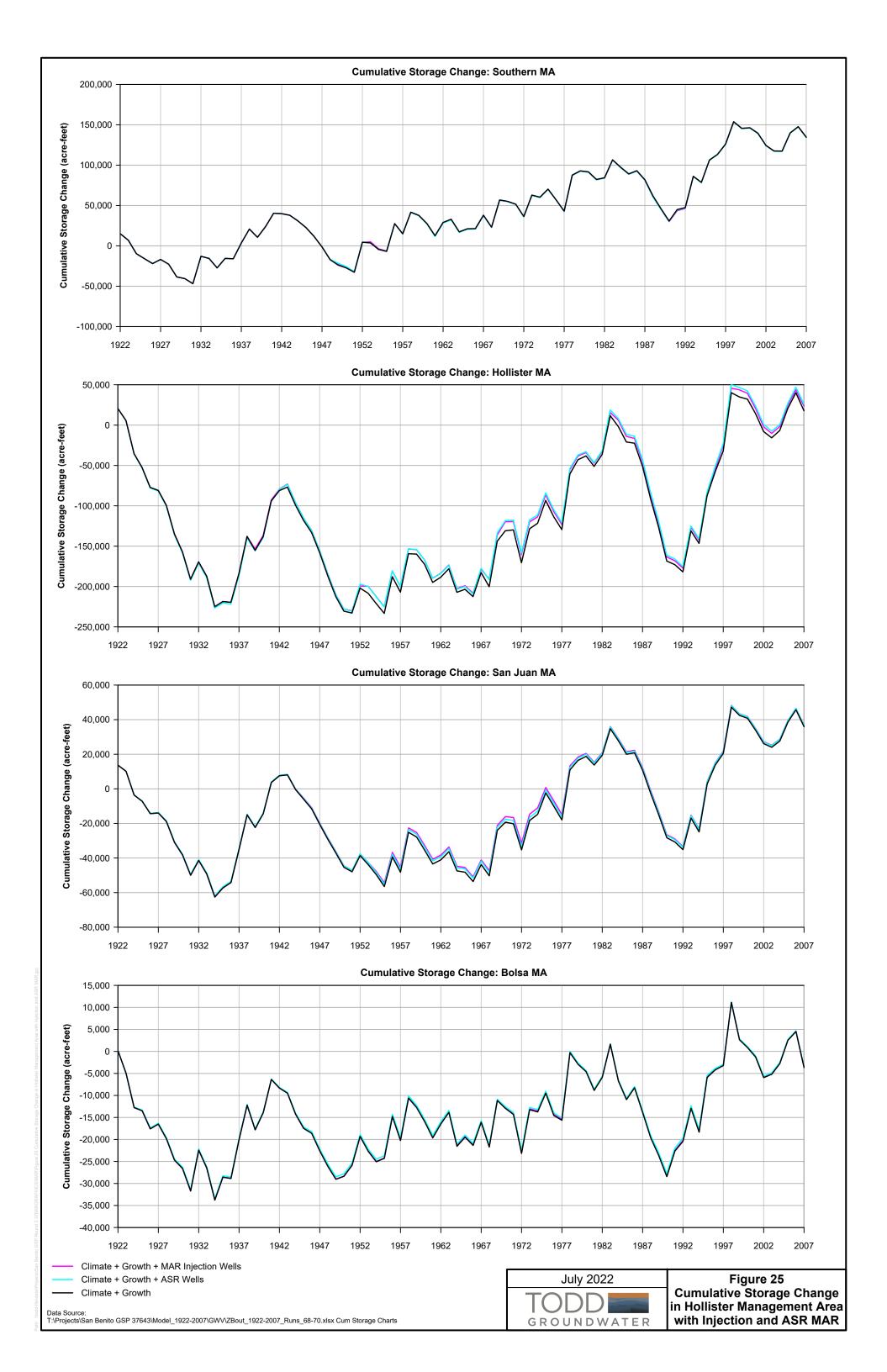
Δ Southern Management Area

A. Southern Management Area						
	Growth &	Injection	ASR			
Water Balance Items	2070 Climate	Wells	Wells			
Groundwater Inflow						
Subsurface inflow from external basins	0	0	0			
Percolation from streams	26,933	26,900	26,892			
Bedrock inflow	1,362	1,362	1,362			
Dispersed recharge from rainfall ¹	5,918	5,914	5,885			
Irrigation deep percolation	966	966	966			
Reclaimed water percolation	0	0	0			
Inflow from Hollister MA	854	851	853			
MAR - percolation basins	0	0	0			
MAR - injection or ASR wells	0	0	0			
MAR - agricultural fields	0	0	0			
Total inflow	36,034	35,994	35,958			
Groundwater Outflow						
Shallow discharge to streams	0	0	0			
Subsurface outflow to external basins	0	0	0			
Wells - M&I and domestic	-100	-100	-100			
Wells - agricultural	-10,451	-10,451	-10,451			
Groundwater discharge to streams	-18,934	-18,916	-18,867			
Riparian evapotranspiration	-2,030	-2,030	-2,030			
Outflow to Hollister MA	-2,954	-2,934	-2,950			
Total outflow	-34,469	-34,431	-34,397			
Net Change in Storage	1,565	1,563	1,561			
Change from Baseline	n.a.	-2	-4			

C. San Juan Management Area

5. 54 544	Growth &		ASR
		Injection	
Water Balance Items	2070 Climate	Wells	Wells
Groundwater Inflow			
Subsurface inflow from external basins	0	0	0
Percolation from streams	5,265	5,255	5,223
Bedrock inflow	1,179	1,179	1,179
Dispersed recharge from rainfall ¹	9,044	9,041	9,055
Irrigation deep percolation	2,359	2,360	2,360
Reclaimed water percolation	6,583	6,583	6,583
Inflow from Hollister and Bolsa MAs	3,313	3,382	3,374
MAR - percolation basins	136	136	136
MAR - injection or ASR wells	0	0	0
MAR - agricultural fields	0	0	0
Total inflow	27,880	27,937	27,911
Groundwater Outflow			
Shallow discharge to streams	0	0	0
Subsurface outflow to external basins	0	0	0
Wells - M&I and domestic	-2,104	-2,104	-2,104
Wells - agricultural	-20,147	-20,147	-20,147
Groundwater discharge to streams	-1,564	-1,629	-1,600
Riparian evapotranspiration	-1,349	-1,351	-1,350
Outflow to Bolsa MA	-2,299	-2,279	-2,285
Total outflow	-27,463	-27,509	-27,485
Net Change in Storage	418	428	426
Change from Baseline	n.a.	10	9

Tables show average annual values for water years 1922-2007.


B. Hollister Management Area

2	Growth &		ACD
		Injection	ASR
Water Balance Items	2070 Climate	Wells	Wells
Groundwater inflow			
Subsurface inflow from external basins	0	0	0
Percolation from streams	26,410	26,178	26,212
Bedrock inflow	3,541	3,541	3,540
Dispersed recharge from rainfall ¹	21,462	21,451	21,485
Irrigation deep percolation	5,220	5,222	5,222
Reclaimed water percolation	4,585	4,585	4,585
Inflow from Southern MA	7,465	7,413	7,386
MAR - percolation basins	416	416	416
MAR - injection or ASR wells	0	528	528
MAR - agricultural fields	0	0	0
Total inflow	69,099	69,334	69,373
Groundwater Outflow			
Shallow discharge to streams	0	0	0
Subsurface outflow to external basins	0	0	0
Wells - M&I and domestic	-15,225	-15,225	-15,229
Wells - agricultural	-44,427	-44,427	-44,427
Groundwater discharge to streams	-1,250	-1,342	-1,317
Riparian evapotranspiration	-193	-195	-195
Outflow to Bolsa and San Juan MAs	-7,798	-7,872	-7,904
Total outflow	-68,892	-69,060	-69,073
Net Change in Storage	206	274	300
Change from Baseline	n.a.	68	94

D. Bolsa Management Area

	Growth &	Injection	ASR
Water Balance Items	2070 Climate	Wells	Wells
Groundwater Inflow			110.10
Subsurface inflow from external basins	5,280	5,272	5,262
Percolation from streams	3,945	3,941	3,916
Bedrock inflow	10	10	10
Dispersed recharge from rainfall ¹	11,218	11,219	11,220
Irrigation deep percolation	2,027	2,027	2,027
Reclaimed water percolation	0	0	0
Inflow from Hollister and San Juan MAs	4,201	4,210	4,247
MAR - percolation basins	0	0	0
MAR - injection or ASR wells	0	0	0
MAR - agricultural fields	0	0	0
Total inflow	26,680	26,680	26,682
Groundwater Outflow			
Shallow discharge to streams	-651	-655	-689
Subsurface outflow to external basins	-25	-25	-25
Wells - M&I and domestic	-17	-17	-17
Wells - agricultural	-21,504	-21,504	-21,504
Groundwater discharge to streams	-1,469	-1,475	-1,490
Riparian evapotranspiration	-274	-274	-275
Outflow to San Juan MA	-2,783	-2,772	-2,723
Total outflow	-26,723	-26,721	-26,723
Net Change in Storage	-43	-41	-41
Change from Baseline	n.a.	1	2

¹ Dispersed recharge volumes adjusted from pre-processor to match model inflows

8. PRELIMINARY INJECTION AND ASR WELLFIELD AREA WATER QUALITY ASSESSMENT

A water quality assessment of existing wells near potential injection/ASR wells was completed to support further assessment of injection and ASR in the simulated locations. This assessment included identification and sampling of existing public and private water supply wells near the potential injection/ASR wells in coordination with SBCWD, Sunnyslope, Hollister, and private well owners.

Samples were collected from wells owned and operated by Hollister, Sunnyslope, and private parties. A SBCWD representative escorted a Todd geologist to the each well for sampling. In general, sampling was scheduled to coincide with periods when the wells were in operation. Wells that were not operating upon arrival were turned on and pumped for at least 30 minutes prior to sample collection. The sampled wells are shown on **Figure 26** and listed with sampling dates in **Table 8** below.

Table 8. Sampled Wells Near Simulated Injection and ASR Locations

Well ID	Sampling Date
Sunnyslope Ridgemark Well 05	July 26, 2021
Sunnyslope Enterprise Well 07	July 26, 2021
Sunnyslope Well 11	July 26, 2021
Sunnyslope Southside Well 02	July 26, 2021
3121	August 18, 2021 (general and extended sampling)
12-5-23A20	August 18, 2021 (general sampling)
3357	August 18, 2021
3123	August 18, 2021 (general and extended sampling)
3127	August 18, 2021
Hollister Bundeson Road Well 02	August 18, 2021
13-5-10L1	August 19, 2021
12-5-23A20	August 26, 2021 (extended sampling)

Selected physical and chemical parameters were measured in the field with calibrated handheld meters. These included conductivity, dissolved oxygen, free chlorine, oxidation-reduction potential (ORP), pH, salinity, specific conductance, temperature, and total dissolved solids (TDS). Field measured parameters are presented in **Table 9**. Samples were collected into laboratory-provided bottles from pump discharge systems after flushing. All the samples were analyzed for a comprehensive list of water quality parameters relevant to injection. Three of the wells were selected for additional analyses that may be important for treating recovered water during ASR. Laboratory results are presented in **Table 10** and original laboratory reports are included in **Appendix A**.

The water quality data were used to assess the quality of recovery water from injection/ASR and the treatment needed, as described in Groundwater Recharge Alternatives Facility Plan (**Appendix B**, HDR 2022). The Facility Plan notes the generally high TDS and hardness in groundwater and the considerable geographic variability even within short distances.

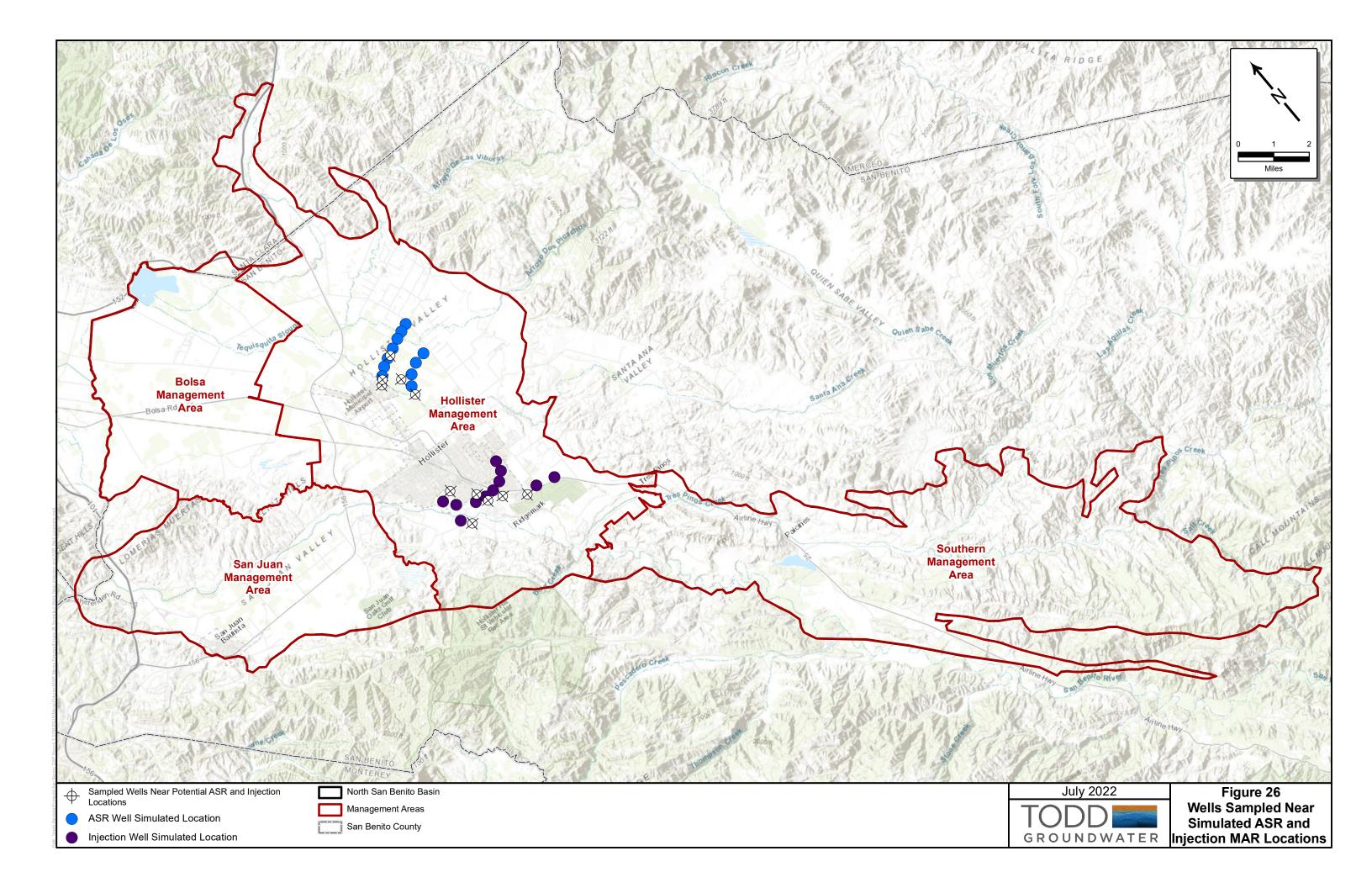


Table 9. Water Quality Field Parameter Measurements, Wells Near Simulated Injection and ASR MAR Locations

Well ID	Sample Date and Time	Free Chlorine (mg/L)		Dissolved Oxygen (%)	Dissolved Oxygen (mg/L)	Temperature (°C)	Total Dissolved Solids (g/L)		Specific Conductance (mS/cm)	Conductivity (µS/cm)	Oxidation- Reduction Potential (ORP)
Sunnyslope Ridgemark Well 5	07/26/2021 09:20:00	0.04	7.24	65.6	6.03	19.32	0.785	0.6	1.209	1078	134.2
Sunnyslope Enterprise Well 7	07/26/2021 10:00:00	0.05	20.87	1.217	1120	0.79	0.61	81.1	7.18	7.37	107.1
Sunnyslope Well 11	07/26/2021 10:15:00	0	21.74	1.287	1208	0.837	0.64	53.3	4.66	7.42	120
Sunnyslope Southside Well 2	07/26/2021 10:30:00	0	19.88	1.271	1147	0.826	0.64	67.9	6.14	7.45	102.9
3121	08/18/2021 08:38:00	0.04	19.07	1.348	1195	0.876	0.68	23.8	2.19	7.42	115.7
12-5-23A20	08/18/2021 09:55:00	0.02	20.86	1.368	1263	0.888	0.69	32.7	2.9	7.68	110
3357	08/18/2021 10:30:00	0	23.11	1.2	1159	0.779	0.6	47.2	3.99	7.78	101.7
3123	08/18/2021 11:50:00	0.1	26.02	1.752	1786	1.139	0.88	15.1	1.22	7.8	95.9
3127	08/18/2021 12:25:00	0	24.15	1.321	3102	0.857	0.66	13.5	1.12	7.52	-45.4
Hollister Bundeson Road Well 2	08/18/2021 13:15:00	0	19.58	1.396	1252	0.907	0.7	39.5	3.61	7.38	107.2
13-5-10L1	08/19/2021 08:30:00	0.02	19.01	1.567	1387	1.019	0.79	63	5.83	7.69	98
12-5-23A20	08/26/2021 09:30:00	0.02	20.64	1.421	1303	0.923	0.71	47.6	4.25	7.55	75.3

Table 10. Laboratory Water Quality Results, Wells Near Simulated Injection and ASR MAR Locations

Well ID Sunnyslope Ridgemark Well 5	Sample Date	Analyte Calcium, dissolved Iron, dissolved Potassium, dissolved Magnesium, dissolved Sodium, dissolved Silver, dissolved Aluminum, dissolved Arsenic, dissolved Boron, dissolved Barium, dissolved Cadmium, dissolved Cadmium, dissolved Chromium, dissolved Copper, dissolved Manganese, dissolved Nickel, dissolved	ND 2.9 57 120 ND ND 2.9 940 35 ND ND	mg/L mg/L mg/L mg/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L u	Reporting Limit
		Iron, dissolved Potassium, dissolved Magnesium, dissolved Sodium, dissolved Silver, dissolved Aluminum, dissolved Boron, dissolved Barium, dissolved Beryllium, dissolved Cadmium, dissolved Chromium, dissolved Copper, dissolved Manganese, dissolved Molybdenum, dissolved Nickel, dissolved	ND 2.9 57 120 ND ND 2.9 940 35 ND ND 10	mg/L mg/L mg/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L u	0.1 1 1 0.1 10 0.5 50 0.5
		Magnesium, dissolved Sodium, dissolved Silver, dissolved Aluminum, dissolved Arsenic, dissolved Boron, dissolved Barium, dissolved Beryllium, dissolved Cadmium, dissolved Chromium, dissolved Copper, dissolved Manganese, dissolved Molybdenum, dissolved Nickel, dissolved	57 120 ND ND 2.9 940 35 ND ND ND	mg/L mg/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L u	1 0.1 10 0.5 50 0.5
		Sodium, dissolved Silver, dissolved Aluminum, dissolved Arsenic, dissolved Boron, dissolved Barium, dissolved Beryllium, dissolved Cadmium, dissolved Chromium, dissolved Copper, dissolved Manganese, dissolved Molybdenum, dissolved Nickel, dissolved	120 ND ND 2.9 940 35 ND ND	mg/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L u	1 0.1 10 0.5 50 0.5
		Silver, dissolved Aluminum, dissolved Arsenic, dissolved Boron, dissolved Barium, dissolved Beryllium, dissolved Cadmium, dissolved Chromium, dissolved Copper, dissolved Manganese, dissolved Molybdenum, dissolved Nickel, dissolved	ND ND 2.9 940 35 ND ND 10 2.4	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.1 10 0.5 50 0.5
		Aluminum, dissolved Arsenic, dissolved Boron, dissolved Barium, dissolved Beryllium, dissolved Cadmium, dissolved Chromium, dissolved Copper, dissolved Manganese, dissolved Molybdenum, dissolved Nickel, dissolved	ND 2.9 940 35 ND ND 10	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	10 0.5 50 0.5 0.1
		Arsenic, dissolved Boron, dissolved Barium, dissolved Beryllium, dissolved Cadmium, dissolved Chromium, dissolved Copper, dissolved Manganese, dissolved Molybdenum, dissolved Nickel, dissolved	2.9 940 35 ND ND 10 2.4	ug/L ug/L ug/L ug/L ug/L ug/L	0.5 50 0.5 0.1
		Boron, dissolved Barium, dissolved Beryllium, dissolved Cadmium, dissolved Chromium, dissolved Copper, dissolved Manganese, dissolved Molybdenum, dissolved Nickel, dissolved	940 35 ND ND 10 2.4	ug/L ug/L ug/L ug/L ug/L	50 0.5 0.1
		Barium, dissolved Beryllium, dissolved Cadmium, dissolved Chromium, dissolved Copper, dissolved Manganese, dissolved Molybdenum, dissolved Nickel, dissolved	35 ND ND 10 2.4	ug/L ug/L ug/L ug/L	0.1
		Cadmium, dissolved Chromium, dissolved Copper, dissolved Manganese, dissolved Molybdenum, dissolved Nickel, dissolved	ND 10 2.4	ug/L ug/L	1
		Chromium, dissolved Copper, dissolved Manganese, dissolved Molybdenum, dissolved Nickel, dissolved	10 2.4	ug/L	~ -
		Copper, dissolved Manganese, dissolved Molybdenum, dissolved Nickel, dissolved	2.4		0.1
		Manganese, dissolved Molybdenum, dissolved Nickel, dissolved		Ιμσ/Ι	0.5
		Molybdenum, dissolved Nickel, dissolved	ND		0.5
		Nickel, dissolved	17	ug/L ug/L	0.25
				ug/L	0.25
		Lead, dissolved		ug/L	0.25
		Antimony, dissolved		ug/L	0.5
		Selenium, dissolved		ug/L	2
		Thallium, dissolved		ug/L	0.1
		Vanadium, dissolved		ug/L	1
		Zinc, dissolved		ug/L	5
		Mercury, dissolved		ug/L	0.2
		Chloride Fluoride		mg/L	0.1
		Nitrate as N		mg/L mg/L	0.1
		Sulfate as SO4		mg/L	0.2
		Perchlorate		ug/L	7
		Bromodichloromethane		ug/L	:
		Bromoform	ND	ug/L	
		Chloroform		ug/L	
		Dibromochloromethane		ug/L	
		Trihalomethanes (total) Bromofluorobenzene		ug/L	+
				ug/L	
		Dibromofluoromethane Toluene-d8		ug/L ug/L	1
		Monobromoacetic Acid		ug/L ug/L	
		Monochloroacetic Acid		ug/L	
		Dibromoacetic Acid		ug/L	:
		Dichloroacetic Acid		ug/L	í
		Trichloroacetic Acid		ug/L	-
		Total Haloacetic Acids (HAA5)		ug/L	:
		2,3-Dibromopropionic Acid		ug/L	
		2-Bromopropionic Acid		ug/L	ļ .
		Color Turbidity		CU NTU	0.1
		Bicarbonate Alkalinity as CaCO3		mg/L	0.2
		Carbonate Alkalinity as CaCO3		mg/L	
		Hydroxide Alkalinity as CaCO3		mg/L	!
		Total Alkalinity as CaCO3		mg/L	
		Hardness, Total		mg/L	Į.
		Total Dissolved Solids	800	mg/L	10
		Sulfide		mg/L	0.1
		MBAS, calculated as LAS, mw 340		mg/L	0.05
		E. Coli		MPN/100mL	1
		Total Coliforms Calcium, dissolved		MPN/100mL mg/L	
		Iron, dissolved		mg/L	0.:
		Potassium, dissolved		mg/L	
		Magnesium, dissolved		mg/L	:
		Sodium, dissolved		mg/L	-
		Silver, dissolved	ND	ug/L	0.1
		Aluminum, dissolved		ug/L	10
		Arsenic, dissolved		ug/L	0.5
		Boron, dissolved		ug/L	50
		Barium, dissolved		ug/L	0.5
		Beryllium, dissolved		ug/L	0.:
		Cadmium, dissolved Chromium, dissolved		ug/L ug/L	0.:
		Copper, dissolved		ug/L ug/L	0.:
		Manganese, dissolved		ug/L	0
		Molybdenum, dissolved		ug/L	0.2!
		Nickel, dissolved		ug/L	0.5
		Lead, dissolved		ug/L	0.25
		Antimony, dissolved	ND	ug/L	0
		Selenium, dissolved		ug/L	
		Thallium, dissolved		ug/L	0.
		Vanadium, dissolved		ug/L	
		Zinc, dissolved		ug/L	0
		Mercury, dissolved		ug/L	0.3
		Chloride Fluoride		mg/L mg/L	0.
		Nitrate as N		mg/L	0.:
		Sulfate as SO4		mg/L	0.
		Perchlorate		ug/L	
		Bromodichloromethane		ug/L	
		Bromoform		ug/L	
		Chloroform	ND	ug/L	
		Dibromochloromethane	ND	ug/L	
		Trihalomethanes (total)		ug/L	
		Bromofluorobenzene	27.8	ug/L	
		Dibromofluoromethane		ug/L	
		Toluene-d8		ug/L	<u> </u>
		Monobromoacetic Acid		ug/L	
		Monochloroacetic Acid		ug/L	:
		Dibromoacetic Acid		ug/L	:
		Dichloroacetic Acid	ND	ug/L	-
		Trichloroacetic Acid		ug/L	1

Table 10. Laboratory Water Quality Results, Wells Near Simulated Injection and ASR MAR Locations

Well ID	Sample Date	Analyte	Result		Reporting Limit
		2,3-Dibromopropionic Acid 2-Bromopropionic Acid		ug/L ug/L	
		Color	ND	CU NTU	0.1
		Turbidity Bicarbonate Alkalinity as CaCO3		mg/L	0.1
		Carbonate Alkalinity as CaCO3		mg/L	5
		Hydroxide Alkalinity as CaCO3 Total Alkalinity as CaCO3	300	mg/L mg/L	5
		Total Dissolved Solids Sulfide		mg/L	0.1
		MBAS, calculated as LAS, mw 340		mg/L mg/L	0.05
		E. Coli		MPN/100mL	1
unnyslope Enterprise Well 7	07/26/2021 10:00:00	Total Coliforms Calcium, dissolved		MPN/100mL mg/L	1
, , , , , , , , , , , , , , , , , , , ,		Iron, dissolved	ND	mg/L	0.1
		Potassium, dissolved Magnesium, dissolved		mg/L mg/L	1
		Sodium, dissolved	120	mg/L	1
		Silver, dissolved Aluminum, dissolved		ug/L ug/L	0.1
		Arsenic, dissolved	3.4	ug/L	0.5
		Boron, dissolved Barium, dissolved		ug/L ug/L	50 0.5
		Beryllium, dissolved		ug/L	0.1
		Cadmium, dissolved Chromium, dissolved		ug/L ug/L	0.1
		Copper, dissolved		ug/L	0.5
		Manganese, dissolved		ug/L ug/L	0.25
		Molybdenum, dissolved Nickel, dissolved		ug/L ug/L	0.25
		Lead, dissolved	ND	ug/L	0.25
		Antimony, dissolved Selenium, dissolved		ug/L ug/L	0.5
		Thallium, dissolved	ND	ug/L	0.1
		Vanadium, dissolved Zinc, dissolved		ug/L ug/L	1
		Mercury, dissolved	ND	ug/L	0.2
		Chloride Fluoride		mg/L mg/L	0.1
		Nitrate as N	4.3	mg/L	0.2
		Sulfate as SO4		mg/L	5
		Perchlorate Bromodichloromethane		ug/L ug/L	1
		Bromoform	ND	ug/L	1
		Chloroform Dibromochloromethane		ug/L ug/L	1
		Trihalomethanes (total)	ND	ug/L	1
		Bromofluorobenzene Dibromofluoromethane		ug/L ug/L	
		Toluene-d8	26.8	ug/L	
		Monobromoacetic Acid Monochloroacetic Acid		ug/L	1 2
		Dibromoacetic Acid		ug/L ug/L	1
		Dichloroacetic Acid		ug/L	1
		Trichloroacetic Acid Total Haloacetic Acids (HAA5)		ug/L ug/L	1
		2,3-Dibromopropionic Acid	10.4	ug/L	
		2-Bromopropionic Acid Color		ug/L CU	5
		Turbidity	ND	NTU	0.1
		Bicarbonate Alkalinity as CaCO3 Carbonate Alkalinity as CaCO3		mg/L mg/L	5
		Hydroxide Alkalinity as CaCO3		mg/L	5
		Total Alkalinity as CaCO3		mg/L	5
		Hardness, Total Total Dissolved Solids		mg/L mg/L	10
		Sulfide	ND	mg/L	0.1
		MBAS, calculated as LAS, mw 340 E. Coli		mg/L MPN/100mL	0.05
		Total Coliforms	ND	MPN/100mL	1
		Calcium, dissolved Iron, dissolved		mg/L mg/L	0.1
		Potassium, dissolved	3.2	mg/L	1
		Magnesium, dissolved Sodium, dissolved		mg/L mg/L	1
		Silver, dissolved	ND	ug/L	0.1
		Aluminum, dissolved		ug/L	10
		Arsenic, dissolved Boron, dissolved		ug/L ug/L	0.5 50
		Barium, dissolved	30	ug/L	0.5
		Beryllium, dissolved Cadmium, dissolved		ug/L ug/L	0.1
		Chromium, dissolved	14	ug/L	0.5
		Copper, dissolved Manganese, dissolved		ug/L ug/L	0.5
		Molybdenum, dissolved		ug/L ug/L	0.25
		Nickel, dissolved	7.8	ug/L	0.5
		Lead, dissolved Antimony, dissolved		ug/L ug/L	0.25
		Selenium, dissolved	4.1	ug/L	2
		Thallium, dissolved Vanadium, dissolved		ug/L ug/L	0.1
		Zinc, dissolved	ND	ug/L	5
		Mercury, dissolved	ND	ug/L	0.2
		Chloride Fluoride		mg/L mg/L	0.1
		Nitrate as N	4.3	mg/L	0.2
		Sulfate as SO4 Perchlorate		mg/L ug/L	5
		IDArchiorato			

Table 10. Laboratory Water Quality Results, Wells Near Simulated Injection and ASR MAR Locations

Well ID S	Sample Date	Analyte	Result		Reporting Limit
		Bromoform Chloroform		ug/L ug/L	
		Dibromochloromethane		ug/L	
		Trihalomethanes (total)		ug/L	
		Bromofluorobenzene Dibromofluoromethane		ug/L ug/L	
		Toluene-d8		ug/L	
		Monobromoacetic Acid	ND	ug/L	
		Monochloroacetic Acid Dibromoacetic Acid		ug/L	
		Dichloroacetic Acid		ug/L ug/L	
		Trichloroacetic Acid		ug/L	
		Total Haloacetic Acids (HAA5)	ND	ug/L	
		2,3-Dibromopropionic Acid		ug/L	
		2-Bromopropionic Acid Color		ug/L CU	
		Turbidity		NTU	0.
		Bicarbonate Alkalinity as CaCO3		mg/L	,
		Carbonate Alkalinity as CaCO3		mg/L	
		Hydroxide Alkalinity as CaCO3 Total Alkalinity as CaCO3		mg/L mg/L	
		Total Dissolved Solids		mg/L	1
		Sulfide		mg/L	0.
		MBAS, calculated as LAS, mw 340		mg/L	0.0
		E. Coli Total Coliforms		MPN/100mL MPN/100mL	
Sunnyslope Well 11	07/26/2021 10:15:00	Calcium, dissolved		mg/L	
,	,,	Iron, dissolved		mg/L	0.
		Potassium, dissolved	3.4	mg/L	
		Magnesium, dissolved		mg/L	
		Sodium, dissolved Silver, dissolved		mg/L ug/L	0.
		Aluminum, dissolved		ug/L ug/L	1
		Arsenic, dissolved	3.1	ug/L	0.
		Boron, dissolved		ug/L	5
		Barium, dissolved Beryllium, dissolved		ug/L ug/L	0.
		Cadmium, dissolved		ug/L ug/L	0.
		Chromium, dissolved		ug/L	0.
		Copper, dissolved	5.5	ug/L	0.
		Manganese, dissolved		ug/L	0.2
		Molybdenum, dissolved Nickel, dissolved		ug/L ug/L	0.2
		Lead, dissolved		ug/L	0.2
		Antimony, dissolved		ug/L	0.
		Selenium, dissolved		ug/L	
		Thallium, dissolved		ug/L ug/L	0.
		Vanadium, dissolved Zinc, dissolved		ug/L ug/L	
		Mercury, dissolved		ug/L	0.
		Chloride		mg/L	
		Fluoride		mg/L	0.
		Nitrate as N Sulfate as SO4		mg/L mg/L	0.
		Perchlorate		ug/L	
		Bromodichloromethane		ug/L	
		Bromoform		ug/L	
		Chloroform Dibromochloromethane		ug/L ug/L	
		Trihalomethanes (total)		ug/L	
		Bromofluorobenzene		ug/L	
		Dibromofluoromethane		ug/L	
		Toluene-d8		ug/L	
		Monobromoacetic Acid Monochloroacetic Acid		ug/L ug/L	
		Dibromoacetic Acid		ug/L	
		Dichloroacetic Acid	ND	ug/L	
		Trichloroacetic Acid		ug/L	
		Total Haloacetic Acids (HAA5) 2,3-Dibromopropionic Acid		ug/L ug/L	
		2-Bromopropionic Acid		ug/L ug/L	
		Color		CU	
		Turbidity	0.15	NTU	0.
		Bicarbonate Alkalinity as CaCO3		mg/L	
		Carbonate Alkalinity as CaCO3 Hydroxide Alkalinity as CaCO3		mg/L mg/L	
		Total Alkalinity as CaCO3		mg/L	
		Hardness, Total		mg/L	
		Total Dissolved Solids		mg/L	1
		Sulfide MRAS calculated as LAS mw 340		mg/L mg/L	0
		MBAS, calculated as LAS, mw 340 E. Coli		mg/L MPN/100mL	0.0
		Total Coliforms		MPN/100mL	
		Calcium, dissolved	62	mg/L	-
		Iron, dissolved		mg/L	0
		Potassium, dissolved Magnesium, dissolved		mg/L mg/L	
		Sodium, dissolved		mg/L mg/L	
		Silver, dissolved		ug/L	0
		Aluminum, dissolved	ND	ug/L	-
		Arsenic, dissolved	3.1	ug/L	0
		Boron, dissolved		ug/L ug/L	
		Barium, dissolved Beryllium, dissolved		ug/L ug/L	0
		Cadmium, dissolved		ug/L ug/L	0
		Chromium, dissolved		ug/L	0
		Copper, dissolved	5.5	ug/L	0
		Manganese, dissolved	ND	ug/L	
		Molybdenum, dissolved		ug/L	0.2

Table 10. Laboratory Water Quality Results, Wells Near Simulated Injection and ASR MAR Locations

Well ID Sa	ample Date	Analyte	Result		Reporting Limit
		Lead, dissolved Antimony, dissolved		ug/L ug/L	0.25
		Selenium, dissolved	2.1	ug/L	2
		Thallium, dissolved Vanadium, dissolved		ug/L ug/L	0.1
		Zinc, dissolved	ND	ug/L	5
		Mercury, dissolved Chloride		ug/L mg/L	0.2
		Fluoride		mg/L	0.1
		Nitrate as N		mg/L	0.2
		Sulfate as SO4 Perchlorate		mg/L ug/L	5
		Bromodichloromethane		ug/L	1
		Bromoform		ug/L	1
		Chloroform Dibromochloromethane		ug/L ug/L	1 1
		Trihalomethanes (total)	ND	ug/L	1
		Bromofluorobenzene Dibromofluoromethane		ug/L ug/L	
		Toluene-d8		ug/L	
		Monobromoacetic Acid		ug/L	1
		Monochloroacetic Acid Dibromoacetic Acid		ug/L ug/L	
		Dichloroacetic Acid		ug/L	1
		Trichloroacetic Acid		ug/L	
		Total Haloacetic Acids (HAA5) 2,3-Dibromopropionic Acid		ug/L ug/L	:
		2-Bromopropionic Acid		ug/L	
		Color		CU	0.1
		Turbidity Bicarbonate Alkalinity as CaCO3		NTU mg/L	0.1
		Carbonate Alkalinity as CaCO3	ND	mg/L	Ĺ
		Hydroxide Alkalinity as CaCO3		mg/L	5
		Total Alkalinity as CaCO3 Total Dissolved Solids		mg/L mg/L	10
		Sulfide	ND	mg/L	0.1
		MBAS, calculated as LAS, mw 340 E. Coli		mg/L MPN/100mL	0.05
		Total Coliforms		MPN/100mL	1
Sunnyslope Southside Well 2 0	7/26/2021 10:30:00	Calcium, dissolved	57	mg/L	
		Iron, dissolved Potassium, dissolved		mg/L mg/L	0.1
		Magnesium, dissolved		mg/L	
		Sodium, dissolved		mg/L	1
		Silver, dissolved Aluminum, dissolved		ug/L ug/L	0.1
		Arsenic, dissolved		ug/L	0.5
		Boron, dissolved		ug/L	50
		Barium, dissolved Beryllium, dissolved		ug/L ug/L	0.5
		Cadmium, dissolved		ug/L	0.1
		Chromium, dissolved		ug/L	0.5
		Copper, dissolved Manganese, dissolved		ug/L ug/L	0.5
		Molybdenum, dissolved	2.4	ug/L	0.25
		Nickel, dissolved		ug/L	0.5
		Lead, dissolved Antimony, dissolved		ug/L ug/L	0.2
		Selenium, dissolved	ND	ug/L	2
		Thallium, dissolved Vanadium, dissolved		ug/L ug/L	0.3
		Zinc, dissolved		ug/L	
		Mercury, dissolved		ug/L	0.2
		Chloride Fluoride		mg/L mg/L	0.1
		Nitrate as N	2.6	mg/L	0.2
		Sulfate as SO4		mg/L	
		Perchlorate Bromodichloromethane		ug/L ug/L	
		Bromoform	ND	ug/L	1
		Chloroform		ug/L	-
		Dibromochloromethane Trihalomethanes (total)		ug/L ug/L	-
		Bromofluorobenzene	28.3	ug/L	
		Dibromofluoromethane Toluene-d8		ug/L ug/L	
		Monobromoacetic Acid		ug/L ug/L	
		Monochloroacetic Acid	ND	ug/L	2
		Dibromoacetic Acid Dichloroacetic Acid		ug/L ug/L	:
		Trichloroacetic Acid	ND	ug/L	
		Total Haloacetic Acids (HAA5)	ND	ug/L	:
		2,3-Dibromopropionic Acid 2-Bromopropionic Acid		ug/L ug/L	
		Color		CU	Ţ
		Turbidity	0.1	NTU	0.1
		Bicarbonate Alkalinity as CaCO3 Carbonate Alkalinity as CaCO3		mg/L mg/L	
		Hydroxide Alkalinity as CaCO3	ND	mg/L	Ţ
		Total Alkalinity as CaCO3	300	mg/L	Ţ
		Hardness, Total Total Dissolved Solids		mg/L mg/L	10
		Sulfide		mg/L	0.1
		MBAS, calculated as LAS, mw 340	ND	mg/L	0.05
		E. Coli Total Coliforms		MPN/100mL MPN/100mL	1
		Calcium, dissolved		mg/L	1
		Iron, dissolved	ND	mg/L mg/L	0.1
		Potassium, dissolved			1

Table 10. Laboratory Water Quality Results, Wells Near Simulated Injection and ASR MAR Locations

/ell ID	Sample Date	Analyte	Result		Reporting Lin
		Sodium, dissolved		mg/L	
		Silver, dissolved Aluminum, dissolved		ug/L ug/L	
		Arsenic, dissolved		ug/L	
		Boron, dissolved		ug/L	
		Barium, dissolved		ug/L	
		Beryllium, dissolved		ug/L	
		Cadmium, dissolved		ug/L	
		Chromium, dissolved		ug/L	
		Copper, dissolved Manganese, dissolved		ug/L	
		Molybdenum, dissolved		ug/L ug/L	0
		Nickel, dissolved		ug/L	
		Lead, dissolved		ug/L	C
		Antimony, dissolved		ug/L	
		Selenium, dissolved	ND	ug/L	
		Thallium, dissolved		ug/L	
		Vanadium, dissolved		ug/L	
		Zinc, dissolved Mercury, dissolved		ug/L ug/L	
		Chloride		mg/L	
		Fluoride	1	mg/L	
		Nitrate as N		mg/L	
		Sulfate as SO4		mg/L	
		Perchlorate	ND	ug/L	
		Bromodichloromethane	ND	ug/L	
		Bromoform		ug/L	
		Chloroform		ug/L	-
		Dibromochloromethane Tribalomethanes (total)		ug/L	
		Trihalomethanes (total) Bromofluorobenzene		ug/L ug/L	
		Dibromofluoromethane		ug/L ug/L	<u> </u>
		Toluene-d8		ug/L	
		Monobromoacetic Acid		ug/L	
		Monochloroacetic Acid	ND	ug/L	
		Dibromoacetic Acid		ug/L	
		Dichloroacetic Acid		ug/L	
		Trichloroacetic Acid Total Haloacetic Acids (HAA5)		ug/L ug/L	
		2,3-Dibromopropionic Acid		ug/L ug/L	
		2-Bromopropionic Acid		ug/L	
		Color		CU	
		Turbidity		NTU	
		Bicarbonate Alkalinity as CaCO3	300	mg/L	
		Carbonate Alkalinity as CaCO3		mg/L	
		Hydroxide Alkalinity as CaCO3		mg/L	
		Total Alkalinity as CaCO3		mg/L	
		Total Dissolved Solids Sulfide		mg/L mg/L	+
		MBAS, calculated as LAS, mw 340		mg/L	(
		E. Coli		MPN/100mL	<u> </u>
		Total Coliforms		MPN/100mL	L
21	08/18/2021 08:38:00	Calcium	52	mg/L	
		Magnesium		mg/L	
		Silica (SiO2)		mg/L	
		Cobalt Uranium		ug/L pCi/l	
		Chromium, hexavalent		ug/L	
		Acetone		ug/L	
		Acrylonitrile		ug/L	
				lug/ L	
		Benzene		ug/L	
		Benzene Bromobenzene	ND		
		Bromobenzene Bromochloromethane	ND ND ND	ug/L ug/L ug/L	
		Bromobenzene Bromochloromethane Bromodichloromethane	ND ND ND	ug/L ug/L ug/L ug/L	
		Bromobenzene Bromochloromethane Bromodichloromethane Bromoform	ND ND ND ND	ug/L ug/L ug/L ug/L ug/L	
		Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane	ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L	
		Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane n-Butylbenzene	ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	
		Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane	ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	
		Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane n-Butylbenzene sec-Butylbenzene	ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	
		Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane n-Butylbenzene sec-Butylbenzene tert-Butylbenzene	ND N	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	
		Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon disulfide Carbon tetrachloride Chlorobenzene	ND N	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	
		Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroethane	ND N	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	
		Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroform	ND N	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	
		Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroform Chloromethane	ND N	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	
		Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroform Chloromethane 2-Chlorotoluene	ND N	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	
		Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroform Chloromethane	ND N	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	
		Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroethane Chloroform Chloromethane 2-Chlorotoluene 4-Chlorotoluene	ND N	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	
		Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroform Chloromethane 2-Chlorotoluene 4-Chlorotoluene Dibromochloromethane	ND N	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	
		Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroform Chloromethane 2-Chlorotoluene 4-Chlorotoluene Dibromochloromethane Dibromomethane	ND N	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	
		Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroform Chloromethane 2-Chlorotoluene Dibromochloromethane Dibromomethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene	ND N	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	
		Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroethane Chloroform Chloromethane 2-Chlorotoluene 4-Chlorotoluene Dibromochloromethane Dibromomethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Dichlorodifluoromethane	ND N	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	
		Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroethane Chloroform Chloromethane 2-Chlorotoluene Dibromochloromethane Dibromomethane 1,2-Dichlorobenzene 1,4-Dichlorobenzene Dichlorodifluoromethane Dichlorodifluoromethane	ND N	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	
		Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroethane Chloroform Chloromethane 2-Chlorotoluene 4-Chlorotoluene Dibromochloromethane Dibromomethane 1,2-Dichlorobenzene 1,4-Dichlorobenzene Dichlorodifluoromethane Dichlorodifluoromethane Dichlorodifluoromethane Dichlorodifluoromethane	ND N	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	
		Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroethane Chloroform Chloromethane 2-Chlorotoluene Dibromochloromethane 1,2-Dichlorobenzene 1,4-Dichlorobenzene Dichlorodifluoromethane 1,1-Dichloroethane 1,2-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane	ND N	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	
		Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroethane Chloroform Chloromethane 2-Chlorotoluene Dibromochloromethane 1,2-Dichlorobenzene 1,4-Dichlorobenzene Dichlorodifluoromethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethene cis-1,2-Dichloroethene	ND N	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	
		Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroethane Chloroform Chloromethane 2-Chlorotoluene Dibromochloromethane 1,2-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethene cis-1,2-Dichloroethene trans-1,2-Dichloroethene	ND N	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	
		Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroethane Chloroform Chloromethane 2-Chlorotoluene Dibromochloromethane 1,2-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethene 1,3-Dichloroethene 1,3-Dichloroethene 1,3-Dichloroethene 1,3-Dichloroethene trans-1,2-Dichloroethene trans-1,2-Dichloroethene 1,3-Dichloropopene (total)	ND N	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	
		Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroethane Chloroform Chloromethane 2-Chlorotoluene Dibromochloromethane Dibromoethane 1,2-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethene trans-1,2-Dichloroethene trans-1,2-Dichloroethene 1,3-Dichloropropene (total) 1,2-Dichloropropane	ND N	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	
		Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroethane Chloroform Chloromethane 2-Chlorotoluene Dibromochloromethane 1,2-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethene 1,3-Dichloroethene 1,3-Dichloroethene 1,3-Dichloroethene 1,3-Dichloroethene trans-1,2-Dichloroethene trans-1,2-Dichloroethene 1,3-Dichloropopene (total)	ND N	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	
		Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroethane Chloroform Chloromethane 2-Chlorotoluene Dibromochloromethane Dibromomethane 1,2-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethene trans-1,2-Dichloroethene trans-1,2-Dichloroethene 1,3-Dichloropropane 1,3-Dichloropropane	ND N	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	
		Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroethane Chloroform Chloromethane 2-Chlorotoluene Dibromochloromethane Dibromomethane 1,2-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethene trans-1,2-Dichloroethene trans-1,2-Dichloroethene 1,3-Dichloropropane 1,3-Dichloropropane 1,3-Dichloropropane	ND N	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	
		Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroethane Chloroform Chloromethane 2-Chlorotoluene Dibromochloromethane Dibromomethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,1-Dichloroethene trans-1,2-Dichloroethene trans-1,2-Dichloroethene 1,3-Dichloropropene (total) 1,2-Dichloropropane 1,3-Dichloropropane 1,3-Dichloropropane 1,3-Dichloropropane 1,1-Dichloropropene	ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	
		Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroethane Chloroform Chloromethane 2-Chlorotoluene Dibromochloromethane Dibromochloromethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,1-Dichloroethene trans-1,2-Dichloroethene trans-1,2-Dichloropene (total) 1,2-Dichloropropane 1,3-Dichloropropane 1,3-Dichloropropene cis-1,3-Dichloropropene	ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	
		Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroethane Chloroform Chloromethane 2-Chlorotoluene Dibromochloromethane Dibromochloromethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,1-Dichloroethene trans-1,2-Dichloroethene trans-1,2-Dichloropopene 1,3-Dichloropropane 1,3-Dichloropropane 1,3-Dichloropropene cis-1,3-Dichloropropene cis-1,3-Dichloropropene trans-1,3-Dichloropropene	ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	
		Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroform Chloromethane 2-Chlorotoluene Dibromochloromethane Dibromochloromethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethene trans-1,2-Dichloroethene trans-1,2-Dichloropropane 1,3-Dichloropropane 1,3-Dichloropropane 1,3-Dichloropropane 1,3-Dichloropropane 1,3-Dichloropropane 1,1-Dichloropropane 1,1-Dichloropropane 1,1-Dichloropropane 1,1-Dichloropropane 1,1-Dichloropropane trans-1,3-Dichloropropene Ethylbenzene	ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	

Table 10. Laboratory Water Quality Results, Wells Near Simulated Injection and ASR MAR Locations

Well ID	Sample Date	Analyte	Result		Reporting Limit
		Methyl isobutyl ketone Methyl tert-butyl ether		ug/L ug/L	5 3
		Methylene chloride		ug/L ug/L	0.5
		Naphthalene		ug/L	0.5
		n-Propylbenzene Styrene		ug/L ug/L	0.5 0.5
		1,1,1,2-Tetrachloroethane	ND	ug/L	0.5
		1,1,2,2-Tetrachloroethane Tetrachloroethene		ug/L ug/L	0.5 0.5
		Toluene		ug/L	0.5
		1,2,3-Trichlorobenzene		ug/L	0.5
		1,2,4-Trichlorobenzene 1,1,1-Trichloroethane		ug/L ug/L	0.5 0.5
		1,1,2-Trichloroethane		ug/L ug/L	0.5
		Trichloroethene		ug/L	0.5
		Trichlorofluoromethane Trichlorotrifluoroethane		ug/L ug/L	5 10
		1,2,4-Trimethylbenzene		ug/L	0.5
		1,3,5-Trimethylbenzene	ND	ug/L	0.5
		Vinyl chloride m,p-Xylene		ug/L ug/L	0.5 0.5
		o-Xylene		ug/L ug/L	0.5
		Xylenes (total)	ND	ug/L	0.5
		Trihalomethanes (total)		ug/L	0.5
		Bromofluorobenzene Dibromofluoromethane		ug/L ug/L	
		Toluene-d8	26.3	ug/L	
		Hardness, Total		mg/L	5
		Ammonia as NH3 Phosphorus, total	0.079	mg/L mg/L	0.5 0.04
		Total Organic Carbon		mg/L	1
		Calcium, dissolved		mg/L	1
		Iron, dissolved Potassium, dissolved		mg/L mg/L	0.1
		Magnesium, dissolved	61	mg/L	1
		Sodium, dissolved		mg/L	1
		Silver, dissolved Aluminum, dissolved		ug/L ug/L	1 100
		Arsenic, dissolved		ug/L	0.5
		Boron, dissolved	1900		500
		Barium, dissolved Beryllium, dissolved		ug/L ug/L	0.5 0.1
		Cadmium, dissolved		ug/L	0.1
		Chromium, dissolved		ug/L	0.5
		Copper, dissolved Manganese, dissolved		ug/L ug/L	0.5 5
		Molybdenum, dissolved		ug/L	0.25
		Nickel, dissolved		ug/L	0.5
		Lead, dissolved Antimony, dissolved		ug/L ug/L	0.25 0.5
		Selenium, dissolved		ug/L	2
		Thallium, dissolved		ug/L	0.1
		Vanadium, dissolved Zinc, dissolved		ug/L ug/L	1 5
		Mercury, dissolved		ug/L	0.2
		Chloride		mg/L	5
		Fluoride Nitrate as N		mg/L mg/L	0.1
		Sulfate as SO4		mg/L	5
		Perchlorate		ug/L	2
		Bromodichloromethane Bromoform		ug/L	1
		Bromoform Chloroform		ug/L ug/L	1
		Dibromochloromethane	ND	ug/L	1
		Trihalomethanes (total) Bromofluorobenzene		ug/L ug/L	1
		Dibromofluoromethane		ug/L ug/L	
		Toluene-d8	24.1	ug/L	
		Monobromoacetic Acid Monochloroacetic Acid		ug/L	1 2
		Dibromoacetic Acid		ug/L ug/L	1
		Dichloroacetic Acid	ND	ug/L	1
		Trichloroacetic Acid		ug/L	1
		Total Haloacetic Acids (HAA5) 2,3-Dibromopropionic Acid		ug/L ug/L	1
		2-Bromopropionic Acid	12.3	ug/L	
		Color		CU	5
		Turbidity Bicarbonate Alkalinity as CaCO3		NTU mg/L	0.1 5
		Carbonate Alkalinity as CaCO3		mg/L	5
		Hydroxide Alkalinity as CaCO3		mg/L	5
		Total Alkalinity as CaCO3 Hardness, Total		mg/L mg/L	5 5
		Total Dissolved Solids		mg/L	10
		Sulfide	ND	mg/L	0.1
		MBAS, calculated as LAS, mw 340		mg/L MPN/100mL	0.05
		E. Coli Total Coliforms		MPN/100mL	1
		Calcium	47	mg/L	0.05
		Magnesium		mg/L	0.05
A20	08/18/2021 09:55:00	Hardness, Total Calcium, dissolved		mg/L mg/L	1
	25, 25, 2522 55.55.65	Iron, dissolved	ND	mg/L	0.1
		Potassium, dissolved		mg/L	1
		Magnesium, dissolved Sodium, dissolved		mg/L mg/L	1
		Silver, dissolved	ND	ug/L	0.1
		Aluminum, dissolved	ND	ug/L	10
	•	Arsenic, dissolved		ug/L	0.5

Table 10. Laboratory Water Quality Results, Wells Near Simulated Injection and ASR MAR Locations

Well ID	Sample Date	Analyte	Result		Reporting Limit
		Barium, dissolved		ug/L	0.5
		Beryllium, dissolved Cadmium, dissolved		ug/L ug/L	0.1
		Chromium, dissolved	6.8	ug/L	0.5
		Copper, dissolved		ug/L	0.5
		Manganese, dissolved Molybdenum, dissolved		ug/L ug/L	0.25
		Nickel, dissolved		ug/L	0.23
		Lead, dissolved	ND	ug/L	0.25
		Antimony, dissolved Selenium, dissolved		ug/L ug/L	0.5
		Thallium, dissolved		ug/L ug/L	0.1
		Vanadium, dissolved	7.3	ug/L	1
		Zinc, dissolved	ND	ug/L	5
		Mercury, dissolved		ug/L	0.2
		Chloride Fluoride		mg/L mg/L	5 0.1
		Nitrate as N		mg/L	0.2
		Sulfate as SO4	120	mg/L	5
		Perchlorate Bromodichloromethane		ug/L ug/L	2
		Bromodicnioromethane Bromoform		ug/L ug/L	1
		Chloroform	ND	ug/L	1
		Dibromochloromethane		ug/L	1
		Trihalomethanes (total) Bromofluorobenzene		ug/L	1
		Dibromofluorobenzene Dibromofluoromethane		ug/L ug/L	
		Toluene-d8		ug/L	
		Monobromoacetic Acid	ND	ug/L	1
		Monochloroacetic Acid		ug/L	2
		Dibromoacetic Acid Dichloroacetic Acid		ug/L ug/L	1
		Trichloroacetic Acid		ug/L ug/L	1
		Total Haloacetic Acids (HAA5)	ND	ug/L	1
		2,3-Dibromopropionic Acid		ug/L	
		2-Bromopropionic Acid		ug/L	_
		Color Turbidity		CU NTU	0.1
		Bicarbonate Alkalinity as CaCO3		mg/L	0.1
		Carbonate Alkalinity as CaCO3	ND	mg/L	
		Hydroxide Alkalinity as CaCO3		mg/L	5
		Total Alkalinity as CaCO3 Hardness, Total		mg/L mg/L	5
		Total Dissolved Solids		mg/L mg/L	10
		Sulfide		mg/L	0.1
		MBAS, calculated as LAS, mw 340		mg/L	0.05
		E. Coli		MPN/100mL	1
		Total Coliforms Calcium		MPN/100mL mg/L	0.05
		Magnesium		mg/L	0.05
		Hardness, Total	271	mg/L	1
357	08/18/2021 10:30:00	Calcium, dissolved		mg/L	1
		Iron, dissolved Potassium, dissolved		mg/L mg/L	0.1
		Magnesium, dissolved		mg/L	1
		Sodium, dissolved	170	mg/L	1
		Silver, dissolved	ND	ug/L	0.1
		Aluminum, dissolved Arsenic, dissolved		ug/L ug/L	0.5
		Arsenic, dissolved Boron, dissolved		ug/L ug/L	500
		Barium, dissolved		ug/L	0.5
		Beryllium, dissolved	ND	ug/L	0.1
		Cadmium, dissolved		ug/L	0.1
		Chromium, dissolved Copper, dissolved		ug/L ug/L	0.5
		Manganese, dissolved		ug/L	5
		Molybdenum, dissolved	5.1	ug/L	0.25
		Nickel, dissolved		ug/L	0.5
		Lead, dissolved Antimony, dissolved		ug/L ug/L	0.25
		Selenium, dissolved		ug/L	0.3
		Thallium, dissolved	ND	ug/L	0.1
		Vanadium, dissolved		ug/L	1
		l		ug/L	0.2
		Zinc, dissolved		ug/I	I U.2
		Mercury, dissolved	ND	ug/L mg/L	
			ND 130	ug/L mg/L mg/L	
		Mercury, dissolved Chloride Fluoride Nitrate as N	ND 130 0.21 3.1	mg/L mg/L mg/L	0.2
		Mercury, dissolved Chloride Fluoride Nitrate as N Sulfate as SO4	ND 130 0.21 3.1 190	mg/L mg/L mg/L mg/L	0.1 0.2
		Mercury, dissolved Chloride Fluoride Nitrate as N Sulfate as SO4 Perchlorate	ND 130 0.21 3.1 190 ND	mg/L mg/L mg/L mg/L ug/L	0.1
		Mercury, dissolved Chloride Fluoride Nitrate as N Sulfate as SO4	ND 130 0.21 3.1 190 ND	mg/L mg/L mg/L mg/L	0.:
		Mercury, dissolved Chloride Fluoride Nitrate as N Sulfate as SO4 Perchlorate Bromodichloromethane	ND 130 0.21 3.1 190 ND ND	mg/L mg/L mg/L mg/L ug/L ug/L	0.:
		Mercury, dissolved Chloride Fluoride Nitrate as N Sulfate as SO4 Perchlorate Bromodichloromethane Bromoform Chloroform Dibromochloromethane	ND 130 0.21 3.1 190 ND ND ND ND ND ND	mg/L mg/L mg/L ug/L ug/L ug/L ug/L ug/L ug/L	0.:
		Mercury, dissolved Chloride Fluoride Nitrate as N Sulfate as SO4 Perchlorate Bromodichloromethane Bromoform Chloroform Dibromochloromethane Trihalomethanes (total)	ND 130 0.21 3.1 190 ND	mg/L mg/L mg/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L u	0.:
		Mercury, dissolved Chloride Fluoride Nitrate as N Sulfate as SO4 Perchlorate Bromodichloromethane Bromoform Chloroform Dibromochloromethane Trihalomethanes (total) Bromofluorobenzene	ND 130 0.21 3.1 190 ND ND ND ND ND ND ND 25.6	mg/L mg/L mg/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L u	0.:
		Mercury, dissolved Chloride Fluoride Nitrate as N Sulfate as SO4 Perchlorate Bromodichloromethane Bromoform Chloroform Dibromochloromethane Trihalomethanes (total)	ND 130 0.21 3.1 190 ND ND ND ND ND 25.6 24.5	mg/L mg/L mg/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L u	0.1 0.2 5 2 1 1
		Mercury, dissolved Chloride Fluoride Nitrate as N Sulfate as SO4 Perchlorate Bromodichloromethane Bromoform Chloroform Dibromochloromethane Trihalomethanes (total) Bromofluorobenzene Dibromofluoromethane	ND 130 0.21 3.1 190 ND ND ND ND ND 25.6 24.5 23.7	mg/L mg/L mg/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L u	0.:
		Mercury, dissolved Chloride Fluoride Nitrate as N Sulfate as SO4 Perchlorate Bromodichloromethane Bromoform Chloroform Dibromochloromethane Trihalomethanes (total) Bromofluorobenzene Dibromofluoromethane Toluene-d8 Monobromoacetic Acid Monochloroacetic Acid	ND 130 0.21 3.1 190 ND ND ND ND ND 25.6 24.5 23.7 ND ND ND ND	mg/L mg/L mg/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L u	0.: 0.2 5 2 1 1 1 1 1 1
		Mercury, dissolved Chloride Fluoride Nitrate as N Sulfate as SO4 Perchlorate Bromodichloromethane Bromoform Chloroform Dibromochloromethane Trihalomethanes (total) Bromofluorobenzene Dibromofluoromethane Toluene-d8 Monobromoacetic Acid Dibromoacetic Acid	ND 130 0.21 3.1 190 ND	mg/L mg/L mg/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L u	0.1 0.2 5 2 1 1 1 1 1 2 1 2 1
		Mercury, dissolved Chloride Fluoride Nitrate as N Sulfate as SO4 Perchlorate Bromodichloromethane Bromoform Chloroform Dibromochloromethane Trihalomethanes (total) Bromofluorobenzene Dibromofluoromethane Toluene-d8 Monobromoacetic Acid Monochloroacetic Acid Dibromoacetic Acid	ND 130 0.21 3.1 190 ND	mg/L mg/L mg/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L u	0.1 0.2 5 2 1 1 1 1 1 2 2
		Mercury, dissolved Chloride Fluoride Nitrate as N Sulfate as SO4 Perchlorate Bromodichloromethane Bromoform Chloroform Dibromochloromethane Trihalomethanes (total) Bromofluorobenzene Dibromofluoromethane Toluene-d8 Monobromoacetic Acid Monochloroacetic Acid Dibromoacetic Acid Dichloroacetic Acid	ND 130 0.21 3.1 190 ND	mg/L mg/L mg/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L u	0.1 0.2 5 2 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1
		Mercury, dissolved Chloride Fluoride Nitrate as N Sulfate as SO4 Perchlorate Bromodichloromethane Bromoform Chloroform Dibromochloromethane Trihalomethanes (total) Bromofluorobenzene Dibromofluoromethane Toluene-d8 Monobromoacetic Acid Monochloroacetic Acid Dibromoacetic Acid	ND 130 0.21 3.1 190 ND	mg/L mg/L mg/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L u	5 0.1 0.2 5 2 1 1 1 1 2 2 1 1 1 1
		Mercury, dissolved Chloride Fluoride Nitrate as N Sulfate as SO4 Perchlorate Bromodichloromethane Bromoform Chloroform Dibromochloromethane Trihalomethanes (total) Bromofluorobenzene Dibromofluoromethane Toluene-d8 Monobromoacetic Acid Monochloroacetic Acid Dibromoacetic Acid Dichloroacetic Acid Trichloroacetic Acid Total Haloacetic Acids (HAA5)	ND 130 0.21 3.1 190 ND 10.5	mg/L mg/L mg/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L u	0.1 0.2 5 2 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1
		Mercury, dissolved Chloride Fluoride Nitrate as N Sulfate as SO4 Perchlorate Bromodichloromethane Bromoform Chloroform Dibromochloromethane Trihalomethanes (total) Bromofluorobenzene Dibromofluoromethane Toluene-d8 Monobromoacetic Acid Monochloroacetic Acid Dibromoacetic Acid Dichloroacetic Acid Trichloroacetic Acid Total Haloacetic Acids (HAA5) 2,3-Dibromopropionic Acid Color	ND 130 0.21 3.1 190 ND 10.5 14.4 ND	mg/L mg/L mg/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L u	0.1 0.2 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
		Mercury, dissolved Chloride Fluoride Nitrate as N Sulfate as SO4 Perchlorate Bromodichloromethane Bromoform Chloroform Dibromochloromethane Trihalomethanes (total) Bromofluorobenzene Dibromofluoromethane Toluene-d8 Monobromoacetic Acid Monochloroacetic Acid Dibromoacetic Acid Dichloroacetic Acid Trichloroacetic Acid Total Haloacetic Acids (HAA5) 2,3-Dibromopropionic Acid	ND 130 0.21 3.1 190 ND 10.5 14.4 ND	mg/L mg/L mg/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L u	0.1 0.2 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Table 10. Laboratory Water Quality Results, Wells Near Simulated Injection and ASR MAR Locations

Well ID	Sample Date	Analyte	Result		Reporting Limit
		Hydroxide Alkalinity as CaCO3 Total Alkalinity as CaCO3		mg/L mg/L	5
		Hardness, Total		mg/L	5
		Total Dissolved Solids		mg/L	10
		Sulfide MBAS, calculated as LAS, mw 340		mg/L mg/L	0.1
		E. Coli		MPN/100mL	1
		Total Coliforms Calcium		MPN/100mL mg/L	0.05
		Magnesium		mg/L	0.05
		Hardness, Total		mg/L	1
3123	08/18/2021 11:50:00	Calcium, dissolved		mg/L	1
		Iron, dissolved Potassium, dissolved		mg/L mg/L	0.1
		Magnesium, dissolved		mg/L	1
		Sodium, dissolved		mg/L	1
		Silver, dissolved Aluminum, dissolved		ug/L ug/L	0.1
		Arsenic, dissolved		ug/L	0.5
		Boron, dissolved		ug/L	500
		Barium, dissolved Beryllium, dissolved		ug/L ug/L	0.5
		Cadmium, dissolved		ug/L	0.1
		Chromium, dissolved		ug/L	0.5
		Copper, dissolved Manganese, dissolved		ug/L ug/L	0.5
		Molybdenum, dissolved		ug/L	0.25
		Nickel, dissolved		ug/L	0.5
		Lead, dissolved		ug/L	0.25
		Antimony, dissolved Selenium, dissolved		ug/L ug/L	0.5
		Thallium, dissolved	ND	ug/L	0.1
		Vanadium, dissolved	3.2	ug/L	1
		Zinc, dissolved Mercury, dissolved		ug/L ug/L	0.2
		Chloride		mg/L	25
		Fluoride		mg/L	0.1
		Nitrate as N Sulfate as SO4		mg/L mg/L	0.2
		Perchlorate		ug/L	5
		Bromodichloromethane	ND	ug/L	1
		Bromoform		ug/L	1
		Chloroform Dibromochloromethane		ug/L ug/L	1
		Trihalomethanes (total)		ug/L	1
		Bromofluorobenzene		ug/L	
		Dibromofluoromethane Toluene-d8		ug/L ug/L	
		Monobromoacetic Acid		ug/L	1
		Monochloroacetic Acid		ug/L	2
		Dibromoacetic Acid		ug/L	1
		Dichloroacetic Acid Trichloroacetic Acid		ug/L ug/L	1
		Total Haloacetic Acids (HAA5)		ug/L	
		2,3-Dibromopropionic Acid		ug/L	
		2-Bromopropionic Acid Color		ug/L CU	
		Turbidity		NTU	0.1
		Bicarbonate Alkalinity as CaCO3		mg/L	5
		Carbonate Alkalinity as CaCO3		mg/L	5
		Hydroxide Alkalinity as CaCO3 Total Alkalinity as CaCO3		mg/L mg/L	5
		Hardness, Total		mg/L	5
		Total Dissolved Solids		mg/L	10
		Sulfide MBAS, calculated as LAS, mw 340		mg/L mg/L	0.1
		E. Coli		MPN/100mL	0.03
		Total Coliforms	ND	MPN/100mL	1
		Calcium Magnesium		mg/L mg/L	0.05
		Magnesium Hardness, Total		mg/L mg/L	0.05
		Calcium	44	mg/L	1
		Magnesium		mg/L	1
		Silica (SiO2) Cobalt		mg/L ug/L	0.4
		Uranium		pCi/l	1
		Chromium, hexavalent	11	ug/L	1
		Acetone		ug/L	5
		Acrylonitrile Benzene		ug/L ug/L	0.5
		Bromobenzene		ug/L	0.5
		Bromochloromethane	ND	ug/L	0.5
		Bromodichloromethane Bromoform		ug/L ug/L	1
		Bromomethane		ug/L ug/L	0.5
		n-Butylbenzene	ND	ug/L	0.5
		sec-Butylbenzene		ug/L	0.5
		tert-Butylbenzene Carbon disulfide		ug/L ug/L	0.5
		Carbon disulide Carbon tetrachloride		ug/L ug/L	0.5
		Chlorobenzene	ND	ug/L	0.5
		Chloroethane	ND	ug/L	0.5
		Chloroform Chloromethane		ug/L	0.5
		2-Chlorotoluene		ug/L ug/L	0.5
		4-Chlorotoluene		ug/L	0.5
					1
		Dibromochloromethane		ug/L	
		Dibromochloromethane Dibromomethane 1,2-Dichlorobenzene	ND	ug/L ug/L ug/L	0.5

Table 10. Laboratory Water Quality Results, Wells Near Simulated Injection and ASR MAR Locations

Well ID	Sample Date	Analyte	Result		Reporting Limit
		1,4-Dichlorobenzene		ug/L	0.5
		Dichlorodifluoromethane 1.1-Dichloroethane		ug/L ug/L	0.5
		1,2-Dichloroethane		ug/L	0.5
		1,1-Dichloroethene	ND	ug/L	0.5
		cis-1,2-Dichloroethene		ug/L	0.5
		trans-1,2-Dichloroethene 1,3-Dichloropropene (total)		ug/L ug/L	0.5
		1,2-Dichloropropene (total)		ug/L ug/L	0.5
		1,3-Dichloropropane		ug/L	0.5
		2,2-Dichloropropane	ND	ug/L	0.5
		1,1-Dichloropropene		ug/L	0.5
		cis-1,3-Dichloropropene		ug/L	0.5
		trans-1,3-Dichloropropene Ethylbenzene		ug/L ug/L	0.5
		Hexachlorobutadiene		ug/L ug/L	0.5
		Isopropylbenzene		ug/L	0.5
		p-Isopropyltoluene	ND	ug/L	0.5
		Methyl ethyl ketone		ug/L	Ţ.
		Methyl isobutyl ketone Methyl tert-butyl ether		ug/L	3
		Methylene chloride		ug/L ug/L	0.5
		Naphthalene		ug/L	0.5
		n-Propylbenzene		ug/L	0.5
		Styrene		ug/L	0.5
		1,1,1,2-Tetrachloroethane		ug/L	0.5
		1,1,2,2-Tetrachloroethane		ug/L	2.0
		Tetrachloroethene		ug/L	0.5
		Toluene 1,2,3-Trichlorobenzene		ug/L ug/L	0.5
		1,2,4-Trichlorobenzene		ug/L ug/L	0.5
		1,1,1-Trichloroethane		ug/L	0.5
		1,1,2-Trichloroethane	ND	ug/L	0.9
		Trichloroethene	ND	ug/L	0.5
		Trichlorofluoromethane		ug/L	
		Trichlorotrifluoroethane		ug/L	10
		1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene	_	ug/L ug/L	0.5
		Vinyl chloride		ug/L ug/L	0.5
		m,p-Xylene		ug/L	0.5
		o-Xylene		ug/L	0.5
		Xylenes (total)		ug/L	0.!
		Trihalomethanes (total)		ug/L	0.5
		Bromofluorobenzene		ug/L	
		Dibromofluoromethane Toluene-d8	23.6 25.1	-	
		Hardness, Total		mg/L	Į.
		Ammonia as NH3	_	mg/L	0.!
		Phosphorus, total		mg/L	0.04
		Total Organic Carbon	ND	mg/L	
127	08/18/2021 12:25:00	Calcium, dissolved		mg/L	<u>:</u>
		Iron, dissolved	_	mg/L	0.:
		Potassium, dissolved		mg/L mg/L	
		Magnesium, dissolved Sodium, dissolved	_	mg/L	
		Silver, dissolved		ug/L	0.1
		Aluminum, dissolved	ND	ug/L	10
		Arsenic, dissolved		ug/L	0.5
		Boron, dissolved	2500		500
		Barium, dissolved		ug/L	0.5
		Beryllium, dissolved Cadmium, dissolved		ug/L ug/L	0.1
		Chromium, dissolved		ug/L ug/L	0.5
		Copper, dissolved		ug/L ug/L	0.9
		Manganese, dissolved		ug/L	
		Molybdenum, dissolved	8.6	ug/L	0.25
		Nickel, dissolved		ug/L	0.5
		Lead, dissolved	_	ug/L	0.25
		Antimony, dissolved Selenium, dissolved		ug/L ug/L	0.5
		Thallium, dissolved	_	ug/L ug/L	0.
		Vanadium, dissolved		ug/L	:
		Zinc, dissolved	7.9	ug/L	!
		Mercury, dissolved		ug/L	0.2
		Chloride		mg/L	
		Fluoride Nitrate as N	_	mg/L	0.:
		Nitrate as N Sulfate as SO4		mg/L mg/L	0.2
		Perchlorate		ug/L	
		Bromodichloromethane		ug/L ug/L	
		Bromoform	_	ug/L	
		Chloroform	ND	ug/L	
		Dibromochloromethane		ug/L	
		Trihalomethanes (total)		ug/L	
		Bromofluorobenzene Dibromofluoromethane	23.7		
		Toluene-d8	22.5 24.9		
		Monobromoacetic Acid		ug/L ug/L	:
		Monochloroacetic Acid		ug/L ug/L	
		Dibromoacetic Acid		ug/L	
		Dichloroacetic Acid	ND	ug/L	:
		Trichloroacetic Acid	ND	ug/L	:
		Total Haloacetic Acids (HAA5)	ND	ug/L	<u>:</u>
		2,3-Dibromopropionic Acid	12.1	-	
		2-Bromopropionic Acid	12.8		
		Color	ND		5
		T L. (
		Turbidity Bicarbonate Alkalinity as CaCO3	0.6		
		Turbidity Bicarbonate Alkalinity as CaCO3 Carbonate Alkalinity as CaCO3	330	mg/L mg/L	0.1

Table 10. Laboratory Water Quality Results, Wells Near Simulated Injection and ASR MAR Locations

Well ID Sa	imple Date	Analyte Total Alkalinity as CaCO2	Result		Reporting Limit
		Total Alkalinity as CaCO3 Hardness, Total		mg/L mg/L	
		Total Dissolved Solids		mg/L	1
		Sulfide		mg/L	0.
		MBAS, calculated as LAS, mw 340 E. Coli		mg/L MPN/100mL	0.0
		Total Coliforms	1	MPN/100mL	
		Calcium		mg/L	0.0
		Magnesium Hardness, Total		mg/L mg/L	0.0
Iollister Bundeson Road Well 2 08	3/18/2021 13:15:00	Calcium, dissolved		mg/L	
		Iron, dissolved	ND	mg/L	0.
		Potassium, dissolved		mg/L	
		Magnesium, dissolved Sodium, dissolved		mg/L mg/L	
		Silver, dissolved		ug/L	0.
		Aluminum, dissolved		ug/L	1
		Arsenic, dissolved		ug/L	0.
		Boron, dissolved Barium, dissolved		ug/L ug/L	5 0.
		Beryllium, dissolved		ug/L	0.
		Cadmium, dissolved		ug/L	0.
		Chromium, dissolved		ug/L	0.
		Copper, dissolved Manganese, dissolved		ug/L ug/L	0.
		Molybdenum, dissolved		ug/L ug/L	0.2
		Nickel, dissolved		ug/L	0.
		Lead, dissolved	ND	ug/L	0.2
		Antimony, dissolved		ug/L	0.
		Selenium, dissolved Thallium, dissolved		ug/L ug/L	0.
		Vanadium, dissolved		ug/L ug/L	0.
		Zinc, dissolved	8.5	ug/L	
		Mercury, dissolved		ug/L	0.
		Chloride Fluoride		mg/L mg/L	0.
		Nitrate as N		mg/L mg/L	0.
		Sulfate as SO4	280	mg/L	
		Perchlorate	ND	ug/L	
		Bromodichloromethane Bromoform		ug/L	
		Chloroform		ug/L ug/L	
		Dibromochloromethane		ug/L	
		Trihalomethanes (total)		ug/L	
		Bromofluorobenzene		ug/L	
		Dibromofluoromethane Toluene-d8		ug/L ug/L	
		Monobromoacetic Acid		ug/L	
		Monochloroacetic Acid		ug/L	
		Dibromoacetic Acid		ug/L	
		Dichloroacetic Acid		ug/L	
		Trichloroacetic Acid Total Haloacetic Acids (HAA5)		ug/L ug/L	
		2,3-Dibromopropionic Acid		ug/L	
		2-Bromopropionic Acid		ug/L	
		Color		CU	
		Turbidity Bicarbonate Alkalinity as CaCO3		NTU mg/L	0.
		Carbonate Alkalinity as CaCO3		mg/L	
		Hydroxide Alkalinity as CaCO3	ND	mg/L	
		Total Alkalinity as CaCO3		mg/L	
		Hardness, Total Total Dissolved Solids		mg/L	1
		Sulfide		mg/L mg/L	0.
		MBAS, calculated as LAS, mw 340		mg/L	0.0
		E. Coli	ND	MPN/100mL	
		Total Coliforms		MPN/100mL	0.0
		Calcium Magnesium		mg/L mg/L	0.0
		Hardness, Total		mg/L	0.0
3-5-10L1 08	3/19/2021 08:30:00	Calcium, dissolved	81	mg/L	
		Iron, dissolved		mg/L	0.
		Potassium, dissolved Magnesium, dissolved		mg/L mg/L	
		Sodium, dissolved		mg/L	
		Silver, dissolved		ug/L	0.
		Aluminum, dissolved		ug/L	1
		Arsenic, dissolved		ug/L	0
		Boron, dissolved Barium, dissolved		ug/L ug/L	5 0
		Beryllium, dissolved		ug/L ug/L	0
		Cadmium, dissolved	ND	ug/L	0
		Chromium, dissolved		ug/L	0
		Copper, dissolved		ug/L	0
		Manganese, dissolved Molybdenum, dissolved		ug/L ug/L	0.2
		Nickel, dissolved		ug/L	0.2
		Lead, dissolved	ND	ug/L	0.2
		Antimony, dissolved		ug/L	0
		Selenium, dissolved		ug/L	0
		Thallium, dissolved Vanadium, dissolved		ug/L ug/L	0
		Zinc, dissolved		ug/L ug/L	
		Mercury, dissolved	ND	ug/L	0
		Chloride	130	mg/L	1
		Fluoride		mg/L	0.
		Nitrate as N Sulfate as SO4		mg/L mg/L	0.
		Perchlorate		mg/L ug/L	1
				_ · · · · ·	

Table 10. Laboratory Water Quality Results, Wells Near Simulated Injection and ASR MAR Locations

Well ID S	Sample Date	Analyte	Result		Reporting Limit
		Bromoform Chloroform		ug/L ug/L	:
		Dibromochloromethane	ND	ug/L	:
		Trihalomethanes (total) Bromofluorobenzene		ug/L ug/L	:
		Dibromofluoromethane	21.8	ug/L	
		Toluene-d8 Monobromoacetic Acid		ug/L ug/L	:
		Monochloroacetic Acid		ug/L	:
		Dibromoacetic Acid		ug/L	:
		Dichloroacetic Acid Trichloroacetic Acid		ug/L ug/L	:
		Total Haloacetic Acids (HAA5)		ug/L	
		2,3-Dibromopropionic Acid		ug/L	
		2-Bromopropionic Acid Color		ug/L CU	
		Turbidity	0.15	NTU	0.:
		Bicarbonate Alkalinity as CaCO3		mg/L	!
		Carbonate Alkalinity as CaCO3 Hydroxide Alkalinity as CaCO3		mg/L mg/L	
		Total Alkalinity as CaCO3	400	mg/L	Į.
		Hardness, Total Total Dissolved Solids		mg/L mg/L	10
		Sulfide		mg/L	0.:
		MBAS, calculated as LAS, mw 340		mg/L	0.0
		E. Coli Total Coliforms		MPN/100mL MPN/100mL	:
		Calcium		mg/L	0.0!
		Magnesium	88	mg/L	0.0
12-5-23A2O C	08/26/2021 09:30:00	Hardness, Total Calcium		mg/L mg/L	:
J _Jnz0 (,o, 20, 2021 03.30.00	Magnesium		mg/L	
		Silica (SiO2)	27	mg/L	:
		Cobalt Uranium		ug/L pCi/l	0.4
		Chromium, hexavalent		ug/L	:
		Acetone	ND	ug/L	!
		Acrylonitrile Benzene		ug/L ug/L	0.1
		Bromobenzene		ug/L	0.5
		Bromochloromethane		ug/L	0.5
		Bromodichloromethane Bromoform		ug/L ug/L	
		Bromomethane		ug/L	0.5
		n-Butylbenzene		ug/L	0.!
		sec-Butylbenzene tert-Butylbenzene		ug/L ug/L	0.5
		Carbon disulfide		ug/L	0.5
		Carbon tetrachloride		ug/L	0.5
		Chlorobenzene Chloroethane		ug/L ug/L	0.5
		Chloroform		ug/L	0
		Chloromethane		ug/L	0.5
		2-Chlorotoluene 4-Chlorotoluene		ug/L ug/L	0.9
		Dibromochloromethane		ug/L	
		Dibromomethane		ug/L	0.5
		1,2-Dichlorobenzene 1,3-Dichlorobenzene		ug/L ug/L	0.5
		1,4-Dichlorobenzene	ND	ug/L	0.5
		Dichlorodifluoromethane		ug/L	0.5
		1,1-Dichloroethane 1,2-Dichloroethane		ug/L ug/L	0.5
		1,1-Dichloroethene		ug/L	0.5
		cis-1,2-Dichloroethene		ug/L	0.5
		trans-1,2-Dichloroethene 1,3-Dichloropropene (total)		ug/L ug/L	0.9
		1,2-Dichloropropane	ND	ug/L	0.5
		1,3-Dichloropropane		ug/L	0.5
		2,2-Dichloropropane 1,1-Dichloropropene		ug/L ug/L	0.5
		cis-1,3-Dichloropropene	ND	ug/L	0.
		trans-1,3-Dichloropropene		ug/L	0.5
		Ethylbenzene Hexachlorobutadiene		ug/L ug/L	0.5
		Isopropylbenzene	ND	ug/L	0.5
		p-Isopropyltoluene		ug/L	0.5
		Methyl ethyl ketone Methyl isobutyl ketone		ug/L ug/L	!
		Methyl tert-butyl ether	ND	ug/L	:
		Methylene chloride Naphthalene		ug/L ug/L	0.9
		n-Propylbenzene		ug/L ug/L	0.
		Styrene	ND	ug/L	0.5
		1,1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane		ug/L	0.5
		1,1,2,2-Tetrachloroethane Tetrachloroethene		ug/L ug/L	0
		Toluene	ND	ug/L	0.
		1,2,3-Trichlorobenzene	ND	ug/L	0.1
		1,2,4-Trichlorobenzene 1,1,1-Trichloroethane		ug/L ug/L	0
		1,1,2-Trichloroethane		ug/L ug/L	0.
		Trichloroethene	ND	ug/L	0.5
		Trichlorofluoromethane Trichlorotrifluoroethane		ug/L	10
		1,2,4-Trimethylbenzene		ug/L ug/L	0.5
		1,3,5-Trimethylbenzene	ND	ug/L	0.!
		Vinyl chloride		ug/L	0.5
		m,p-Xylene o-Xylene		ug/L ug/L	0.5

Table 10. Laboratory Water Quality Results, Wells Near Simulated Injection and ASR MAR Locations

Well ID	Sample Date	Analyte	Result	Units	Reporting Limit
		Xylenes (total)	ND	ug/L	0.5
		Trihalomethanes (total)	ND	ug/L	0.5
		Bromofluorobenzene	25.8	ug/L	
		Dibromofluoromethane	22.8	ug/L	
		Toluene-d8	26.7	ug/L	
		Hardness, Total	315	mg/L	5
		Ammonia as NH3	ND	mg/L	0.5
		Phosphorus, total	0.095	mg/L	0.04
		Total Organic Carbon	ND	mg/L	1

9. PRELIMINARY FACILITY PLANNING

In an effort parallel to the MAR feasibility assessment described above, SBCWD has conducted regional water and wastewater planning that identified the need for additional high quality CVP water to meet future water demands and to improve water quality (HDR 2017). In 2021, HDR prepared a Draft Evaluation of Water Supply and Storage Alternatives that considered alternatives to beneficially use available CVP water and concluded that ASR is the most advantageous and cost-effective method to utilize the excess CVP water for dry year demands.

These two efforts were combined in this MAR assessment study. Preliminary facility planning was completed by HDR as described in *Groundwater Recharge Alternatives Facility Plan, San Benito County Water District* (**Appendix B**, HDR 2022). The preliminary Facility Plan addresses goals, well siting, ASR, MAR, evaluation of alternatives, and implementation plan.

9.1 Goals

The preliminary Facility Plan was conducted with the following goals:

- Identify location and capacity of ASR and MAR wells
- Evaluate facilities required for ASR and MAR options including wells, pipelines, treatment, and pumping facilities
- Develop an opinion of capital cost estimate (OPCC)
- Perform alternatives evaluation to maximize use of CVP supply and provide a sustainable, long-term water supply
- Recommend one alternative and develop an implementation plan.

9.2 Well Siting

Preliminary well locations for both the ASR and MAR wells are discussed and presented above and shown in **Figure 18**. As indicated above, selection of these locations was based on hydrogeological considerations and model simulations. As shown, the ASR and MAR wells are aligned along existing roads and close to CVP conveyance pipelines.

9.3 Injection-Only MAR

The injection-only MAR facilities include 11 wells with a total capacity of 6,000 AFY and dedicated pipelines to connect the wells to the West Hills Water Treatment Plant (WTP). The planned injection wells are located away from streams and upgradient of municipal wells to minimize any potential losses and to maximize recovery, including capture of high-quality injection water.

A pilot injection program could direct up to 800 AFY to one well to demonstrate the injection operability. Phase I would involve treatment of 3,000 AFY of CVP water at the West Hills WTP and another five injection wells, and Phase II would treat the entire 6,000 AFY of CVP water for recharge through all eleven injection wells.

9.4 ASR MAR

The ASR facilities include 11 ASR wells for injection of up to 6,000 AF of treated CVP water and recovery of stored water, a new WTP to treat CVP water prior to injection and to treat ASR output to drinking water standard prior to distribution, and pipelines that connect the ASR wells, WTP, and the Hollister Urban Area (HUA) distribution system.

The overall ASR program will be developed through a pilot program followed by two phases to reach full-scale operations. The initial pilot phase of the ASR facilities will consist of one ASR well and piping, while Phase I will add four wells, a 2.5 million gallon per day (MGD) treatment plant and pipeline to convey water among wells, the WTP and the distribution system. Phase II provides full program capacity by completing the remaining six wells and expanding the WTP's capacity to 5.5 MGD to process 6,000 AFY of excess CVP water.

9.5 Evaluation of Alternatives

The ASR and MAR alternatives were evaluated based on the criteria summarized below:

- Increase ability to use CVP allocation
- Increase overall water supply
- Increase dry year reliability
- Improve groundwater basin levels and quality including long-term salt balance
- Minimizes cost.

Both alternatives provide benefits relative to the above criteria. As described in the preliminary facility plan, the ASR alternative is more advantageous for the first three criteria, while the MAR alternative provides more benefit to groundwater basin levels and quality and has slightly lower capital cost. The ASR program is recommended as the preferred water supply and groundwater recharge alternative, while recognizing the MAR alternative as a useful groundwater management option for long term sustainability of levels and quality.

9.6 Implementation Plan

The recommended phasing approach to implement the ASR program is summarized as follows:

- Pilot Phase (2022) Develop a pilot well in the north area to inject water supplied from the distribution system. Install pipe to connect the ASR well to the distribution system. Total capital cost of facilities required for this phase is \$5.3 million.
- Phase I Implement Phase I of ASR that adds four injection/recovery wells, a new water treatment plant and associated pipelines to obtain up to 3,000 AFY of ASR capacity. The total capital cost of facilities required for this phase is \$39.4 million.
- Phase II Implement Phase II that adds up to 2,200 AFY capacity. Expand the water treatment plant capacity, add six injection/recovery wells and associated pipelines. The total capital cost of the facilities required for this phase is \$41.6 million.

The preliminary facility plan report (Appendix B, HDR 2022) also outlines environmental compliance and permitting for each phase.

10. REFERENCES

California Department of Water Resources (DWR), 2020a, CalSim II Water Resources Simulation Model, available at: https://water.ca.gov/Library/Modeling-and-Analysis/Central-Valley-models-and-tools/CalSim-II.

California Department of Water Resources (DWR), 2020b, 2016 California Statewide Agricultural Land Use, California Department of Water Resources, available at: https://gis.water.ca.gov/app/CADWRLandUseViewer/?page=home.

Hantush, M.S., 1967, Growth and Decay of Groundwater-Mounds in Response to Uniform Percolation, Water Resources Research vol. 3, no.1, pp 227-234.

HDR, 2017, Hollister Urban Area Water and Wastewater Master Plan Update, for San Benito County Water District.

HDR, 2021, Draft Evaluation of Water Supply and Storage Alternatives, for San Benito County Water District.

HDR, 2022, Groundwater Recharge Alternatives Facility Plan, San Benito County Water District, January.

Higashio, H., Aizawa, S., Kunihisa, M., Murakami, K., Tokuda, S. and Uragami, A., 2012, Evaluation for comparison of waterlogging tolerance based on anaerobic respiration reaction of root in lettuce and broccoli. *Horticultural Research (Japan)*, 11(4), pp.477-483.

Kourgialas, N.N. and Karatzas, G.P., 2016, A flood risk decision making approach for Mediterranean tree crops using GIS; climate change effects and flood-tolerant species, *Environmental Science & Policy*, 63, pp.132-142.

O'Geen A, Saal M, Dahlke H, Doll D, Elkins R, Fulton A, Fogg G, Harter T, Hopmans J, Ingels C, Niederholzer F, Sandoval Solis S, Verdegaal P, Walkinshaw M, 2015, Soil Suitability Index Identifies Potential Areas for Groundwater Banking on Agricultural Lands, California Agriculture 69(2):75-84, available at: https://doi.org/10.3733/ca.v069n02p75.

RMC, 2015, Creating an Opportunity: Groundwater Recharge through Winter Flooding of Agricultural Land in the San Joaquin Valley. Prepared by RMC Water and Environment. October.

Rubatzky, V.E. and Yamaguchi, M., 1997, Cole Crops, Other Brassica, and Crucifer Vegetables. In *World Vegetables* (pp. 371-417), Springer, Boston, MA.

Schaffer, B., Andersen, P.C. and Ploetz, R.C., 1992, Responses of fruit crops to flooding, *Hort, Reviews*, *13*, pp.257-313.

Soil Survey Staff, 2018, Gridded Soil Survey Geographic (gSSURGO) Database for California, United States Department of Agriculture, Natural Resources Conservation Service, available at https://gdg.sc.egov.usda.gov/, September 12.

Todd Groundwater (Todd), 2020, North San Benito Groundwater Model Update and Enhancement 2020, March.

Todd Groundwater (Todd), 2021, Draft Specifications for Managed Aquifer Recharge Modeling Scenarios, North San Benito Basin Round 3 Managed Aquifer Recharge Evaluation, January.

Vreugdenhil, S.J., Kramer, K. and Pelsma, T., 2006, Effects of flooding duration, -frequency and depth on the presence of saplings of six woody species in north-west Europe. *Forest Ecology and Management*, 236(1), pp.47-55.

APPENDIX A

Laboratory Water Quality Reports

Alpha Analytical Laboratories, Inc.

email: clientservices@alpha-labs.com

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

16 August 2021

Todd Groundwater

Attn: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Alameda, CA 94501

RE: Round 3 ASR Water Quality Baseline

Work Order: 21G3255

Enclosed are the results of analyses for samples received by the laboratory on 07/26/21 22:45. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jeanette L. Poplin For David S. Pingatore

Jeanette Popli

Project Manager

Alpha Analytical Laboratories, Inc.

email: clientservices@alpha-labs.com

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501 Project Number: Round 3 ASR Water Quality Baseline

Reported: 08/16/21 10:41

Bay Area: 262 Rickenbacker Circle | Livermore, CA 94551 | T: 925-828-6226 | F: 925-828-6309 | ELAP# 2728 Central Valley: 9090 Union Park Way Suite 113 | Elk Grove, CA 95624 | T: 916-686-5190 | F: 916-686-5192 | ELAP# 2922 North Bay: 110 Liberty Street | Petaluma, CA 94952 | T: 707-769-3128 | F: 707-769-8093 | ELAP# 2303 San Diego: 2722 Loker Avenue West Suite A | Carlsbad, CA 92010 | T: 760-930-2555 | F: 760-930-2510 | ELAP# 3055

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
SSWD 5	21G3255-01	Water	07/26/21 09:20	07/26/21 22:45
SSWD 7	21G3255-02	Water	07/26/21 10:00	07/26/21 22:45
SSWD #11	21G3255-03	Water	07/26/21 10:15	07/26/21 22:45
SSWD #2	21G3255-04	Water	07/26/21 10:30	07/26/21 22:45

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215 Project: Round 3 ASR Water Quality Baseline Alameda, CA 94501 Project Number: Round 3 ASR Water Quality Baseline

Reported: 08/16/21 10:41

	Result	Reporting Limit	Dilution	Batch	Prepared	Analyzed	ELAP#	Method	Note
SSWD 5 (21G3255-01)		Sample Type: Water Sampled: 07/26/21 09:20							
Metals (Dissolved) by EPA 200 Series Methods									FILT
Mercury, dissolved	ND ug/L	0.20	1	AG14588	07/28/21 07:05	07/28/21 12:5	52 1551 1	EPA 245.1	
Calcium, dissolved	71 mg/L	1.0	1	AH13835	08/12/21 12:40	08/13/21 12:2	23 1551 1	EPA 200.7	
Iron, dissolved	ND mg/L	0.10	1	AH13835	08/12/21 12:40	08/13/21 12:2	23 1551	EPA 200.7	
Magnesium, dissolved	57 mg/L	1.0	1	AH13835	08/12/21 12:40	08/13/21 12:2	23 1551	EPA 200.7	
Potassium, dissolved	2.9 mg/L	1.0	1	AH13835	08/12/21 12:40	08/13/21 12:2	23 1551	EPA 200.7	
Sodium, dissolved	120 mg/L	1.0	1	AH13835	08/12/21 12:40	08/13/21 12:2	23 1551 1	EPA 200.7	
Metals (Dissolved) by EPA Method 200.8 ICP/MS									FILT
Aluminum, dissolved	ND ug/L	10	1	AG14507	07/27/21 14:35	07/28/21 16:1	11 1551 1	EPA 200.8	
Antimony, dissolved	ND ug/L	0.50	1	AG14507	07/27/21 14:35	07/28/21 16:1	11 1551	EPA 200.8	
Arsenic, dissolved	2.9 ug/L	0.50	1	AG14507	07/27/21 14:35	07/28/21 16:1	11 1551 1	EPA 200.8	
Barium, dissolved	35 ug/L	0.50	1	AG14507	07/27/21 14:35	07/28/21 16:1	11 1551 1	EPA 200.8	
Beryllium, dissolved	ND ug/L	0.10	1	AG14507	07/27/21 14:35	07/28/21 16:1	11 1551 1	EPA 200.8	
Boron, dissolved	940 ug/L	50	1	AG14507	07/27/21 14:35	07/28/21 16:1	11 1551 1	EPA 200.8	
Cadmium, dissolved	ND ug/L	0.10	1	AG14507	07/27/21 14:35	07/28/21 16:1	11 1551 1	EPA 200.8	
Chromium, dissolved	10 ug/L	0.50	1	AG14507	07/27/21 14:35	07/28/21 16:1	11 1551 1	EPA 200.8	
Copper, dissolved	2.4 ug/L	0.50	1	AG14507	07/27/21 14:35	07/28/21 16:1	11 1551	EPA 200.8	
Lead, dissolved	ND ug/L	0.25	1	AG14507	07/27/21 14:35	07/28/21 16:1	11 1551 1	EPA 200.8	
Manganese, dissolved	ND ug/L	5.0	1	AG14507	07/27/21 14:35	07/28/21 16:1	11 1551 1	EPA 200.8	
Molybdenum, dissolved	1.7 ug/L	0.25	1	AG14507	07/27/21 14:35	07/28/21 16:1	11 1551 1	EPA 200.8	
Nickel, dissolved	2.4 ug/L	0.50	1	AG14507	07/27/21 14:35	07/28/21 16:1	11 1551 1	EPA 200.8	
Selenium, dissolved	ND ug/L	2.0	1	AG14507	07/27/21 14:35	07/28/21 16:1	11 1551 1	EPA 200.8	
Silver, dissolved	ND ug/L	0.10	1	AG14507	07/27/21 14:35	07/28/21 16:1	11 1551 1	EPA 200.8	
Thallium, dissolved	ND ug/L	0.10	1	AG14507	07/27/21 14:35	07/28/21 16:1	11 1551 1	EPA 200.8	
Vanadium, dissolved	5.1 ug/L	1.0	1	AG14507	07/27/21 14:35	07/28/21 16:1	11 1551 1	EPA 200.8	
Zinc, dissolved	6.8 ug/L	5.0	1	AG14507	07/27/21 14:35	07/28/21 16:1	11 1551 1	EPA 200.8	

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501

Project Number: Round 3 ASR Water Quality Baseline

Reported: 08/16/21 10:41

	Result	Reporting Limit D	Dilution	Batch	Prepared	Analyzed	ELAP	# Method	Note
SSWD 5 (21G3255-01)		Sample Type: W	Vater		Sampled: 07/26/21 09:20				
Conventional Chemistry Parameters by APH	A/EPA Methods								
Color	ND CU	5.0	1	AG14652	07/26/21 17:30	07/26/21 17:3	0 2728	SM2120B	
MBAS, calculated as LAS, mw 340	ND mg/L	0.050	1	AG14585	07/28/21 07:00	07/28/21 15:1	5 1551	SM5540C	
Perchlorate	ND ug/L	2.0	1	AG14736	07/29/21 08:00	07/29/21 12:3	0 2303	EPA 314.0	
Sulfide	ND mg/L	0.10	1	AG14583	07/28/21 07:00	07/28/21 09:3	0 1551	SM4500-S2 D	
Total Dissolved Solids	800 mg/L	10	1	AG14661	07/29/21 05:45	08/06/21 08:0	7 1551	SM2540C	
Turbidity	0.15 NTU	0.10	1	AG14641	07/26/21 18:52	07/26/21 18:5	2 2728	SM2130B	
Bicarbonate Alkalinity as CaCO3	300 mg/L	5.0	1	AH13265	08/03/21 08:00	08/03/21 17:0	0 1551	SM2320B	
Carbonate Alkalinity as CaCO3	ND mg/L	5.0	1	AH13265	08/03/21 08:00	08/03/21 17:0	0 1551	SM2320B	
Hydroxide Alkalinity as CaCO3	ND mg/L	5.0	1	AH13265	08/03/21 08:00	08/03/21 17:0	0 1551	SM2320B	
Total Alkalinity as CaCO3	300 mg/L	5.0	1	AH13265	08/03/21 08:00	08/03/21 17:0	0 1551	SM2320B	
Anions by EPA Method 300.0									
Chloride	130 mg/L	5.0	10	AG14442	07/27/21 12:45	07/27/21 12:4	5 1551	EPA 300.0	
Fluoride	0.26 mg/L	0.10	1	AG14442	07/27/21 12:28	07/27/21 12:2	8 1551	EPA 300.0	
Nitrate as N	2.4 mg/L	0.20	1	AG14442	07/27/21 12:28	07/27/21 12:2	8 1551	EPA 300.0	
Sulfate as SO4	200 mg/L	5.0	10	AG14442	07/27/21 12:45	07/27/21 12:4	5 1551	EPA 300.0	
Microbiological Parameters by APHA Standa	ard Methods								
Total Coliforms	ND MPN/100mL	1.0	1	AG14786	07/26/21 16:40	07/27/21 16:4	0 2728	SM9223B	
E. Coli	ND MPN/100mL	1.0	1	AG14786	07/26/21 16:40	07/27/21 16:4	0 2728	SM9223B	
Volatile Organic Compounds by EPA Method	1 524.2								
Bromodichloromethane	ND ug/L	1.00	1	AG14707	07/30/21 08:00	07/31/21 03:2	6 1551	EPA 524.2	
Bromoform	ND ug/L	1.00	1	AG14707	07/30/21 08:00	07/31/21 03:2	6 1551	EPA 524.2	
Chloroform	ND ug/L	1.00	1	AG14707	07/30/21 08:00	07/31/21 03:2	6 1551	EPA 524.2	
Dibromochloromethane	ND ug/L	1.00	1	AG14707	07/30/21 08:00	07/31/21 03:2	6 1551	EPA 524.2	
Trihalomethanes (total)	ND ug/L	1.00	1	AG14707	07/30/21 08:00	07/31/21 03:2	6 1551	EPA 524.2	
Surrogate: Bromofluorobenzene	111 %	70-130		AG14707	07/30/21 08:00	07/31/21 03:2	6 1551	EPA 524.2	
Surrogate: Dibromofluoromethane	92.2 %	70-130		AG14707	07/30/21 08:00	07/31/21 03:2	6 1551	EPA 524.2	
Surrogate: Toluene-d8	107 %	70-130		AG14707	07/30/21 08:00	07/31/21 03:2	6 1551	EPA 524.2	

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501

Project Number: Round 3 ASR Water Quality Baseline

Reported: 08/16/21 10:41

	Result	Reporting Limit	Dilution	Batch	Prepared	Analyzed	ELAP#	Method	Note
SSWD 5 (21G3255-01)		Sample Type: Water Sampled: 07/26/21 09:20							
Haloacetic Acids by EPA Method 552.2									
Monobromoacetic Acid	ND ug/L	1.0	1	AG14624	07/29/21 01:00	07/30/21 05:20	0 1551 E	EPA 552.2	
Monochloroacetic Acid	ND ug/L	2.0	1	AG14624	07/29/21 01:00	07/30/21 05:20	0 1551 E	EPA 552.2	
Dibromoacetic Acid	ND ug/L	1.0	1	AG14624	07/29/21 01:00	07/30/21 05:20	0 1551 E	EPA 552.2	
Dichloroacetic Acid	ND ug/L	1.0	1	AG14624	07/29/21 01:00	07/30/21 05:20	0 1551 E	EPA 552.2	
Trichloroacetic Acid	ND ug/L	1.0	1	AG14624	07/29/21 01:00	07/30/21 05:20	0 1551 E	EPA 552.2	
Total Haloacetic Acids (HAA5)	ND ug/L	1.0	1	AG14624	07/29/21 01:00	07/30/21 05:20	0 1551 E	EPA 552.2	
Surrogate: 2,3-Dibromopropionic Acid	84.0 %	70-130		AG14624	07/29/21 01:00	07/30/21 05:20	0 1551 E	EPA 552.2	
Surrogate: 2-Bromopropionic Acid	88.3 %	70-130		AG14624	07/29/21 01:00	07/30/21 05:20	0 1551 E	EPA 552.2	
SSWD 7 (21G3255-02)		Sample Type:	Water		Sample	d: 07/26/21 10:0	0		
Metals (Dissolved) by EPA 200 Series Methods									FILT
Mercury, dissolved	ND ug/L	0.20	1	AG14588	07/28/21 07:05	07/28/21 12:54	4 1551 E	EPA 245.1	
Calcium, dissolved	73 mg/L	1.0	1	AH13835	08/12/21 12:40	08/13/21 12:27	7 1551 E	EPA 200.7	
Iron, dissolved	ND mg/L	0.10	1	AH13835	08/12/21 12:40	08/13/21 12:27	7 1551 E	EPA 200.7	
Magnesium, dissolved	63 mg/L	1.0	1	AH13835	08/12/21 12:40	08/13/21 12:27	7 1551 E	EPA 200.7	
Potassium, dissolved	3.2 mg/L	1.0	1	AH13835	08/12/21 12:40	08/13/21 12:27	7 1551 E	EPA 200.7	
Sodium, dissolved	120 mg/L	1.0	1	AH13835	08/12/21 12:40	08/13/21 12:27	7 1551 E	EPA 200.7	
Metals (Dissolved) by EPA Method 200.8 ICP/N	MS								FILT
Aluminum, dissolved	ND ug/L	10	1	AG14507	07/27/21 14:35	07/28/21 16:19	9 1551 E	EPA 200.8	
Antimony, dissolved	ND ug/L	0.50	1	AG14507	07/27/21 14:35	07/28/21 16:19	9 1551 E	EPA 200.8	
Arsenic, dissolved	3.4 ug/L	0.50	1	AG14507	07/27/21 14:35	07/28/21 16:19	9 1551 E	EPA 200.8	
Barium, dissolved	30 ug/L	0.50	1	AG14507	07/27/21 14:35	07/28/21 16:19	9 1551 E	EPA 200.8	
Beryllium, dissolved	ND ug/L	0.10	1	AG14507	07/27/21 14:35	07/28/21 16:19	9 1551 E	EPA 200.8	
Boron, dissolved	900 ug/L	50	1	AG14507	07/27/21 14:35	07/28/21 16:19	9 1551 E	EPA 200.8	
Cadmium, dissolved	ND ug/L	0.10	1	AG14507	07/27/21 14:35	07/28/21 16:19	9 1551 E	EPA 200.8	
Chromium, dissolved	14 ug/L	0.50	1	AG14507	07/27/21 14:35	07/28/21 16:19	9 1551 E	EPA 200.8	
Copper, dissolved	4.9 ug/L	0.50	1	AG14507	07/27/21 14:35	07/28/21 16:19	9 1551 E	EPA 200.8	
Lead, dissolved	ND ug/L	0.25	1	AG14507	07/27/21 14:35	07/28/21 16:19	9 1551 E	EPA 200.8	
Manganese, dissolved	ND ug/L	5.0	1	AG14507	07/27/21 14:35	07/28/21 16:19	9 1551 E	EPA 200.8	
Molybdenum, dissolved	1.5 ug/L	0.25	1	AG14507	07/27/21 14:35	07/28/21 16:19	9 1551 E	EPA 200.8	
Nickel, dissolved	7.8 ug/L	0.50	1	AG14507	07/27/21 14:35	07/28/21 16:19	9 1551 E	EPA 200.8	
Selenium, dissolved	4.1 ug/L	2.0	1	AG14507	07/27/21 14:35	07/28/21 16:19	9 1551 E	EPA 200.8	
Silver, dissolved	ND ug/L	0.10	1	AG14507	07/27/21 14:35	07/28/21 16:19	9 1551 E	EPA 200.8	
Thallium, dissolved	ND ug/L	0.10	1	AG14507	07/27/21 14:35	07/28/21 16:19	9 1551 E	EPA 200.8	
Vanadium, dissolved	5.0 ug/L	1.0	1	AG14507	07/27/21 14:35	07/28/21 16:19	9 1551 E	EPA 200.8	
Zinc, dissolved	ND ug/L	5.0	1	AG14507	07/27/21 14:35	07/28/21 16:19	9 1551 E	EPA 200.8	

Reported:

08/16/21 10:41

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Alameda, CA 94501

Project: Round 3 ASR Water Quality Baseline Project Number: Round 3 ASR Water Quality Baseline

	Result	Reporting Limit	Dilution	Batch	Prepared	Analyzed	ELAP#	Method	Note
SSWD 7 (21G3255-02)		Sample Type:	Water		Sampled	l: 07/26/21 10:0	0		
Conventional Chemistry Parameters by APHA/EPA	A Methods								
Color	ND CU	5.0	1	AG14652	07/26/21 17:30	07/26/21 17:30	2728 5	SM2120B	
MBAS, calculated as LAS, mw 340	ND mg/L	0.050	1	AG14585	07/28/21 07:00	07/28/21 15:15	5 1551 \$	SM5540C	
Perchlorate	ND ug/L	2.0	1	AG14736	07/29/21 08:00	07/29/21 12:43	7 2303 F	EPA 314.0	
Sulfide	ND mg/L	0.10	1	AG14583	07/28/21 07:00	07/28/21 09:30) 1551 \$	SM4500-S2 D	
Total Dissolved Solids	760 mg/L	10	1	AG14661	07/29/21 05:45	08/06/21 08:07	7 1551 \$	SM2540C	
Turbidity	ND NTU	0.10	1	AG14641	07/26/21 18:52	07/26/21 18:52	2 2728 5	SM2130B	
Bicarbonate Alkalinity as CaCO3	280 mg/L	5.0	1	AH13265	08/03/21 08:00	08/03/21 17:00) 1551 \$	SM2320B	
Carbonate Alkalinity as CaCO3	ND mg/L	5.0	1	AH13265	08/03/21 08:00	08/03/21 17:00) 1551 \$	SM2320B	
Hydroxide Alkalinity as CaCO3	ND mg/L	5.0	1	AH13265	08/03/21 08:00	08/03/21 17:00) 1551 \$	SM2320B	
Total Alkalinity as CaCO3	280 mg/L	5.0	1	AH13265	08/03/21 08:00	08/03/21 17:00) 1551 \$	SM2320B	
Anions by EPA Method 300.0									
Chloride	110 mg/L	5.0	10	AG14442	07/27/21 13:18	07/27/21 13:18	3 1551 F	EPA 300.0	
Fluoride	0.20 mg/L	0.10	1	AG14442	07/27/21 13:01	07/27/21 13:01	1551 F	EPA 300.0	
Nitrate as N	4.3 mg/L	0.20	1	AG14442	07/27/21 13:01	07/27/21 13:01	1551 F	EPA 300.0	
Sulfate as SO4	230 mg/L	5.0	10	AG14442	07/27/21 13:18	07/27/21 13:18	3 1551 F	EPA 300.0	
Microbiological Parameters by APHA Standard Mo	ethods								
Total Coliforms	ND MPN/100mL	1.0	1	AG14786	07/26/21 16:40	07/27/21 16:40	2728 5	SM9223B	
E. Coli	ND MPN/100mL	1.0	1	AG14786	07/26/21 16:40	07/27/21 16:40	2728 5	SM9223B	
Volatile Organic Compounds by EPA Method 524.2									
Bromodichloromethane	ND ug/L	1.00	1	AG14707	07/30/21 08:00	07/31/21 03:58	3 1551 F	EPA 524.2	
Bromoform	ND ug/L	1.00	1	AG14707	07/30/21 08:00	07/31/21 03:58	3 1551 F	EPA 524.2	
Chloroform	ND ug/L	1.00	1	AG14707	07/30/21 08:00	07/31/21 03:58	3 1551 F	EPA 524.2	
Dibromochloromethane	ND ug/L	1.00	1	AG14707	07/30/21 08:00	07/31/21 03:58	3 1551 F	EPA 524.2	
Trihalomethanes (total)	ND ug/L	1.00	1	AG14707	07/30/21 08:00	07/31/21 03:58	3 1551 F	EPA 524.2	
Surrogate: Bromofluorobenzene	111 %	70-130		AG14707	07/30/21 08:00	07/31/21 03:58	3 1551 <i>I</i>	EPA 524.2	
Surrogate: Dibromofluoromethane	89.0 %	70-130		AG14707	07/30/21 08:00	07/31/21 03:58	3 1551 E	EPA 524.2	
Surrogate: Toluene-d8	107 %	70-130		AG14707	07/30/21 08:00	07/31/21 03:58	3 1551 <i>E</i>	EPA 524.2	

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215 Project: Round 3 ASR Water Quality Baseline Reported: Alameda, CA 94501 Project Number: Round 3 ASR Water Quality Baseline 08/16/21 10:41

	Result	Reporting Limit	Dilution	Batch	Prepared	Analyzed	ELAP#	Method	Note
SSWD 7 (21G3255-02)		Sample Type: V	Vater		Sample	d: 07/26/21 10:	00		
Haloacetic Acids by EPA Method 552.2									
Monobromoacetic Acid	ND ug/L	1.0	1	AG14624	07/29/21 01:00	07/30/21 06:0	03 1551 H	EPA 552.2	
Monochloroacetic Acid	ND ug/L	2.0	1	AG14624	07/29/21 01:00	07/30/21 06:0	03 1551 H	EPA 552.2	
Dibromoacetic Acid	ND ug/L	1.0	1	AG14624	07/29/21 01:00	07/30/21 06:0	03 1551 H	EPA 552.2	
Dichloroacetic Acid	ND ug/L	1.0	1	AG14624	07/29/21 01:00	07/30/21 06:0	03 1551 H	EPA 552.2	
Trichloroacetic Acid	ND ug/L	1.0	1	AG14624	07/29/21 01:00	07/30/21 06:0	03 1551 I	EPA 552.2	
Total Haloacetic Acids (HAA5)	ND ug/L	1.0	1	AG14624	07/29/21 01:00	07/30/21 06:0	03 1551 I	EPA 552.2	
Surrogate: 2,3-Dibromopropionic Acid	105 %	70-130		AG14624	07/29/21 01:00	07/30/21 06:0	93 1551 <i>I</i>	EPA 552.2	
Surrogate: 2-Bromopropionic Acid	117 %	70-130		AG14624	07/29/21 01:00	07/30/21 06:0	93 1551 <i>I</i>	EPA 552.2	
SSWD #11 (21G3255-03)		Sample Type: V	Vater		Sample	d: 07/26/21 10:	15		
Metals (Dissolved) by EPA 200 Series Methods									FILT
Mercury, dissolved	ND ug/L	0.20	1	AG14588	07/28/21 07:05	07/28/21 13:0	02 1551 H	EPA 245.1	
Calcium, dissolved	62 mg/L	1.0	1	AH13835	08/12/21 12:40	08/13/21 12:3	32 1551 I	EPA 200.7	
Iron, dissolved	ND mg/L	0.10	1	AH13835	08/12/21 12:40	08/13/21 12:3	32 1551 I	EPA 200.7	
Magnesium, dissolved	60 mg/L	1.0	1	AH13835	08/12/21 12:40	08/13/21 12:3	32 1551 I	EPA 200.7	
Potassium, dissolved	3.4 mg/L	1.0	1	AH13835	08/12/21 12:40	08/13/21 12:3	32 1551 I	EPA 200.7	
Sodium, dissolved	140 mg/L	1.0	1	AH13835	08/12/21 12:40	08/13/21 12:3	32 1551 I	EPA 200.7	
Metals (Dissolved) by EPA Method 200.8 ICP/M	S								FILT
Aluminum, dissolved	ND ug/L	10	1	AG14507	07/27/21 14:35	07/28/21 14:3	30 1551 I	EPA 200.8	
Antimony, dissolved	ND ug/L	0.50	1	AG14507	07/27/21 14:35	07/28/21 14:3	30 1551 I	EPA 200.8	
Arsenic, dissolved	3.1 ug/L	0.50	1	AG14507	07/27/21 14:35	07/28/21 14:3	30 1551 I	EPA 200.8	
Barium, dissolved	27 ug/L	0.50	1	AG14507	07/27/21 14:35	07/28/21 14:3	30 1551 I	EPA 200.8	
Beryllium, dissolved	ND ug/L	0.10	1	AG14507	07/27/21 14:35	07/28/21 14:3	30 1551 I	EPA 200.8	
Boron, dissolved	780 ug/L	50	1	AG14507	07/27/21 14:35	07/28/21 14:3	30 1551 I	EPA 200.8	
Cadmium, dissolved	ND ug/L	0.10	1	AG14507	07/27/21 14:35	07/28/21 14:3	30 1551 I	EPA 200.8	
Chromium, dissolved	4.0 ug/L	0.50	1	AG14507	07/27/21 14:35	07/28/21 14:3	30 1551 I	EPA 200.8	
Copper, dissolved	5.5 ug/L	0.50	1	AG14507	07/27/21 14:35	07/28/21 14:3	30 1551 I	EPA 200.8	
Lead, dissolved	ND ug/L	0.25	1	AG14507	07/27/21 14:35	07/28/21 14:3	30 1551 H	EPA 200.8	
Manganese, dissolved	ND ug/L	5.0	1	AG14507	07/27/21 14:35	07/28/21 14:3	30 1551 I	EPA 200.8	
Molybdenum, dissolved	3.1 ug/L	0.25	1	AG14507	07/27/21 14:35	07/28/21 14:3	30 1551 I	EPA 200.8	
Nickel, dissolved	2.2 ug/L	0.50	1	AG14507	07/27/21 14:35	07/28/21 14:3	30 1551 I	EPA 200.8	
Selenium, dissolved	2.1 ug/L	2.0	1	AG14507	07/27/21 14:35	07/28/21 14:3	30 1551 I	EPA 200.8	
Silver, dissolved	ND ug/L	0.10	1	AG14507	07/27/21 14:35	07/28/21 14:3	30 1551 I	EPA 200.8	
Thallium, dissolved	ND ug/L	0.10	1	AG14507	07/27/21 14:35	07/28/21 14:3	30 1551 I	EPA 200.8	
Vanadium, dissolved	4.7 ug/L	1.0	1	AG14507	07/27/21 14:35	07/28/21 14:3	30 1551 I	EPA 200.8	
Zinc, dissolved	ND ug/L	5.0	1	AG14507	07/27/21 14:35	07/28/21 14:3	30 1551 I	EPA 200.8	

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Alameda, CA 94501

Project: Round 3 ASR Water Quality Baseline Reported: Project Number: Round 3 ASR Water Quality Baseline 08/16/21 10:41

	Result	Reporting Limit	Dilution	Batch	Prepared	Analyzed	ELAP#	# Method	Note
SSWD #11 (21G3255-03)		Sample Type:	Water		Sampled	l: 07/26/21 10:1	5		
Conventional Chemistry Parameters by APHA/EPA	Methods								
Color	ND CU	5.0	1	AG14652	07/26/21 17:30	07/26/21 17:30) 2728	SM2120B	
MBAS, calculated as LAS, mw 340	ND mg/L	0.050	1	AG14585	07/28/21 07:00	07/28/21 15:1:	5 1551	SM5540C	
Perchlorate	ND ug/L	2.0	1	AG14736	07/29/21 08:00	07/29/21 13:0	3 2303	EPA 314.0	
Sulfide	ND mg/L	0.10	1	AG14583	07/28/21 07:00	07/28/21 09:30) 1551	SM4500-S2 D	
Total Dissolved Solids	820 mg/L	10	1	AG14661	07/29/21 05:45	08/06/21 08:0	7 1551	SM2540C	
Turbidity	0.15 NTU	0.10	1	AG14641	07/26/21 18:52	07/26/21 18:53	2 2728	SM2130B	
Bicarbonate Alkalinity as CaCO3	260 mg/L	5.0	1	AH13265	08/03/21 08:00	08/03/21 17:0) 1551	SM2320B	
Carbonate Alkalinity as CaCO3	ND mg/L	5.0	1	AH13265	08/03/21 08:00	08/03/21 17:0) 1551	SM2320B	
Hydroxide Alkalinity as CaCO3	ND mg/L	5.0	1	AH13265	08/03/21 08:00	08/03/21 17:0) 1551	SM2320B	
Total Alkalinity as CaCO3	260 mg/L	5.0	1	AH13265	08/03/21 08:00	08/03/21 17:0) 1551	SM2320B	
Anions by EPA Method 300.0									
Chloride	160 mg/L	5.0	10	AG14442	07/27/21 13:52	07/27/21 13:53	2 1551	EPA 300.0	
Fluoride	0.19 mg/L	0.10	1	AG14442	07/27/21 13:35	07/27/21 13:3:	5 1551	EPA 300.0	
Nitrate as N	1.5 mg/L	0.20	1	AG14442	07/27/21 13:35	07/27/21 13:3:	5 1551	EPA 300.0	
Sulfate as SO4	210 mg/L	5.0	10	AG14442	07/27/21 13:52	07/27/21 13:5	2 1551	EPA 300.0	
Microbiological Parameters by APHA Standard Me	ethods								
Total Coliforms	ND MPN/100mL	1.0	1	AG14786	07/26/21 16:40	07/27/21 16:4) 2728	SM9223B	
E. Coli	ND MPN/100mL	1.0	1	AG14786	07/26/21 16:40	07/27/21 16:4) 2728	SM9223B	
Volatile Organic Compounds by EPA Method 524.2									
Bromodichloromethane	ND ug/L	1.00	1	AG14707	07/30/21 08:00	07/31/21 04:3	1 1551	EPA 524.2	
Bromoform	ND ug/L	1.00	1	AG14707	07/30/21 08:00	07/31/21 04:3	1 1551	EPA 524.2	
Chloroform	ND ug/L	1.00	1	AG14707	07/30/21 08:00	07/31/21 04:3	1 1551	EPA 524.2	
Dibromochloromethane	ND ug/L	1.00	1	AG14707	07/30/21 08:00	07/31/21 04:3	1 1551	EPA 524.2	
Trihalomethanes (total)	ND ug/L	1.00	1	AG14707	07/30/21 08:00	07/31/21 04:3	1 1551	EPA 524.2	
Surrogate: Bromofluorobenzene	113 %	70-130		AG14707	07/30/21 08:00	07/31/21 04:3	<i>l</i> 1551	EPA 524.2	
Surrogate: Dibromofluoromethane	92.4 %	70-130		AG14707	07/30/21 08:00	07/31/21 04:3	<i>l</i> 1551	EPA 524.2	
Surrogate: Toluene-d8	109 %	70-130		AG14707	07/30/21 08:00	07/31/21 04:3	<i>l</i> 1551	EPA 524.2	

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm 2490 Mariner Square Loop, Suite 215 Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501 Project Number: Round 3 ASR Water Quality Baseline

Reported: 08/16/21 10:41

	Result	Reporting Limit	Dilution	Batch	Prepared	Analyzed	ELAP#	Method	Note
SSWD #11 (21G3255-03)		Sample Type:	Water		Sample	d: 07/26/21 10:1	5		
Haloacetic Acids by EPA Method 552.2									
Monobromoacetic Acid	ND ug/L	1.0	1	AG14624	07/29/21 01:00	07/30/21 06:4:	5 1551 E	PA 552.2	
Monochloroacetic Acid	ND ug/L	2.0	1	AG14624	07/29/21 01:00	07/30/21 06:4:	5 1551 E	PA 552.2	
Dibromoacetic Acid	ND ug/L	1.0	1	AG14624	07/29/21 01:00	07/30/21 06:4:	5 1551 E	PA 552.2	
Dichloroacetic Acid	ND ug/L	1.0	1	AG14624	07/29/21 01:00	07/30/21 06:4:	5 1551 E	PA 552.2	
Trichloroacetic Acid	ND ug/L	1.0	1	AG14624	07/29/21 01:00	07/30/21 06:4:	5 1551 E	PA 552.2	
Total Haloacetic Acids (HAA5)	ND ug/L	1.0	1	AG14624	07/29/21 01:00	07/30/21 06:4:	5 1551 E	PA 552.2	
Surrogate: 2,3-Dibromopropionic Acid	107 %	70-130		AG14624	07/29/21 01:00	07/30/21 06:4.	5 1551 E	PA 552.2	
Surrogate: 2-Bromopropionic Acid	113 %	70-130		AG14624	07/29/21 01:00	07/30/21 06:4.	5 1551 E	PA 552.2	
SSWD #2 (21G3255-04)		Sample Type:	Water		Sample	d: 07/26/21 10:3	0		
Metals (Dissolved) by EPA 200 Series Methods									FILT
Mercury, dissolved	ND ug/L	0.20	1	AG14588	07/28/21 07:05	07/28/21 13:0:	5 1551 E	PA 245.1	
Calcium, dissolved	57 mg/L	1.0	1	AH13835	08/12/21 12:40	08/13/21 12:44	4 1551 E	PA 200.7	
Iron, dissolved	ND mg/L	0.10	1	AH13835	08/12/21 12:40	08/13/21 12:44	4 1551 E	PA 200.7	
Magnesium, dissolved	72 mg/L	1.0	1	AH13835	08/12/21 12:40	08/13/21 12:44	4 1551 E	PA 200.7	
Potassium, dissolved	3.0 mg/L	1.0	1	AH13835	08/12/21 12:40	08/13/21 12:44	4 1551 E	PA 200.7	
Sodium, dissolved	130 mg/L	1.0	1	AH13835	08/12/21 12:40	08/13/21 12:44	4 1551 E	PA 200.7	
Metals (Dissolved) by EPA Method 200.8 ICP/M	MS								FILT
Aluminum, dissolved	ND ug/L	10	1	AG14507	07/27/21 14:35	07/28/21 16:2	7 1551 E	PA 200.8	
Antimony, dissolved	ND ug/L	0.50	1	AG14507	07/27/21 14:35	07/28/21 16:27	7 1551 E	PA 200.8	
Arsenic, dissolved	2.5 ug/L	0.50	1	AG14507	07/27/21 14:35	07/28/21 16:2	7 1551 E	PA 200.8	
Barium, dissolved	23 ug/L	0.50	1	AG14507	07/27/21 14:35	07/28/21 16:2	7 1551 E	PA 200.8	
Beryllium, dissolved	ND ug/L	0.10	1	AG14507	07/27/21 14:35	07/28/21 16:27	7 1551 E	PA 200.8	
Boron, dissolved	900 ug/L	50	1	AG14507	07/27/21 14:35	07/28/21 16:27	7 1551 E	PA 200.8	
Cadmium, dissolved	ND ug/L	0.10	1	AG14507	07/27/21 14:35	07/28/21 16:27	7 1551 E	PA 200.8	
Chromium, dissolved	9.9 ug/L	0.50	1	AG14507	07/27/21 14:35	07/28/21 16:27	7 1551 E	PA 200.8	
Copper, dissolved	6.8 ug/L	0.50	1	AG14507	07/27/21 14:35	07/28/21 16:27	7 1551 E	PA 200.8	
Lead, dissolved	ND ug/L	0.25	1	AG14507	07/27/21 14:35	07/28/21 16:27	7 1551 E	PA 200.8	
Manganese, dissolved	ND ug/L	5.0	1	AG14507	07/27/21 14:35	07/28/21 16:27	7 1551 E	PA 200.8	
Molybdenum, dissolved	2.4 ug/L	0.25	1	AG14507	07/27/21 14:35	07/28/21 16:27	7 1551 E	PA 200.8	
Nickel, dissolved	4.1 ug/L	0.50	1	AG14507	07/27/21 14:35	07/28/21 16:27	7 1551 E	PA 200.8	
Selenium, dissolved	ND ug/L	2.0	1	AG14507	07/27/21 14:35	07/28/21 16:27	7 1551 E	PA 200.8	
Silver, dissolved	ND ug/L	0.10	1	AG14507	07/27/21 14:35	07/28/21 16:27	7 1551 E	PA 200.8	
Thallium, dissolved	ND ug/L	0.10	1	AG14507	07/27/21 14:35	07/28/21 16:2	7 1551 E	PA 200.8	
Vanadium, dissolved	3.7 ug/L	1.0	1	AG14507	07/27/21 14:35	07/28/21 16:2	7 1551 E	PA 200.8	
Zinc, dissolved	13 ug/L	5.0	1	AG14507	07/27/21 14:35	07/28/21 16:2	7 1551 E	PA 200.8	

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501

Project Number: Round 3 ASR Water Quality Baseline

Reported: 08/16/21 10:41

	Result	Reporting Limit	Dilution	Batch	Prepared	Analyzed	ELAP#	# Method	Note
SSWD #2 (21G3255-04)		Sample Type: \	Water		Sampled	l: 07/26/21 10:3	0		
Conventional Chemistry Parameters by APHA/F	EPA Methods								
Color	ND CU	5.0	1	AG14652	07/26/21 17:30	07/26/21 17:30	2728	SM2120B	
MBAS, calculated as LAS, mw 340	ND mg/L	0.050	1	AG14585	07/28/21 07:00	07/28/21 15:15	1551	SM5540C	
Perchlorate	ND ug/L	2.0	1	AG14736	07/29/21 08:00	07/29/21 13:19	2303	EPA 314.0	
Sulfide	ND mg/L	0.10	1	AG14583	07/28/21 07:00	07/28/21 09:30	1551	SM4500-S2 D	
Total Dissolved Solids	830 mg/L	10	1	AG14661	07/29/21 05:45	08/06/21 08:07	1551	SM2540C	
Turbidity	0.10 NTU	0.10	1	AG14641	07/26/21 18:52	07/26/21 18:52	2728	SM2130B	
Bicarbonate Alkalinity as CaCO3	300 mg/L	5.0	1	AH13265	08/03/21 08:00	08/03/21 17:00	1551	SM2320B	
Carbonate Alkalinity as CaCO3	ND mg/L	5.0	1	AH13265	08/03/21 08:00	08/03/21 17:00	1551	SM2320B	
Hydroxide Alkalinity as CaCO3	ND mg/L	5.0	1	AH13265	08/03/21 08:00	08/03/21 17:00	1551	SM2320B	
Total Alkalinity as CaCO3	300 mg/L	5.0	1	AH13265	08/03/21 08:00	08/03/21 17:00	1551	SM2320B	
Anions by EPA Method 300.0									
Chloride	110 mg/L	5.0	10	AG14442	07/27/21 14:25	07/27/21 14:25	1551	EPA 300.0	
Fluoride	0.32 mg/L	0.10	1	AG14442	07/27/21 14:08	07/27/21 14:08	1551	EPA 300.0	
Nitrate as N	2.6 mg/L	0.20	1	AG14442	07/27/21 14:08	07/27/21 14:08	1551	EPA 300.0	
Sulfate as SO4	260 mg/L	5.0	10	AG14442	07/27/21 14:25	07/27/21 14:25	1551	EPA 300.0	
Microbiological Parameters by APHA Standard	Methods								
Total Coliforms	ND MPN/100mL	1.0	1	AG14786	07/26/21 16:40	07/27/21 16:40	2728	SM9223B	
E. Coli	ND MPN/100mL	1.0	1	AG14786	07/26/21 16:40	07/27/21 16:40	2728	SM9223B	
Volatile Organic Compounds by EPA Method 52	4.2								
Bromodichloromethane	ND ug/L	1.00	1	AG14707	07/30/21 08:00	07/31/21 05:04	1551	EPA 524.2	
Bromoform	ND ug/L	1.00	1	AG14707	07/30/21 08:00	07/31/21 05:04	1551	EPA 524.2	
Chloroform	ND ug/L	1.00	1	AG14707	07/30/21 08:00	07/31/21 05:04	1551	EPA 524.2	
Dibromochloromethane	ND ug/L	1.00	1	AG14707	07/30/21 08:00	07/31/21 05:04	1551	EPA 524.2	
Trihalomethanes (total)	ND ug/L	1.00	1	AG14707	07/30/21 08:00	07/31/21 05:04	1551	EPA 524.2	
Surrogate: Bromofluorobenzene	113 %	70-130		AG14707	07/30/21 08:00	07/31/21 05:04	1551	EPA 524.2	
Surrogate: Dibromofluoromethane	91.0 %	70-130		AG14707	07/30/21 08:00	07/31/21 05:04	1551	EPA 524.2	
Surrogate: Toluene-d8	108 %	70-130		AG14707	07/30/21 08:00	07/31/21 05:04	1551	EPA 524.2	

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215 Project: Round 3 ASR Water Quality Baseline

Reported: Alameda, CA 94501 Project Number: Round 3 ASR Water Quality Baseline 08/16/21 10:41

	Result	Reporting Limit D	ilution	Batch	Prepared	Analyzed	ELAP#	# Method	Note
SSWD #2 (21G3255-04)		Sample Type: Wa	ater		Sampled	: 07/26/21 10:3	0		
Haloacetic Acids by EPA Method 552.2									
Monobromoacetic Acid	ND ug/L	1.0	1	AG14624	07/29/21 01:00	07/30/21 07:27	7 1551	EPA 552.2	
Monochloroacetic Acid	ND ug/L	2.0	1	AG14624	07/29/21 01:00	07/30/21 07:23	7 1551	EPA 552.2	
Dibromoacetic Acid	ND ug/L	1.0	1	AG14624	07/29/21 01:00	07/30/21 07:23	7 1551	EPA 552.2	
Dichloroacetic Acid	ND ug/L	1.0	1	AG14624	07/29/21 01:00	07/30/21 07:23	7 1551	EPA 552.2	
Trichloroacetic Acid	ND ug/L	1.0	1	AG14624	07/29/21 01:00	07/30/21 07:23	7 1551	EPA 552.2	
Total Haloacetic Acids (HAA5)	ND ug/L	1.0	1	AG14624	07/29/21 01:00	07/30/21 07:23	7 1551	EPA 552.2	
Surrogate: 2,3-Dibromopropionic Acid	93.2 %	70-130		AG14624	07/29/21 01:00	07/30/21 07:27	7 1551	EPA 552.2	
Surrogate: 2-Bromopropionic Acid	95.7 %	70-130		AG14624	07/29/21 01:00	07/30/21 07:27	7 1551	EPA 552.2	

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215 Project: Round 3 ASR Water Quality Baseline Reported: Alameda, CA 94501 08/16/21 10:41 Project Number: Round 3 ASR Water Quality Baseline

Metals (Dissolved) by EPA 200 Series Methods - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AG14588 - EPA 245.1 Hg Water										
Blank (AG14588-BLK1)				Prepared &	Analyzed:	07/28/21				
Mercury, dissolved	ND	0.20	ug/L							
LCS (AG14588-BS1)				Prepared &	Analyzed:	07/28/21				
Mercury, dissolved	2.42	0.20	ug/L	2.50		96.8	85-115			
Duplicate (AG14588-DUP1)	Soi	urce: 21G202	6-04	Prepared &	Analyzed:	07/28/21				
Mercury, dissolved	ND	0.20	ug/L		ND				20	
Matrix Spike (AG14588-MS1)	So	urce: 21G202	6-04	Prepared &	Analyzed:	07/28/21				
Mercury, dissolved	2.52	0.20	ug/L	2.50	ND	101	70-130			
Matrix Spike Dup (AG14588-MSD1)	Soi	urce: 21G202	6-04	Prepared &	Analyzed:	07/28/21				
Mercury, dissolved	2.64	0.20	ug/L	2.50	ND	105	70-130	4.74	20	
Batch AH13835 - Metals Digest (D)										
Blank (AH13835-BLK1)				Prepared: (08/12/21 A	nalyzed: 08	/13/21			
Calcium, dissolved	ND	1.0	mg/L							
Iron, dissolved	ND	0.10	mg/L							
Magnesium, dissolved	ND	1.0	mg/L							
Potassium, dissolved	ND	1.0	mg/L							
Sodium, dissolved	ND	1.0	mg/L							
LCS (AH13835-BS1)				Prepared: (08/12/21 A	nalyzed: 08	/13/21			
Calcium, dissolved	8.00	1.0	mg/L	8.00		100	85-115			
Iron, dissolved	1.96	0.10	mg/L	2.00		97.8	85-115			
Magnesium, dissolved	8.00	1.0	mg/L	8.00		100	85-115			
Potassium, dissolved	7.66	1.0	mg/L	8.00		95.7	85-115			
Sodium, dissolved	7.87	1.0	mg/L	8.00		98.3	85-115			

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215 Alameda, CA 94501

Project: Round 3 ASR Water Quality Baseline

Project Number: Round 3 ASR Water Quality Baseline

08/16/21 10:41

Reported:

Metals (Dissolved) by EPA 200 Series Methods - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AH13835 - Metals Digest (D)										
Duplicate (AH13835-DUP1)	Sou	rce: 21G325	5-01	Prepared: (08/12/21 A	nalyzed: 08	/13/21			
Calcium, dissolved	71.2	1.0	mg/L		70.9			0.473	20	
Iron, dissolved	ND	0.10	mg/L		ND				20	
Magnesium, dissolved	57.7	1.0	mg/L		57.3			0.743	20	
Potassium, dissolved	2.91	1.0	mg/L		2.89			0.543	20	
Sodium, dissolved	124	1.0	mg/L		125			0.750	20	
Matrix Spike (AH13835-MS1)	Sou	rce: 21G325	5-01	Prepared: (08/12/21 A	nalyzed: 08	/13/21			
Calcium, dissolved	78.9	1.0	mg/L	8.00	70.9	101	70-130			
Iron, dissolved	2.00	0.10	mg/L	2.00	ND	99.9	70-130			
Magnesium, dissolved	66.0	1.0	mg/L	8.00	57.3	109	70-130			
Potassium, dissolved	10.8	1.0	mg/L	8.00	2.89	98.9	70-130			
Sodium, dissolved	131	1.0	mg/L	8.00	125	76.8	70-130			
Matrix Spike Dup (AH13835-MSD1)	Sou	rce: 21G325	5-01	Prepared: (08/12/21 A	nalyzed: 08	/13/21			
Calcium, dissolved	80.3	1.0	mg/L	8.00	70.9	118	70-130	1.68	20	
Iron, dissolved	2.00	0.10	mg/L	2.00	ND	99.9	70-130	0.00220	20	
Magnesium, dissolved	66.7	1.0	mg/L	8.00	57.3	118	70-130	1.05	20	
Potassium, dissolved	10.8	1.0	mg/L	8.00	2.89	98.5	70-130	0.281	20	
Sodium, dissolved	133	1.0	mg/L	8.00	125	101	70-130	1.48	20	

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501

Project Number: Round 3 ASR Water Quality Baseline

Reported: 08/16/21 10:41

Metals (Dissolved) by EPA Method 200.8 ICP/MS - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Satch AG14507 - EPA 200.8 (D)										
Blank (AG14507-BLK1)				Prepared: ()7/27/21 Aı	nalyzed: 07	/28/21			
Aluminum, dissolved	ND	10	ug/L							
Antimony, dissolved	ND	0.50	ug/L							
Arsenic, dissolved	ND	0.50	ug/L							
Barium, dissolved	ND	0.50	ug/L							
Beryllium, dissolved	ND	0.10	ug/L							
Boron, dissolved	ND	50	ug/L							
Cadmium, dissolved	ND	0.10	ug/L							
Chromium, dissolved	ND	0.50	ug/L							
Copper, dissolved	ND	0.50	ug/L							
Lead, dissolved	ND	0.25	ug/L							
Manganese, dissolved	ND	5.0	ug/L							
Molybdenum, dissolved	ND	0.25	ug/L							
Nickel, dissolved	ND	0.50	ug/L							
Selenium, dissolved	ND	2.0	ug/L							
Silver, dissolved	ND	0.10	ug/L							
Thallium, dissolved	ND	0.10	ug/L							
Vanadium, dissolved	ND	1.0	ug/L							
Zinc, dissolved	ND	5.0	ug/L							
LCS (AG14507-BS1)				Prepared: ()7/27/21 Aı	nalyzed: 07	/28/21			
Aluminum, dissolved	590	10	ug/L	520		113	85-115			
Antimony, dissolved	21.3	0.50	ug/L	20.0		106	85-115			
Arsenic, dissolved	20.3	0.50	ug/L	20.0		102	85-115			
Barium, dissolved	20.2	0.50	ug/L	20.0		101	85-115			
Beryllium, dissolved	20.9	0.10	ug/L	20.0		104	85-115			
Boron, dissolved	99.8	50	ug/L	100		99.8	85-115			
Cadmium, dissolved	21.0	0.10	ug/L	20.0		105	85-115			
Chromium, dissolved	22.3	0.50	ug/L	20.0		111	85-115			
Copper, dissolved	21.1	0.50	ug/L	20.0		105	85-115			
Lead, dissolved	20.9	0.25	ug/L	20.0		105	85-115			
Manganese, dissolved	19.7	5.0	ug/L	20.0		98.7	85-115			
Molybdenum, dissolved	21.7	0.25	ug/L	20.0		108	85-115			
Nickel, dissolved	20.9	0.50	ug/L	20.0		104	85-115			
Selenium, dissolved	18.9	2.0	ug/L	20.0		94.6	85-115			
Silver, dissolved	20.3	0.10	ug/L	20.0		101	85-115			

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501

Project Number: Round 3 ASR Water Quality Baseline

Reported: 08/16/21 10:41

Metals (Dissolved) by EPA Method 200.8 ICP/MS - Quality Control

		Reporting		Spike	Source		%REC		RPD	-
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AG14507 - EPA 200.8 (D)										
LCS (AG14507-BS1)				Prepared: (07/27/21 A	nalyzed: 07	/28/21			
Thallium, dissolved	20.5	0.10	ug/L	20.0		102	85-115			
Vanadium, dissolved	20.7	1.0	ug/L	20.0		104	85-115			
Zinc, dissolved	91.5	5.0	ug/L	100		91.5	85-115			
Duplicate (AG14507-DUP1)	Sou	rce: 21G325	5-03	Prepared: (07/27/21 A	nalyzed: 07	/28/21			
Aluminum, dissolved	ND	10	ug/L		ND			22.4	20	
Antimony, dissolved	ND	0.50	ug/L		ND				20	
Arsenic, dissolved	3.16	0.50	ug/L		3.10			1.92	20	
Barium, dissolved	26.2	0.50	ug/L		27.4			4.48	20	
Beryllium, dissolved	ND	0.10	ug/L		ND				20	
Boron, dissolved	791	50	ug/L		784			0.917	20	
Cadmium, dissolved	ND	0.10	ug/L		ND			0.318	20	
Chromium, dissolved	4.01	0.50	ug/L		3.97			1.10	20	
Copper, dissolved	5.43	0.50	ug/L		5.52			1.71	20	
Lead, dissolved	ND	0.25	ug/L		ND			0.637	20	
Manganese, dissolved	ND	5.0	ug/L		ND				20	
Molybdenum, dissolved	3.00	0.25	ug/L		3.06			1.92	20	
Nickel, dissolved	2.34	0.50	ug/L		2.22			5.44	20	
Selenium, dissolved	ND	2.0	ug/L		2.08			11.7	20	
Silver, dissolved	ND	0.10	ug/L		ND			200	20	
Thallium, dissolved	ND	0.10	ug/L		ND			200	20	
Vanadium, dissolved	4.81	1.0	ug/L		4.69			2.52	20	
Zine, dissolved	ND	5.0	ug/L		ND			0.815	20	
Matrix Spike (AG14507-MS1)	Sou	rce: 21G325	5-03	Prepared: (07/27/21 A	nalyzed: 07	/28/21			
Aluminum, dissolved	642	10	ug/L	520	ND	122	70-130			
Antimony, dissolved	20.6	0.50	ug/L	20.0	ND	103	70-130			
Arsenic, dissolved	23.5	0.50	ug/L	20.0	3.10	102	70-130			
Barium, dissolved	43.8	0.50	ug/L	20.0	27.4	82.0	70-130			
Beryllium, dissolved	22.2	0.10	ug/L	20.0	ND	111	70-130			
Boron, dissolved	917	50	ug/L	100	784	133	70-130			QM-
Cadmium, dissolved	19.7	0.10	ug/L	20.0	ND	98.1	70-130			
Chromium, dissolved	25.8	0.50	ug/L	20.0	3.97	109	70-130			
Copper, dissolved	24.4	0.50	ug/L	20.0	5.52	94.4	70-130			
Lead, dissolved	19.0	0.25	ug/L	20.0	ND	93.7	70-130			
Manganese, dissolved	18.8	5.0	ug/L	20.0	ND	94.0	70-130			

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501 Project Number: Round 3 ASR Water Quality Baseline

Reported: 08/16/21 10:41

Metals (Dissolved) by EPA Method 200.8 ICP/MS - Quality Control

		Reporting		Spike	Source		%REC		RPD	T.I.
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AG14507 - EPA 200.8 (D)										
Matrix Spike (AG14507-MS1)	Sour	ce: 21G325	5-03	Prepared: (07/27/21 A	nalyzed: 07	/28/21			
Molybdenum, dissolved	24.7	0.25	ug/L	20.0	3.06	108	70-130			
Nickel, dissolved	21.1	0.50	ug/L	20.0	2.22	94.5	70-130			
Selenium, dissolved	20.9	2.0	ug/L	20.0	2.08	94.2	70-130			
Silver, dissolved	18.6	0.10	ug/L	20.0	ND	92.4	70-130			
Thallium, dissolved	18.6	0.10	ug/L	20.0	ND	92.7	70-130			
Vanadium, dissolved	25.8	1.0	ug/L	20.0	4.69	105	70-130			
Zinc, dissolved	85.6	5.0	ug/L	100	ND	80.7	70-130			
Matrix Spike Dup (AG14507-MSD1)	Sour	ce: 21G325	5-03	Prepared: (07/27/21 A	nalyzed: 07	/28/21			
Aluminum, dissolved	656	10	ug/L	520	ND	125	70-130	2.12	20	
Antimony, dissolved	20.8	0.50	ug/L	20.0	ND	104	70-130	0.764	20	
Arsenic, dissolved	23.6	0.50	ug/L	20.0	3.10	103	70-130	0.652	20	
Barium, dissolved	44.1	0.50	ug/L	20.0	27.4	83.3	70-130	0.575	20	
Beryllium, dissolved	22.9	0.10	ug/L	20.0	ND	114	70-130	2.95	20	
Boron, dissolved	947	50	ug/L	100	784	163	70-130	3.18	20	QM-0
Cadmium, dissolved	19.7	0.10	ug/L	20.0	ND	98.1	70-130	0.0234	20	
Chromium, dissolved	26.5	0.50	ug/L	20.0	3.97	113	70-130	2.57	20	
Copper, dissolved	24.5	0.50	ug/L	20.0	5.52	95.1	70-130	0.586	20	
Lead, dissolved	19.2	0.25	ug/L	20.0	ND	94.9	70-130	1.30	20	
Manganese, dissolved	19.0	5.0	ug/L	20.0	ND	95.1	70-130	1.15	20	
Molybdenum, dissolved	24.7	0.25	ug/L	20.0	3.06	108	70-130	0.279	20	
Nickel, dissolved	21.2	0.50	ug/L	20.0	2.22	94.7	70-130	0.125	20	
Selenium, dissolved	21.2	2.0	ug/L	20.0	2.08	95.5	70-130	1.25	20	
Silver, dissolved	18.7	0.10	ug/L	20.0	ND	92.9	70-130	0.460	20	
Γhallium, dissolved	18.7	0.10	ug/L	20.0	ND	93.4	70-130	0.768	20	
Vanadium, dissolved	25.8	1.0	ug/L	20.0	4.69	105	70-130	0.0392	20	
Zinc, dissolved	85.7	5.0	ug/L	100	ND	80.8	70-130	0.0858	20	

Alpha Analytical Laboratories, Inc.

email: clientservices@alpha-labs.com

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501 Project Number: Round 3 ASR Water Quality Baseline

Reported: 08/16/21 10:41

Conventional Chemistry Parameters by APHA/EPA Methods - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AG14583 - General Preparation										
Blank (AG14583-BLK1)				Prepared &	Analyzed:	07/28/21				
Sulfide	ND	0.10	mg/L							
LCS (AG14583-BS1)				Prepared &	Analyzed:	07/28/21				
Sulfide	0.209	0.10	mg/L	0.200		105	85-115			
Duplicate (AG14583-DUP1)	Sour	ce: 21G325	5-01	Prepared &	Analyzed:	07/28/21				
Sulfide	ND	0.10	mg/L		ND				15	
Matrix Spike (AG14583-MS1)	Sour	ce: 21G325	5-01	Prepared &	Analyzed:	07/28/21				
Sulfide	0.167	0.10	mg/L	0.200	ND	83.7	80-120			
Matrix Spike Dup (AG14583-MSD1)	Sour	ce: 21G325	5-01	Prepared &	Analyzed:	07/28/21				
Sulfide	0.165	0.10	mg/L	0.200	ND	82.7	80-120	1.20	15	
Satch AG14585 - General Preparation										
Blank (AG14585-BLK1)				Prepared &	Analyzed:	07/28/21				
MBAS, calculated as LAS, mw 340	ND	0.050	mg/L							
LCS (AG14585-BS1)				Prepared &	. Analyzed:	07/28/21				
MBAS, calculated as LAS, mw 340	0.192	0.050	mg/L	0.200		95.8	80-120			
Matrix Spike (AG14585-MS1)	Sour	ce: 21G325	5-01	Prepared &	z Analyzed:	07/28/21				
MBAS, calculated as LAS, mw 340	0.197	0.050	mg/L	0.200	ND	98.7	80-120			
Matrix Spike Dup (AG14585-MSD1)	Sour	ce: 21G325	5-01	Prepared &	z Analyzed:	07/28/21				
MBAS, calculated as LAS, mw 340	0.183	0.050	mg/L	0.200	ND	91.4	80-120	7.73	20	

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215 Project: Round 3 ASR Water Quality Baseline Reported: Alameda, CA 94501 08/16/21 10:41 Project Number: Round 3 ASR Water Quality Baseline

Conventional Chemistry Parameters by APHA/EPA Methods - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AG14641 - General Prep (BAL)										
Duplicate (AG14641-DUP1)	Soui	ce: 21G328	4-04	Prepared &	Analyzed:	07/26/21				
Turbidity	18.0	0.10	NTU		20.0			10.5	15	
Duplicate (AG14641-DUP2)	Soui	ce: 21G325	5-03	Prepared &	Analyzed:	07/26/21				
Turbidity	0.200	0.10	NTU		0.150	28.6	15	A-01		
Batch AG14661 - General Preparation										
Blank (AG14661-BLK1)				Prepared: (07/29/21 Aı	nalyzed: 08	/06/21			
Total Dissolved Solids	ND	10	mg/L							
Duplicate (AG14661-DUP1)	Soui	ce: 21G293	9-01	Prepared: (07/29/21 Aı	nalyzed: 08	/06/21			
Total Dissolved Solids	308	10	mg/L		306			0.651	15	
Duplicate (AG14661-DUP2)	Soui	ce: 21G298	3-01	Prepared: (07/29/21 Aı	nalyzed: 08	/06/21			
Total Dissolved Solids	188	10	mg/L		194			3.14	15	
Batch AG14736 - NB General Prep										
Blank (AG14736-BLK1)				Prepared &	Analyzed:	07/29/21				
Perchlorate	ND	2.0	ug/L							
LCS (AG14736-BS1)				Prepared &	Analyzed:	07/29/21				
Perchlorate	9.67	2.0	ug/L	10.0		96.7	85-115			
Duplicate (AG14736-DUP1)	Soui	ce: 21G327	9-01	Prepared &	Analyzed:	07/29/21				
Perchlorate	ND	2.0	ug/L	. ND					15	

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215 Project: Round 3 ASR Water Quality Baseline Reported: Alameda, CA 94501 08/16/21 10:41 Project Number: Round 3 ASR Water Quality Baseline

Conventional Chemistry Parameters by APHA/EPA Methods - Quality Control

1.1.7	70 1	Reporting	**	Spike	Source	A/DEG	%REC	222	RPD	El
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AG14736 - NB General Prep										
Matrix Spike (AG14736-MS1)	Sour	ce: 21G325	5-01	Prepared &	Analyzed:	07/29/21				
Perchlorate	10.2	2.0	ug/L	10.0	ND	102	70-130			
Matrix Spike Dup (AG14736-MSD1)	Sour	ce: 21G325	5-01	Prepared &	Analyzed:	07/29/21				
Perchlorate	10.0	2.0	ug/L	10.0	ND	100	70-130	1.58	15	
Batch AH13265 - General Preparation										
Blank (AH13265-BLK1)				Prepared &	Analyzed:	08/03/21				
Carbonate Alkalinity as CaCO3	ND	5.0	mg/L							
Bicarbonate Alkalinity as CaCO3	ND	5.0	mg/L							
Total Alkalinity as CaCO3	ND	5.0	mg/L							
Hydroxide Alkalinity as CaCO3	ND	5.0	mg/L							
LCS (AH13265-BS1)				Prepared &	Analyzed:	08/03/21				
Total Alkalinity as CaCO3	75.0	5.0	mg/L	80.0		93.8	70-130			
Duplicate (AH13265-DUP1)	Sour	ce: 21G328	4-01	Prepared &	Analyzed:	08/03/21				
Hydroxide Alkalinity as CaCO3	ND	5.0	mg/L	-	ND				20	
Carbonate Alkalinity as CaCO3	ND	5.0	mg/L		ND				20	
Bicarbonate Alkalinity as CaCO3	76.0	5.0	mg/L		78.0			2.60	20	
Total Alkalinity as CaCO3	76.0	5.0	mg/L		78.0			2.60	20	

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501

Project Number: Round 3 ASR Water Quality Baseline

Reported: 08/16/21 10:41

Anions by EPA Method 300.0 - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AG14442 - EPA 300.0										
Blank (AG14442-BLK1)				Prepared &	Analyzed:	07/27/21				
Sulfate as SO4	ND	0.50	mg/L							
Nitrate as N	ND	0.20	mg/L							
Fluoride	ND	0.10	mg/L							
Chloride	ND	0.50	mg/L							
LCS (AG14442-BS1)				Prepared &	Analyzed:	07/27/21				
Fluoride	6.07	0.10	mg/L	5.56		109	90-110			
Chloride	11.9	0.50	mg/L	11.1		107	90-110			
Sulfate as SO4	24.2	0.50	mg/L	22.2		109	90-110			
Nitrate as N	5.99	0.20	mg/L	5.56		108	90-110			
Duplicate (AG14442-DUP1)	Soi	urce: 21G326	2-01	Prepared &	z Analyzed:	07/27/21				
Chloride	ND	0.50	mg/L		ND			0.976	20	
Fluoride	ND	0.10	mg/L		ND				20	
Sulfate as SO4	ND	0.50	mg/L		ND				20	
Nitrate as N	ND	0.20	mg/L		ND				20	
Matrix Spike (AG14442-MS1)	Soi	urce: 21G326	2-01	Prepared &	Analyzed:	07/27/21				
Chloride	10.6	5.0	mg/L	11.1	ND	95.8	80-120			
Sulfate as SO4	20.7	5.0	mg/L	22.2	ND	93.1	80-120			
Fluoride	5.30	1.0	mg/L	5.56	ND	95.4	80-120			
Nitrate as N	5.50	2.0	mg/L	5.56	ND	99.0	80-120			
Matrix Spike (AG14442-MS2)	Soi	urce: 21G328	4-05	Prepared &	Analyzed:	07/27/21				
Nitrate as N	5.78	2.0	mg/L	5.56	ND	104	80-120			
Sulfate as SO4	25.9	5.0	mg/L	22.2	ND	116	80-120			
Chloride	57.9	5.0	mg/L	11.1	49.6	75.0	80-120			QM-0
Fluoride	5.04	1.0	mg/L	5.56	ND	90.8	80-120			

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501

Project Number: Round 3 ASR Water Quality Baseline

Reported: 08/16/21 10:41

Anions by EPA Method 300.0 - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
atch AG14442 - EPA 300.0										
Matrix Spike Dup (AG14442-MSD1)	Sour	ce: 21G326	2-01	Prepared &	Analyzed:	07/27/21				
Chloride	10.7	5.0	mg/L	11.1	ND	96.7	80-120	0.935	20	
Sulfate as SO4	21.1	5.0	mg/L	22.2	ND	95.0	80-120	2.02	20	
Nitrate as N	5.52	2.0	mg/L	5.56	ND	99.4	80-120	0.319	20	
Fluoride	5.33	1.0	mg/L	5.56	ND	96.0	80-120	0.627	20	

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501

Project Number: Round 3 ASR Water Quality Baseline

Reported: 08/16/21 10:41

Volatile Organic Compounds by EPA Method 524.2 - Quality Control

Analyte(s)	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
	Result	Limit	Cinto	Level	Result	70ICEC	Limits	КГБ	Limit	8
Batch AG14707 - VOAs in Water GCMS										
Blank (AG14707-BLK1)				Prepared &	Analyzed:	07/30/21				
Bromodichloromethane	ND	1.00	ug/L							
Bromoform	ND	1.00	ug/L							
Chloroform	ND	1.00	ug/L							
Dibromochloromethane	ND	1.00	ug/L							
Trihalomethanes (total)	ND	1.00	ug/L							
Surrogate: Bromofluorobenzene	26.6		ug/L	25.0		106	70-130			
Surrogate: Dibromofluoromethane	21.4		ug/L	25.0		85.6	70-130			
Surrogate: Toluene-d8	28.2		ug/L	25.0		113	70-130			
LCS (AG14707-BS1)				Prepared &	Analyzed:	07/30/21				
Bromodichloromethane	4.22	1.00	ug/L	5.00		84.4	70-130			
Bromoform	4.61	1.00	ug/L	5.00		92.2	70-130			
Chloroform	4.14	1.00	ug/L	5.00		82.8	70-130			
Dibromochloromethane	4.54	1.00	ug/L	5.00		90.8	70-130			
Surrogate: Bromofluorobenzene	28.8		ug/L	25.0		115	70-130			
Surrogate: Dibromofluoromethane	22.7		ug/L	25.0		90.7	70-130			
Surrogate: Toluene-d8	28.2		ug/L	25.0		113	70-130			
LCS Dup (AG14707-BSD1)				Prepared &	Analyzed:	07/30/21				
Bromodichloromethane	4.25	1.00	ug/L	5.00		85.0	70-130	0.708	30	
Bromoform	4.21	1.00	ug/L	5.00		84.2	70-130	9.07	30	
Chloroform	4.04	1.00	ug/L	5.00		80.8	70-130	2.44	30	
Dibromochloromethane	4.45	1.00	ug/L	5.00		89.0	70-130	2.00	30	
Surrogate: Bromofluorobenzene	27.9		ug/L	25.0		112	70-130			
Surrogate: Dibromofluoromethane	21.9		ug/L	25.0		87.6	70-130			
Surrogate: Toluene-d8	27.9		ug/L	25.0		112	70-130			

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215 Alameda, CA 94501

Project: Round 3 ASR Water Quality Baseline

Project Number: Round 3 ASR Water Quality Baseline

Reported: 08/16/21 10:41

Haloacetic Acids by EPA Method 552.2 - Quality Control

	<u>.</u>	Reporting	** .	Spike	Source	0/550	%REC	n	RPD	FI
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AG14624 - EPA 552.2										
Blank (AG14624-BLK1)				Prepared &	Analyzed:	07/29/21				
Monobromoacetic Acid	ND	1.0	ug/L							
Monochloroacetic Acid	ND	2.0	ug/L							
Dibromoacetic Acid	ND	1.0	ug/L							
Dichloroacetic Acid	ND	1.0	ug/L							
Trichloroacetic Acid	ND	1.0	ug/L							
Total Haloacetic Acids (HAA5)	ND	1.0	ug/L							
Surrogate: 2,3-Dibromopropionic Acid	9.63		ug/L	9.85		97.7	70-130			
Surrogate: 2-Bromopropionic Acid	10.6		ug/L	10.0		106	70-130			
LCS (AG14624-BS1)				Prepared: (07/29/21 A	nalyzed: 07	/30/21			
Monobromoacetic Acid	24.1	1.0	ug/L	25.0		96.5	70-130			
Monochloroacetic Acid	24.8	2.0	ug/L	25.0		99.2	70-130			
Dibromoacetic Acid	23.8	1.0	ug/L	25.0		95.0	70-130			
Dichloroacetic Acid	24.6	1.0	ug/L	25.0		98.4	70-130			
Trichloroacetic Acid	22.5	1.0	ug/L	25.0		90.0	70-130			
Surrogate: 2,3-Dibromopropionic Acid	10.5		ug/L	9.85		106	70-130			
Surrogate: 2-Bromopropionic Acid	11.0		ug/L	10.0		110	70-130			
LCS Dup (AG14624-BSD1)				Prepared: ()7/29/21 A	nalyzed: 07	/30/21			
Monobromoacetic Acid	24.1	1.0	ug/L	25.0		96.5	70-130	0.0174	20	
Monochloroacetic Acid	24.3	2.0	ug/L	25.0		97.0	70-130	2.21	20	
Dibromoacetic Acid	24.8	1.0	ug/L	25.0		99.2	70-130	4.31	20	
Dichloroacetic Acid	24.8	1.0	ug/L	25.0		99.2	70-130	0.767	20	
Trichloroacetic Acid	24.7	1.0	ug/L	25.0		98.9	70-130	9.42	20	
Surrogate: 2,3-Dibromopropionic Acid	10.5		ug/L	9.85		107	70-130			
Surrogate: 2-Bromopropionic Acid	10.8		ug/L	10.0		108	70-130			
Matrix Spike (AG14624-MS1)	So	urce: 21G325	5-01	Prepared: (07/29/21 A	nalyzed: 07	/30/21			
Monobromoacetic Acid	28.8	1.0	ug/L	25.0	ND	115	70-130			
Monochloroacetic Acid	30.5	2.0	ug/L	25.0	ND	122	70-130			
Dibromoacetic Acid	29.2	1.0	ug/L	25.0	ND	117	70-130			
Dichloroacetic Acid	29.1	1.0	ug/L	25.0	ND	116	70-130			
Trichloroacetic Acid	27.7	1.0	ug/L	25.0	ND	111	70-130			
Surrogate: 2,3-Dibromopropionic Acid	12.7		ug/L	9.85		129	70-130			

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215 Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501 08/16/21 10:41 Project Number: Round 3 ASR Water Quality Baseline

Haloacetic Acids by EPA Method 552.2 - Quality Control

		•								
		Reporting		Spike	Source		%REC		RPD	El
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AG14624 - EPA 552.2										
Matrix Spike (AG14624-MS1)	Sour	ce: 21G325	5-01	Prepared: (07/29/21 A	nalyzed: 07	/30/21			
Surrogate: 2-Bromopropionic Acid	11.6		ug/L	10.0		116	70-130			
Matrix Spike (AG14624-MS2)	Sour	ce: 21G328	7-01	Prepared: (07/29/21 A	nalyzed: 07	//30/21			
Monobromoacetic Acid	31.2	1.0	ug/L	25.0	ND	125	70-130			
Monochloroacetic Acid	177	2.0	ug/L	25.0	ND	709	70-130			QM-07
Dibromoacetic Acid	32.5	1.0	ug/L	25.0	2.34	121	70-130			
Dichloroacetic Acid	41.8	1.0	ug/L	25.0	9.49	129	70-130			
Trichloroacetic Acid	37.4	1.0	ug/L	25.0	6.12	125	70-130			
Surrogate: 2,3-Dibromopropionic Acid	10.4		ug/L	9.85		106	70-130			
Surrogate: 2-Bromopropionic Acid	10.5		ug/L	10.0		105	70-130			

Reported:

Alpha Analytical Laboratories, Inc.

email: clientservices@alpha-labs.com

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501

Project Number: Round 3 ASR Water Quality Baseline

Reported: 08/16/21 10:41

Notes and Definitions

A-01 Duplicate RPD outside of allowed limit, however, sample result is close to reporting limit and difference between replicates is

less than reporting limit for the analysis.

FILT The sample was filtered in the lab prior to analysis.

QM-01 The spike recovery for this QC sample is outside of established control limits possibly due to a sample matrix interference.

QM-07 The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS

recovery.

ND Analyte NOT DETECTED at or above the reporting limit

dry Sample results reported on a dry weight basis

REC Recovery

RPD Relative Percent Difference

Los Angeles (Service Center) 310-743-5711 1230 E 233rd St #205, Carson CA 90745

San Diego Laboratory (3055) 760-930-2555 2722 Loker Ave West, Ste A, Carlsbad CA 92010 North Bay Laboratory (2303) 707-769-3128 110 Liberty Street, Petaluma CA 94952

Bay Area Laboratory (2728) 925-828-6226 262 Rickenbacker Circle, Livermore CA 94551

Central Valley Laboratory (2922) 916-686-5190 9090 Union Park Way #113, Elk Grove CA 95624 **Chain of Custody Record**

Reports and Invoices delivered by email as PDF files

clientservices@alpha-labs.com

Lab No. 人(タクレフノ Pg	of
--------------------	----

Report to	Invoice	to (if different)		4				ect I	inio_			+		_			_	~		13 1	~~	Ť	_	$\overline{}$				─		tan	dard	╗	Uk	ah
ompany:	Contact:					t Nam nd 3 /			ater	Que	ılltv		1																	10-0			23	
Todd Groundwater	1			_ ['	uli			selin		-u(U	y	J										- .	۱,	۱,		-		İ	ļ	0	•	ļ		
Attn:	Email Address:			Pı	ojec	t Nun	mbe.	HT:	_			1											Od Cr Cd Cd Cd Cd Cd Cd Cd Cd Cd Cd Cd Cd Cd	TI V Zn		1		'	<u> </u>	RUS		\dashv		more
Nicole Grimm												1							y,	, 				S						-day	259		1.7	Grove
Phone:	Phone:			P	O NL	umbe	rr:	_	_			ē	ة آ						٩	ا يُو	;	ğ.	Ba Be	ر ا ا			'	\	1	0		_	CIK (
510-747-6920													Sample ID						بإ) I	;	Fe K Mg Na	Al As B	Z Z		<u>ڇ</u> ا			2.	_	759	%	Deta	luma
Physical Address:				F)	requi	ency:		-				ğ	per S	1 1 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2					ū	2	Į,	a	ᇫ	<u>₹</u>	_	Met		۱ ۱		0			1 616	
2490 Mariner Square Loop, Suite 215, Alar	meda CA 94501		_									1/	جَ اِفَعَ	₹ ¥	اچ				4	ָבֶּע (בְּיֵע (בְּיִע (בְּיִע (בְּיִע (בִּיע (בּיִנ (בְּיִבְּע (בִּיע (בִּיע (בִּיע (בִּיע (בְּיִבְּע (בִּיע (בִּיע (בִּיע (בּיבָּע (בִּיי (בִּיע (בִּיע (בִּיי בּיבָּע (בִּיבָּע (בִּיי בּיבָּע (בִּיבָּע (בְּיבָּע (בְּיבָּע (בִּיבָּע (בְּיבָּע (בְּבָּע (בְּיבָּע (בְּיבָּבְּע (בְּיבָּבְּבָּבְּע (בְּיבָּבְּבָּבְּע (בְּיבָּבְּבָּבְּבָּבְּע (בְּיבָּבְּבָּבְּבָּבְּבָּבְּבָּבְּבָּבְּבָּבְּבָּבְּבָּבְּבָּבְּבָּבְּבָּבְּבָּבְּבָּבְּבָּבְּבָּבְּבָּבְבָּבְּבָּבְּבָּבְבָּבְּבָּבְּבָּבְּבָּבְּבְבָּבְבָּבְּבָּבְּבָּבְבָּבְּבָּבְבָּבְבָּבְּבָבְּבָּבְבָבְּבְבָבְבָ	a fe	<u>ا ځ</u>	<u>۲</u>	8 - ₹	Ĭ.	Ž Š	1		Γ		her		\	sbad
Email address:			Co	ontaine	<u>"</u>]	Pres	serv	/atio	ΨŢ	Mi	atrix	4	Containers	= <u>+</u>	됩				1	ر ا و	7 ·	etaj	etal:	letal:	≸	isso	۱	\	1	0)		Can	Juau
ngrimm@toddgroundwater.com						1	1	11				Ç	of Co	GW 30hr Quantifray	를 다	. j			<u> </u>	ع ق ۲ ۲	3	0.7 m	0.8 m	0.8 m	510	for D	Ē		_	_	day	/s	100 4	ngeles
Field Sampler - Printed Name and Signature:	ning		ottle	de de		ဗ			1 Water	y rate	Soil		Total Number o	- TCEC	BAL - Color and Turbidity NR - Perchlorate	el culo			Sumde Albainit, Total / Chloride / Elucide / MRAS	iny. 10	Nitrate as N / TDS / Sultate	Dissolved 200.7 metals - Ca	Dissolved 200.8 metals - Ag	Dissolved 200.8 metals - Mn Mo Ni Pb Sb	Dissolved 245.1 CVAA - Hg	Lab Filtration for Dissolved Metals	Metals Digestion			Poly	size	e		
		oled on	iss b	Poly bottle .	وَ	ZSZ) -	<u>ල</u>	ğ	JE JE	astev	ا ٍ []	<u>ē</u>	Total N	BAL-	١ ا ا	NB - P		MHT S	الارا الارا:	rall i	irrati	ossic	SSO	Sisso	isso	ab F	Jetal		250mL	ğ	기를 라	넕	Sourc	e Code
Sample Identification	Time	Date	6 유	हिट्ट	िह	뾛	鶽	ğ	žĊ	봑	'바		_	$\neg \vdash$	#	Z 1	+	+	"+	+	4	4	긔	쒸	-	H	2	\vdash	٣	5	╀	Ŧ	-	
SSWD 5	09.20	7/26/21	1	×	\coprod	\×	\downarrow	\coprod	<u>'</u>	<u>*</u>	#	1	1 >	×	+	_	+	\bot	+	4	4	4	4	-	\dashv	H	<u> </u>	\vdash	H	+	+	↓ ×		
			×	Ш	Ц	\coprod	\perp	Ц	××	×	Ц	Ĺ	1	1	×	_	\downarrow	\perp	1	\perp	1	\bot	\perp	'			<u> </u>	Ш	${f \parallel}$	4	+	4		
			۱ آ	x	$\int \int$	$\lfloor \lceil$			x)	×			1			×			\perp	\perp						L	$oxed{oxed}$	Ш	×	\perp	\perp	_		
			×	11	\prod	\prod	T	×	П,	×	П	T	1	T	T	T,	×	T	T	Ţ	_[_1			<u> </u>									
			×	$\dagger \dagger$	力	×	+	\prod	T,	×	\top	7	3	\forall	十	1	7	×	T	十											\int	\int		
1.			4	×	力	1	十	×	П,	×	\prod	7	1	寸	十	十	7	寸	×	寸	\exists	\Box				Γ			×		Ţ	\int		
			H	†;†	九	#	十	十	\	*	#	4	寸	+	十	十	T	十	十	x	×	×	x	×	×	x	×	Π	П	П	 ,	×		
			H	+	+	H	+	\dagger	H	+	+	4	十	十	十	十	\dagger	\forall	十	十	\dashv	\dashv				T	T	T		П	\dagger	†		
			H	++	+	H	+	+	H	+	++	十	十	十	十	十	+	+	十	十	\dashv	\dashv			_	T	T	T	\dagger	H	\dagger	+	1	
			+	++	+	$oldsymbol{H}$	+	+	H	+	+	4	+	+	+	+	十	+	+	\dashv	\dashv	\dashv	<u>'</u>		-	+	T	+	\dagger	${\sf H}$	+	+	\vdash	
			\coprod	11	1	μ	4	+	μ	4	++	4	+	+	+	+	+	\dashv	4	+	\dashv	-	<u>'</u>	\vdash	-	+	\vdash	+	+	H	+	+	 	
												IJ		1		\bot	\perp	\bot	\perp	\perp			<u>'</u> ا		<u></u>		لِــا	_		Ц	\perp	\perp		
Relinquished by		Received	by				I			īme		1	_		Date		4		_	_	_		_		Addi	ition	al Ro	equir	em	ente	<u> </u>			
Nicole Grimm	/	787		_	_	_	\int	1.	33	38			7/	26	6/2			C		CA [Writ		W On El	DΤ		5	State	Sys	tem l	No:					
1-11		MH					\int	Ĩ	189	43			-7	1/2	, 3 <u>Ç/</u>	/21	'士				_											_		
MH		MH					T				45	-		_	/26) (cke												
7-11/		<u>, , , , , , , , , , , , , , , , , , , </u>					寸						1				1	1		EDF	· Re	por	t	Sar	nplin	ng Co	ompa	any Lo	.og (Code	9 :	_		

Los Angeles (Service Center) 310-743-5711 1230 E 233rd St #205, Carson CA 90745

San Diego Laboratory (3055) 760-930-2555 2722 Loker Ave West, Ste A, Carlsbad CA 92010 North Bay Laboratory (2303) 707-769-3128 110 Liberty Street, Petaluma CA 94952

Bay Area Laboratory (2728) 925-828-6226 262 Rickenbacker Circle, Livermore CA 94551

Central Valley Laboratory (2922) 916-686-5190 9090 Union Park Way #113, Elk Grove CA 95624 **Chain of Custody Record**

Reports and Invoices delivered by email as PDF files

clientservices@alpha-labs.com

TAT

Temp *C

Lab No. 216	3255	Pg_	<u>2</u>	of_	4

Beneat to	Involce	to (if different)		Т		P	roje	ct In	fo								-	\nah	/sis f	Requ	est								TAT			Temp °C
Report to Company:	Contact:	to (ii dilleton)		Pi	roject				_				П						Т	T	Т				П				tanda		Τ	Ukiah
Joinparty.					Rour	-		Wat		Qual	lity	Į					ĺ	- 1					-	ļ			ı	1	10-da	зу	I	25
Todd Groundwater				+	!			eline	•			ł	1								- 1	ج	2		1				0		H	Livermore
Attn:	Email Address:			1	rojec	Nur	nper						1							-	- 1	Cd Cr Cu	uZ∧∏		ļ		j		RUS		1	1.7
Nicole Grimm																			နှ			ပို့	b Se					5-0	day 2	25%	ŀ	Elk Grove
Phone:	Phone:			P	O Nu	mbe	r:					흑							₩ B		S Na	Bal	န္	ı	ļ				0			
510-747-6920												Sample ID	_						Alkalinity, Total / Chloride / Fluoride / MBAS		K Mg Na	Al As B Ba Be	Dissolved 200.8 metals - Mn Mo Ni Pb Sb Se		<u>8</u>		ſ	2-0	day 7	75%	-	Petaluma
Physical Address:				F	reque	ency:							ıtıtra						윤		E	ᇫ	ž		Set.				0		ı	, omining
2490 Mariner Square Loop, Suite 215, Ala	meda CA 94501											of Containers per	BAL - TCEC GW 30hr Quantitray	<u>₹</u>					de/	lfate	Dissolved 200.7 metals - Ca	Dissolved 200.8 metals - Ag	S-M	Dissolved 245.1 CVAA - Hg	Lab Filtration for Dissolved Metals		Ī		Othe	er	7	Carlsbad
Email address:			Co	ntaine	er	Pres	serva	ation	\vdash	Mat	rix	igi.	ģ	ള					흗	ซี	etal	etal	etal	}	issc				0		1	Cunsbaa
ngrimm@toddgroundwater.com												ပို	3W 3	BAL - Color and Turbidity	ate				Jal/C	Nitrate as N / TDS / Sulfate	0.7 m	0.8 m	0.8 m	5.1 C	for C	ţi	ĺ	_	·	lays	L	Los Angeles
Field Sampler - Printed Name and Signature:	~ `	•	٥]→[1			/ater	اۃ	1		ပ္ပ	ğ	텵				ē	ž	ğ	7 200	120	124	tion	iges	ŀ	P	oly s		\dashv	ros Vildeies
Nicole Grimm	nu		Na I		į.	ဒ္ဓါ			ģ	wate	ł	Ę	Ę	3	Perc	<u>ر</u>	5	e e	ig Ş	g as	Š	olvec	okec	olvec	Filtra	ls D	ı			т	1	
		led on	40mL vial Glass bottle	S 8	<u>اچ</u>	2S.		the se	Ę	/aste	ة عاق	Total Number	¥	¥	NB - Perchlorate	HAA5	ΙĒ	Sulfide	∦ ai	ig i	iss	Diss	SsiC	Diss	Lab	Metals Digestion		500	300mL	盲	듏	Source Code
Sample Identification	Time	Date	취교	ďΘ	기호	ZĮĬ	벁	이 Ž	P	쇰	တုင	1	1	1	屵	┝	┼	۳	-	-	ᅴ	_			H			+	十	Ħ	╗	
SSWD7	10:00	7/26/21	Щ	×	Ц	×	\sqcup		×	Ц	\bot	1	×	╀	\vdash	_				_	\dashv		Н		Н		\dashv	+	+	H	4	
- •			×					×	×	\prod		1	L	×		上							Щ		Ц			\perp	\downarrow	Ц	4	
			П	×	П		П	,	×	П	T	1			×													x				
			H	H	H	$\dag \uparrow$	T	x	×	$ \cdot $	十	1	1	T	T	×													Τ	П	T	
			H	H	+	\mathbb{H}	+	H	+	Н	+	13	+	+	+	\vdash	×	_				\vdash		\vdash		\vdash		H	T	\sqcap	1	
			\parallel	\sqcup	\perp	Ľ	\perp	$oxed{+}$	 *	\mathbb{H}	${oldsymbol{+}}$	╂	╁	+	╀	┝	┼	_						\vdash	_	_	\vdash	H	十	H	+	
			Ш	×		Ц	_	×	Į×	Ц	Ц	\perp^1	1	1	_	$oldsymbol{\perp}$	_	×			_			_	_		Ц	ľ	+	\sqcup	4	
				×				,	Κ										×	×	×	×	×	x	×	×		Ц	\perp	×	_	
			11	\prod	1	Π	T	П	T	П	T	Τ	Τ				Γ															
			$\dagger \dagger$	$\dagger \dagger$	十	H	+	$\dagger \dagger$	t	T	H	T	十	T	T	T	T		Г									П	T			
			++	╫	+	H	+	H	+	+	H	╁	+	十	╁	t	T		-			_	\vdash		\vdash	一	Н	H	T	$\dagger \dagger$	1	
		<u> </u>	$\downarrow \downarrow$	44	\bot	$oldsymbol{\downarrow}$	4	\sqcup	1	\perp	$oldsymbol{arphi}$	4	_	+	╀-	╀	╀	├-	⊢	⊢	_	⊢	╀	\vdash	┢	-	\vdash	H	+	H	H	
								Ш									<u> </u>		L				L				ليا	Ц		Ш	Ц	
Relinquished by		Received	by				I		Tlr			Ţ		Dat			_							Addi	tion	al Re	quire	eme	nts			
Nicole Grimm		JP .						13	<u>' </u>	<u>8</u>	<u>, </u>		7/2					0		DD ite-(W On E	DT		5	State	Syst	em N	lo: _				
HPP		Mt	1					1	8	43	~ [^]		7/	2	6/	21	上															
MH		MH					T				15			7/.	26		1	0	CA Ge		acke	er	Fa	acility	/ Glo	bai II) No:					
J*/17		1 177					十			<u> </u>	-	+						-			еро		Sar	mplin	g Co	mpa	ny Lo	og C	ode:		_	

Los Angeles (Service Center) 310-743-5711 1230 E 233rd St #205, Carson CA 90745

San Diego Laboratory (3055) 760-930-2555 2722 Loker Ave West, Ste A, Carlsbad CA 92010 North Bay Laboratory (2303) 707-769-3128 110 Liberty Street, Petaluma CA 94952

Bay Area Laboratory (2728) 925-828-6226 262 Rickenbacker Circle, Livermore CA 94551

Central Valley Laboratory (2922) 916-686-5190 9090 Union Park Way #113, Elk Grove CA 95624

Chain of Custody Record

Reports and Invoices delivered by email as PDF files

clientservices@alpha-labs.com

TAT

Lab No.	21	4	32	55

Report to	Invoice	to (if different)				Pı	rojec	t Infe	,								-	naly	sis i	Requ	iest								TAT	<u>r</u>	<u> </u>	Temp *C
Company:	Contact:	20 (11 411-01-01-0)		Pro	oject	Nam					7					П			\Box		Ī	\Box							tand			Ukiah
Todd Groundwater				R	toun			Wate	r Q	ualit	У								-							1	1		10-da	ау	1	25
	Email Address:			Pro	niect	Num		line	_		\dashv	1		ı		l				l	ı	Cd Cr Cu	2		l		ı		0		┛	Livermore
Attn:	Email Address.			- [' "	Jool	· · · · · ·					ı				ı	- 1						ا چ	É			1	Γ		RUS		1	1.7
Nicole Grimm											_			l	- 1	ļ			γ			8	Sa					5-0	day :	25%	ŀ	Elk Grove
Phone:	Phone:			PC) Nu	mber	:				ı	le II	l I	ļ	ı			1	8	l	ž	Ba	Sa		1	1			0			0.010
510-747 -69 20											┛	Sample ID			1		- 1		ge/		Fe K Mg Na	As B	ž	١	<u>≈</u>			2-0	_	75%	7	Petaluma
Physical Address:				Fre	eque	ncy:							titra	ı					흹		E	<u>₹</u>	Š.		Meta				0		١	retaluma
2490 Mariner Square Loop, Suite 215, Ala	meda CA 94501											of Containers per	GW 30hr Quantifray	₹			l		de/	Ifate	Ö	<u>۲</u>	Ž	되	<u>₹</u>				Oth	er	1	Cadabad
Email address:			Cor	ntaine	ŗŢ	Pres	erva	tion	Ą	/latrix		ntair	Ohr (<u>f</u>				l	퉏	ng	etals	eta	etals	≸	issol	Ì			0			Carlsbad
ngrimm@toddgroundwater.com		İ	H									ပ္ခ်	W.3	달	章			1	2	2	Ε.	80 E	8. E	2	ο̈́	<u>.</u>		ĺ	,	days	L	
Field Sampler - Printed Name and Signature	:			l →			П		ater	_		ě		ran	hlora				힐	ž	8	8	8	245	ig l	gest	, ,	_ 	oly :		4	Los Angeles
Nicole Grimm 7		<u> </u>		Poly bottle ↓ Glass jar		ျ			<u>ق</u>	wate	 	Total Number	BAL - TCEC	BAL - Color and Turbidity	NB - Perchlorate	اي	_	<u>.</u>	Alkalinity, Total / Chloride / Fluoride / MBAS	Nitrate as N / TDS / Sulfate	Dissolved 200.7 metals - Ca	Dissolved 200.8 metals - Ag Al As B Ba Be	Dissolved 200.8 metals - Mn Mo Ni Pb Sb Se TI V Zn	Dissolved 245.1 CVAA - Hg	Lab Filtration for Dissolved Metals	Metals Digestion	, I		7	ТТ	1	
11.0		led on	ass I	d y bo	١	Z Z	S	<u> </u>	īķ.	asi ≅	her	tai	AL-	AL-	8	HAA5	THM T	Sulfide	lkali	İta	isso	isso	issc	issc	ab F	/eta		٤١٥	٥	Half G	탏	Source Code
Sample Identification	Time	Date	6 🗓	2 0	Ŏ.	킬	토	5 ž	힉	<u>≽ ഗ</u>	P	7	-	В	Z	Ξ_		<u>"</u>	╣	_			-		ᅱ	_	\vdash	7	, 	幵	쒸	
SSWD #11	10:15	7/26/21		×	Ц	×	Ш	Ц	×	\bot	Ц	1	x					_		_							\square	\dashv	+	${f H}$	×	
•			×		11			×	x			1		×														Ш	\perp	Ш		
		†	+	I,	П		П	×	×	T	П	1			x													×		Ш	ı	
	1	1	+	Ĥ	$oldsymbol{H}$	╁	╁	+	Н	┿	Н	١.	╁	\vdash	\vdash				\dashv	_	_		Н				П	廾	十	$\dagger \dagger$	†	
			×	Ш	Ц	_	\sqcup	<u> </u>	Ľ	\bot	\sqcup	1	↓ _	L	Н	×			\dashv				\vdash		Н		\vdash	H	+	${f H}$	+	
			×		Ц	×			×		Ц	3					х											Ц	4	\coprod	_	
				x				×	x			1	ļ					x										×		Ш		
				_x	П		П	×	×		Τ	1							x	x	х	х	×	×	×	х		П		x		
			+	H	Н	+	H	十	H	+	+	┢	╅			_		_						<u> </u>			П	П	Ť	П	T	
	ļ		$oldsymbol{\perp}$	Н	Н	\vdash	₩		H	+	╁	-	╁	⊢	-	┝	├	_			┝		-	-	_		\vdash	H	+	₩	\dashv	
					Ш	Ш	Ц		Ц	\perp				_		L	_	_			_	L	<u> </u>	_		_	\sqcup	Н	4	\dashv	Ц	
													1										1			l			┙			
		1	H	$\dagger \dagger$	Ħ	十	$\dagger \dagger$	\top	П	十	T	T	T	Γ	Π		Γ											П		\prod		
		Bassind		Ш	Ш	Ш	╀┦	Щ.	Ilm	ᆫᆜ		╀	J	Dat	<u></u>	L	┼─	L	L	<u> </u>	Ш	<u> </u>	Ь,	i Addi	tions	l Re	quire	لب eme	nts	لــــــــــــــــــــــــــــــــــــــ	1	
Relinquished by		Received I	IJ				+-	<u>/</u> }.				╁	7/2	7	2	7	 	_	CA	DD	w								****			
Micole Grimm	/	//					+′					+	/_	1-			-	0			on E	DT		S	State	Syst	tem N	lo: -				
187		M	4					12	36	15	_		<u> 1/</u>	<u> 24</u>	2/2	<u>!l</u>								****	.				_			
MH		Mt						2	2	43	-		1	/2	26			0	CA Ge		acke	er	Fa	cility	Glot	oai II	O No:	_				
1"177		7-11	/			_	十		<u></u>	<u> </u>		十					1	•			вро		Sar	nplin	g Co	mpa	ny Lo	ng Co	ode:			
							1_																									

Los Angeles (Service Center) 310-743-5711 1230 E 233rd St #205, Carson CA 90745

San Diego Laboratory (3055) 760-930-2555 2722 Loker Ave West, Ste A, Carlsbad CA 92010 North Bay Laboratory (2303) 707-769-3128 110 Liberty Street, Petaluma CA 94952

Bay Area Laboratory (2728) 925-828-6226 262 Rickenbacker Circle, Livermore CA 94551

Central Valley Laboratory (2922) 916-686-5190 9090 Union Park Way #113, Elk Grove CA 95624

Chain of Custody Record

Reports and Invoices delivered by email as PDF files

clientservices@alpha-labs.com

	210	27EC		4		U
Lab No.	70	7077	Pg_	1	of_	

Report to	Invoice	to (if different)					Pro	oject	t inn	<u> </u>		_	<u> </u>						Anar	ys is	Keq	nest				_			—		<u> </u>	ᆜ	10mp C
Company:	Contact:					ect Na und 3			Al ate		IK	4,																		Stan 10-			Ukiah ∕
Todd Groundwater	1				Koı	Jna J		SK V Iasel)r u	(Uanc	^{ty}										İ	,	ا ۽ ا	.					0	•		25
Attn:	Email Address:			T	Proje	ect Nu	umb	er:				\neg									-		C, C		.				⊢	RUS		_	Livermore
Nicole Grimm									****											S)			Dissolved 200.8 metals - Ag Al As B Ba Be Cd Cr Cu	Dissolved 200.8 metals - Mn Mo Ni Pb Sb Se TI V Zn						-day	259		1.7
Phone:	Phone:			F	PO N	Numb	er:						<u>ē</u>							MB/		S	Ba B	b Sb						0)		Elk Grove
510-747-6920				\perp									Sample ID	>						Alkalinity, Total / Chloride / Fluoride / MBAS		Fe K Mg Na	As B	N N		2 <u>8</u>			2	-day		%	Petaluma
Physical Address:				ĮF	-requ	uency	y:							ıtitra						Fluo	- 1	F.	Ϋ́	Σ		Met				0)		retaluma
2490 Mariner Square Loop, Suite 215, Ala	meda CA 94501												Ser S	Duar	<u>⊊</u>					de /	fate	S	٠¥	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	운"	Š			Г	Otl		コ	
Email address:			<u>~~</u>	ontain	ner	Pr	eser	rvatio	ion	H	Matrix	X	ntai	يَّو	pig					hlori	Su'	etals	etals	etals	≸	issol				0)		Carlsbad
ngrimm@toddgroundwater.com		J											of Containers per	× 3	E E	ate				J/C	TDS	Ē	.8 m	8 E	0	ا م	<u>8</u>				day	vs.	
Field Sampler - Printed Name and Signature	-			اِحا						ater	*		ĕ) 	م a	등				Tota	ż	200	200	200	1245	tion 1	gesti		F	Poly			Los Angeles
Nicole brimn	~~~		<u>aal</u>	g g	<u>a</u>	ဒ္ဓ				ē	wate		E I	Þ	3	Perc	١,	_	يو ا	inity,	te as	lved	olved	S S	Š	iltra	S D		_	Ť	_	_	
Sample Identification	Samp Time	oled on Date	40mL vial Glass bottle	Sign P	Glass	Na2S	달	SE SE	None	Drinkii	Waste	Other	Total Number	BAL - TCEC GW 30hr Quantitray	BAL - Color and Turbidity	NB - Perchlorate	HAA	É	Sulfide	Alkali	Nitrate as N / TDS / Sulfate	Dissolved 200.7 metals -	Disso	Disso	Dissolved 245.1 CVAA - Hg	Lab Filtration for Dissolved Metals	Metals Digestion		250m	500mL	Haff .	bacti	Source Code
55WD \$2	10:30	7/26/21	Ì	×		×	T	T	\prod	×			1	×																	T	×	
			×	\prod	十	\prod	T	T	×	×	T	\prod	1		×										\bigcap				П		T		
			十	×	十		十	+	×	×	\top	11	1			x		T						П	П	Г		П	×	T	T	\prod	
			Τ,	<u>, </u>	十	#	十	†,	,	×		†	1				×							П				П	П	十	T	П	
			I,	+	十	T _x	十	十	$\dagger \dagger$	×	十	十	3					×						П		┢	厂	П	H	_	+	\prod	
			H	 	十	+	什	+,	*	×	十	+	1	一	\dagger	\vdash		\vdash	×					H		\vdash	\vdash		×	十	\dagger	$\dagger \dagger$	
		1	H	#	十	+	H	+	╫	Ĥ	+	+	1	十	+	-	┝	\vdash		×	×	×	x	x	x	×	×	H	H	十	+	H	
			H	+	+	H	H	+	+	Ĥ	+	+	├	\vdash	\vdash	+-	┝	\vdash		Î	<u> </u>	Ĥ	_	H	<u> </u>	Ë	Ë	\vdash	H	十	+	H	
	1	<u>'</u>	igoplus	#	\dashv	┦	H	+	+	dash	\vdash	+	╀	-	╀	├-	├-	-			┢		ļ	H	\vdash	├	├	dash	H	\vdash	+	+	
			$oxed{+}$	$oldsymbol{\perp}$	H	╀	H	+	+	dash	${f H}$	+	╀	╀	╀	╀	\vdash	-	├		_	\vdash	-	\vdash	_	├-	├	\vdash	H	$oldsymbol{+}$	+	H	
		<u> </u>	Щ	上'	Ц	\perp	Ц		\perp	L	4	\perp	丄	L	igspace	_	L	_				_		igspace	<u>_</u>	丄	╙	┦	Ц	Ц	+	Ш	
				\[\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	\mathbb{L}	1							1																				
Relinquished by	' 	Received	by_				コ	————— ———		Tim			匚		Dat										Addi	tions	al Re	quire	eme	nts			
Micole Grim		M						11	73	8	7 —]2	10	26/	12	_		0		DD\ ite-C	W On E	DT		S	State	Syst	tem N	lo:				
1/81		MH	<u> </u>						18	4	5		$oldsymbol{ol}}}}}}}}}}}}}}$	1/	2	s/:	2/	一															
MH		MH	<u>. </u>								45		$oldsymbol{oldsymbol{oldsymbol{oldsymbol{eta}}}$	1	1/2	6/	21		0		oTra	acke epor						O No:					
								1										İ		ED	r K	epor	ι	Ou	.,			,	, g O		•		

WORK ORDER

21G3255

Alpha Analytical Laboratories Ukiah to North Bay Chain of Custody

Client:	Todd Groundwater	Client Code:	DP_TODENG	Bid:	Round 3 ASR Water Quality
Project:	Round 3 ASR Water Quality Baseline	Project Number:	Round 3 ASR Water	Qualit PO #:	

Date Due:

08/10/21 15:00 (10 day TAT)

Received By:

Martin J. Henebury

Logged In By: Sheri L. Speaks

Date Received: 07/26/21 22:45

Date Logged 07/27/21 07:13

Samples Received at: _____ deg C

All containers received and intact:

YES

NO

Printed: 7/27/2021 7:30:16AM

Analysis	Department	Expires	Comments	
21G3255-01 SSWD 5 [Water] NB Perchlorate EPA 314.0	Sampled 07/26/21 09:20 NB Wet Chem	08/23/21 23:59		
21G3255-02 SSWD 7 [Water] NB Perchlorate EPA 314.0	Sampled 07/26/21 10:00 NB Wet Chem	08/23/21 23:59		
21G3255-03 SSWD #11 [Wate NB Perchlorate EPA 314.0	er] Sampled 07/26/21 10 NB Wet Chem	: 15 08/23/21 23:59		
21G3255-04 SSWD #2 [Wate NB Perchlorate EPA 314.0	er] Sampled 07/26/21 10:3	30 08/23/21 23:59		

Containers Supplied:

250mL Poly Unpres (C)

250mL Poly Unpres (C)

250mL Poly Unpres (C)

250mL Poly Unpres (C)

Relinquished By

Date

Time

Received By

Date

Timo

Relinguished By

Date

Time

Received By

Date

Time

Alpha Analytical Laboratories, Inc.

email: clientservices@alpha-labs.com

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

29 September 2021

Todd Groundwater

Attn: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Alameda, CA 94501

RE: Round 3 ASR Water Quality Baseline

Work Order: 21G3255

Enclosed are the results of analyses for samples received by the laboratory on 07/26/21 22:45. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jeanette L. Poplin For David S. Pingatore

Jeanette Popli

Project Manager

Alpha Analytical Laboratories, Inc.

email: clientservices@alpha-labs.com

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215 Project: Round 3 ASR Water Quality Baseline

Reported: Alameda, CA 94501 09/29/21 09:55 Project Number: Round 3 ASR Water Quality Baseline

Bay Area: 262 Rickenbacker Circle | Livermore, CA 94551 | T: 925-828-6226 | F: 925-828-6309 | ELAP# 2728 Central Valley: 9090 Union Park Way Suite 113 | Elk Grove, CA 95624 | T: 916-686-5190 | F: 916-686-5192 | ELAP# 2922 North Bay: 110 Liberty Street | Petaluma, CA 94952 | T: 707-769-3128 | F: 707-769-8093 | ELAP# 2303 San Diego: 2722 Loker Avenue West Suite A | Carlsbad, CA 92010 | T: 760-930-2555 | F: 760-930-2510 | ELAP# 3055

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
SSWD 5	21G3255-01	Water	07/26/21 09:20	07/26/21 22:45
SSWD 7	21G3255-02	Water	07/26/21 10:00	07/26/21 22:45
SSWD #11	21G3255-03	Water	07/26/21 10:15	07/26/21 22:45
SSWD #2	21G3255-04	Water	07/26/21 10:30	07/26/21 22:45

This represents an amended copy of the original report. Dissolved hardness reported on all samples at client request.

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215 Project: Round 3 ASR Water Quality Baseline Alameda, CA 94501

Reported: Project Number: Round 3 ASR Water Quality Baseline 09/29/21 09:55

	Result	Reporting Limit	Dilution	Batch	Prepared	Analyzed	ELAP#	Method	Note
SSWD 5 (21G3255-01)		Sample Type:	Water		Sampled	l: 07/26/21 09:2	20		
Metals (Dissolved) by EPA 200 Series Methods									FILT
Mercury, dissolved	ND ug/L	0.20	1	AG14588	07/28/21 07:05	07/28/21 12:5	2 1551 E	EPA 245.1	
Calcium, dissolved	71 mg/L	1.0	1	AH13835	08/12/21 12:40	08/13/21 12:2	3 1551 E	EPA 200.7	
Iron, dissolved	ND mg/L	0.10	1	AH13835	08/12/21 12:40	08/13/21 12:2	3 1551 E	EPA 200.7	
Magnesium, dissolved	57 mg/L	1.0	1	AH13835	08/12/21 12:40	08/13/21 12:2	3 1551 E	EPA 200.7	
Potassium, dissolved	2.9 mg/L	1.0	1	AH13835	08/12/21 12:40	08/13/21 12:2	3 1551 E	EPA 200.7	
Sodium, dissolved	120 mg/L	1.0	1	AH13835	08/12/21 12:40	08/13/21 12:2	3 1551 E	EPA 200.7	
Metals (Dissolved) by EPA Method 200.8 ICP/MS									FILT
Aluminum, dissolved	ND ug/L	10	1	AG14507	07/27/21 14:35	07/28/21 16:1	1 1551 E	EPA 200.8	
Antimony, dissolved	ND ug/L	0.50	1	AG14507	07/27/21 14:35	07/28/21 16:1	1 1551 E	EPA 200.8	
Arsenic, dissolved	2.9 ug/L	0.50	1	AG14507	07/27/21 14:35	07/28/21 16:1	1 1551 E	EPA 200.8	
Barium, dissolved	35 ug/L	0.50	1	AG14507	07/27/21 14:35	07/28/21 16:1	1 1551 E	EPA 200.8	
Beryllium, dissolved	ND ug/L	0.10	1	AG14507	07/27/21 14:35	07/28/21 16:1	1 1551 E	EPA 200.8	
Boron, dissolved	940 ug/L	50	1	AG14507	07/27/21 14:35	07/28/21 16:1	1 1551 E	EPA 200.8	
Cadmium, dissolved	ND ug/L	0.10	1	AG14507	07/27/21 14:35	07/28/21 16:1	1 1551 E	EPA 200.8	
Chromium, dissolved	10 ug/L	0.50	1	AG14507	07/27/21 14:35	07/28/21 16:1	1 1551 E	EPA 200.8	
Copper, dissolved	2.4 ug/L	0.50	1	AG14507	07/27/21 14:35	07/28/21 16:1	1 1551 E	EPA 200.8	
Lead, dissolved	ND ug/L	0.25	1	AG14507	07/27/21 14:35	07/28/21 16:1	1 1551 E	EPA 200.8	
Manganese, dissolved	ND ug/L	5.0	1	AG14507	07/27/21 14:35	07/28/21 16:1	1 1551 E	EPA 200.8	
Molybdenum, dissolved	1.7 ug/L	0.25	1	AG14507	07/27/21 14:35	07/28/21 16:1	1 1551 E	EPA 200.8	
Nickel, dissolved	2.4 ug/L	0.50	1	AG14507	07/27/21 14:35	07/28/21 16:1	1 1551 E	EPA 200.8	
Selenium, dissolved	ND ug/L	2.0	1	AG14507	07/27/21 14:35	07/28/21 16:1	1 1551 E	EPA 200.8	
Silver, dissolved	ND ug/L	0.10	1	AG14507	07/27/21 14:35	07/28/21 16:1	1 1551 E	EPA 200.8	
Thallium, dissolved	ND ug/L	0.10	1	AG14507	07/27/21 14:35	07/28/21 16:1	1 1551 E	EPA 200.8	
Vanadium, dissolved	5.1 ug/L	1.0	1	AG14507	07/27/21 14:35	07/28/21 16:1	1 1551 E	EPA 200.8	
Zinc, dissolved	6.8 ug/L	5.0	1	AG14507	07/27/21 14:35	07/28/21 16:1	1 1551 E	EPA 200.8	

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501

Project Number: Round 3 ASR Water Quality Baseline

	Result	Reporting Limit	Dilution	Batch	Prepared	Analyzed	ELAP#	Method	Note
SSWD 5 (21G3255-01)		Sample Type: V	Water		Sampled	: 07/26/21 09:2	0		
Conventional Chemistry Parameters by APHA/EPA	Methods								
Color	ND CU	5.0	1	AG14652	07/26/21 17:30	07/26/21 17:30	2728	SM2120B	
MBAS, calculated as LAS, mw 340	ND mg/L	0.050	1	AG14585	07/28/21 07:00	07/28/21 15:15	1551	SM5540C	
Perchlorate	ND ug/L	2.0	1	AG14736	07/29/21 08:00	07/29/21 12:30	2303	EPA 314.0	
Sulfide	ND mg/L	0.10	1	AG14583	07/28/21 07:00	07/28/21 09:30	1551	SM4500-S2 D	
Total Dissolved Solids	800 mg/L	10	1	AG14661	07/29/21 05:45	08/06/21 08:07	1551	SM2540C	
Turbidity	0.15 NTU	0.10	1	AG14641	07/26/21 18:52	07/26/21 18:52	2728	SM2130B	
Bicarbonate Alkalinity as CaCO3	300 mg/L	5.0	1	AH13265	08/03/21 08:00	08/03/21 17:00	1551	SM2320B	
Carbonate Alkalinity as CaCO3	ND mg/L	5.0	1	AH13265	08/03/21 08:00	08/03/21 17:00	1551	SM2320B	
Hydroxide Alkalinity as CaCO3	ND mg/L	5.0	1	AH13265	08/03/21 08:00	08/03/21 17:00	1551	SM2320B	
Total Alkalinity as CaCO3	300 mg/L	5.0	1	AH13265	08/03/21 08:00	08/03/21 17:00	1551	SM2320B	
Hardness, Total	413 mg/L	5	1	AH13835	08/12/21 12:40	08/13/21 12:23	1551	SM2340B	FILT
Anions by EPA Method 300.0									
Chloride	130 mg/L	5.0	10	AG14442	07/27/21 12:45	07/27/21 12:45	1551	EPA 300.0	
Fluoride	0.26 mg/L	0.10	1	AG14442	07/27/21 12:28	07/27/21 12:28	1551	EPA 300.0	
Nitrate as N	2.4 mg/L	0.20	1	AG14442	07/27/21 12:28	07/27/21 12:28	1551	EPA 300.0	
Sulfate as SO4	200 mg/L	5.0	10	AG14442	07/27/21 12:45	07/27/21 12:45	1551	EPA 300.0	
Microbiological Parameters by APHA Standard Mo	ethods								
Total Coliforms	ND MPN/100mL	1.0	1	AG14786	07/26/21 16:40	07/27/21 16:40	2728	SM9223B	
E. Coli	ND MPN/100mL	1.0	1	AG14786	07/26/21 16:40	07/27/21 16:40	2728	SM9223B	
Volatile Organic Compounds by EPA Method 524.2									
Bromodichloromethane	ND ug/L	1.00	1	AG14707	07/30/21 08:00	07/31/21 03:26	1551	EPA 524.2	
Bromoform	ND ug/L	1.00	1	AG14707	07/30/21 08:00	07/31/21 03:26	1551	EPA 524.2	
Chloroform	ND ug/L	1.00	1	AG14707	07/30/21 08:00	07/31/21 03:26	1551	EPA 524.2	
Dibromochloromethane	ND ug/L	1.00	1	AG14707	07/30/21 08:00	07/31/21 03:26	1551	EPA 524.2	
Trihalomethanes (total)	ND ug/L	1.00	1	AG14707	07/30/21 08:00	07/31/21 03:26	1551	EPA 524.2	
Surrogate: Bromofluorobenzene	111 %	70-130		AG14707	07/30/21 08:00	07/31/21 03:20	1551	EPA 524.2	
Surrogate: Dibromofluoromethane	92.2 %	70-130		AG14707	07/30/21 08:00	07/31/21 03:20	1551	EPA 524.2	
Surrogate: Toluene-d8	107 %	70-130		AG14707	07/30/21 08:00	07/31/21 03:20	5 1551	EPA 524.2	

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm 2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline Alameda, CA 94501 Project Number: Round 3 ASR Water Quality Baseline

	Result	Reporting Limit 1	Dilution	Batch	Prepared	Analyzed	ELAP#	Method	Note
SSWD 5 (21G3255-01)		Sample Type: V	Vater		Sampleo	d: 07/26/21 09:2	20		
Haloacetic Acids by EPA Method 552.2									
Monobromoacetic Acid	ND ug/L	1.0	1	AG14624	07/29/21 01:00	07/30/21 05:2	0 1551 I	EPA 552.2	
Monochloroacetic Acid	ND ug/L	2.0	1	AG14624	07/29/21 01:00	07/30/21 05:2	0 1551 I	EPA 552.2	
Dibromoacetic Acid	ND ug/L	1.0	1	AG14624	07/29/21 01:00	07/30/21 05:2	0 1551 I	EPA 552.2	
Dichloroacetic Acid	ND ug/L	1.0	1	AG14624	07/29/21 01:00	07/30/21 05:2	0 1551 I	EPA 552.2	
Trichloroacetic Acid	ND ug/L	1.0	1	AG14624	07/29/21 01:00	07/30/21 05:2	0 1551 I	EPA 552.2	
Total Haloacetic Acids (HAA5)	ND ug/L	1.0	1	AG14624	07/29/21 01:00	07/30/21 05:2	0 1551 I	EPA 552.2	
Surrogate: 2,3-Dibromopropionic Acid	84.0 %	70-130		AG14624	07/29/21 01:00	07/30/21 05:2	0 1551 1	EPA 552.2	
Surrogate: 2-Bromopropionic Acid	88.3 %	70-130		AG14624	07/29/21 01:00	07/30/21 05:2	0 1551 1	EPA 552.2	
SSWD 7 (21G3255-02)		Sample Type: V	Vater		Sampleo	1: 07/26/21 10:0	00		
Metals (Dissolved) by EPA 200 Series Methods									FILT
Mercury, dissolved	ND ug/L	0.20	1	AG14588	07/28/21 07:05	07/28/21 12:5	4 1551 l	EPA 245.1	
Calcium, dissolved	73 mg/L	1.0	1	AH13835	08/12/21 12:40	08/13/21 12:2	7 1551 1	EPA 200.7	
Iron, dissolved	ND mg/L	0.10	1	AH13835	08/12/21 12:40	08/13/21 12:2	7 1551 I	EPA 200.7	
Magnesium, dissolved	63 mg/L	1.0	1	AH13835	08/12/21 12:40	08/13/21 12:2	7 1551 l	EPA 200.7	
Potassium, dissolved	3.2 mg/L	1.0	1	AH13835	08/12/21 12:40	08/13/21 12:2	7 1551 I	EPA 200.7	
Sodium, dissolved	120 mg/L	1.0	1	AH13835	08/12/21 12:40	08/13/21 12:2	7 1551 l	EPA 200.7	
Metals (Dissolved) by EPA Method 200.8 ICP/	MS								FILT
Aluminum, dissolved	ND ug/L	10	1	AG14507	07/27/21 14:35	07/28/21 16:1	9 1551 I	EPA 200.8	
Antimony, dissolved	ND ug/L	0.50	1	AG14507	07/27/21 14:35	07/28/21 16:1	9 1551 l	EPA 200.8	
Arsenic, dissolved	3.4 ug/L	0.50	1	AG14507	07/27/21 14:35	07/28/21 16:1	9 1551 I	EPA 200.8	
Barium, dissolved	30 ug/L	0.50	1	AG14507	07/27/21 14:35	07/28/21 16:1	9 1551 I	EPA 200.8	
Beryllium, dissolved	ND ug/L	0.10	1	AG14507	07/27/21 14:35	07/28/21 16:1	9 1551 1	EPA 200.8	
Boron, dissolved	900 ug/L	50	1	AG14507	07/27/21 14:35	07/28/21 16:1	9 1551 I	EPA 200.8	
Cadmium, dissolved	ND ug/L	0.10	1	AG14507	07/27/21 14:35	07/28/21 16:1	9 1551 I	EPA 200.8	
Chromium, dissolved	14 ug/L	0.50	1	AG14507	07/27/21 14:35	07/28/21 16:1	9 1551 I	EPA 200.8	
Copper, dissolved	4.9 ug/L	0.50	1	AG14507	07/27/21 14:35	07/28/21 16:1	9 1551 l	EPA 200.8	
Lead, dissolved	ND ug/L	0.25	1	AG14507	07/27/21 14:35	07/28/21 16:1	9 1551 l	EPA 200.8	
Manganese, dissolved	ND ug/L	5.0	1	AG14507	07/27/21 14:35	07/28/21 16:1	9 1551 l	EPA 200.8	
Molybdenum, dissolved	1.5 ug/L	0.25	1	AG14507	07/27/21 14:35	07/28/21 16:1	9 1551 I	EPA 200.8	
Nickel, dissolved	7.8 ug/L	0.50	1	AG14507	07/27/21 14:35	07/28/21 16:1	9 1551 I	EPA 200.8	
Selenium, dissolved	4.1 ug/L	2.0	1	AG14507	07/27/21 14:35	07/28/21 16:1	9 1551 I	EPA 200.8	
Silver, dissolved	ND ug/L	0.10	1	AG14507	07/27/21 14:35	07/28/21 16:1	9 1551 I	EPA 200.8	
Thallium, dissolved	ND ug/L	0.10	1	AG14507	07/27/21 14:35	07/28/21 16:1	9 1551 I	EPA 200.8	
Vanadium, dissolved	5.0 ug/L	1.0	1	AG14507	07/27/21 14:35	07/28/21 16:1	9 1551 I	EPA 200.8	
Zinc, dissolved	ND ug/L	5.0	1	AG14507	07/27/21 14:35	07/28/21 16:1	9 1551 I	EPA 200.8	

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501

Reported: Project Number: Round 3 ASR Water Quality Baseline 09/29/21 09:55

	Result	Reporting Limit I	Dilution	Batch	Prepared	Analyzed	ELAP#	Method	Note
SSWD 7 (21G3255-02)		Sample Type: W	Vater		Sampleo	l: 07/26/21 10:0	0	_	
Conventional Chemistry Parameters by APH	IA/EPA Methods								
Color	ND CU	5.0	1	AG14652	07/26/21 17:30	07/26/21 17:30	2728	SM2120B	
MBAS, calculated as LAS, mw 340	ND mg/L	0.050	1	AG14585	07/28/21 07:00	07/28/21 15:1:	5 1551	SM5540C	
Perchlorate	ND ug/L	2.0	1	AG14736	07/29/21 08:00	07/29/21 12:4	7 2303	EPA 314.0	
Sulfide	ND mg/L	0.10	1	AG14583	07/28/21 07:00	07/28/21 09:30	1551	SM4500-S2 D	
Total Dissolved Solids	760 mg/L	10	1	AG14661	07/29/21 05:45	08/06/21 08:0	7 1551	SM2540C	
Turbidity	ND NTU	0.10	1	AG14641	07/26/21 18:52	07/26/21 18:53	2 2728	SM2130B	
Bicarbonate Alkalinity as CaCO3	280 mg/L	5.0	1	AH13265	08/03/21 08:00	08/03/21 17:0	1551	SM2320B	
Carbonate Alkalinity as CaCO3	ND mg/L	5.0	1	AH13265	08/03/21 08:00	08/03/21 17:0	1551	SM2320B	
Hydroxide Alkalinity as CaCO3	ND mg/L	5.0	1	AH13265	08/03/21 08:00	08/03/21 17:0	1551	SM2320B	
Total Alkalinity as CaCO3	280 mg/L	5.0	1	AH13265	08/03/21 08:00	08/03/21 17:0	1551	SM2320B	
Hardness, Total	440 mg/L	5	1	AH13835	08/12/21 12:40	08/13/21 12:2	7 1551	SM2340B	FILT
Anions by EPA Method 300.0									
Chloride	110 mg/L	5.0	10	AG14442	07/27/21 13:18	07/27/21 13:1	3 1551	EPA 300.0	
Fluoride	0.20 mg/L	0.10	1	AG14442	07/27/21 13:01	07/27/21 13:0	1 1551	EPA 300.0	
Nitrate as N	4.3 mg/L	0.20	1	AG14442	07/27/21 13:01	07/27/21 13:0	1 1551	EPA 300.0	
Sulfate as SO4	230 mg/L	5.0	10	AG14442	07/27/21 13:18	07/27/21 13:1	3 1551	EPA 300.0	
Microbiological Parameters by APHA Stands	ard Methods								
Total Coliforms	ND MPN/100mL	1.0	1	AG14786	07/26/21 16:40	07/27/21 16:4	2728	SM9223B	
E. Coli	ND MPN/100mL	1.0	1	AG14786	07/26/21 16:40	07/27/21 16:4	2728	SM9223B	
Volatile Organic Compounds by EPA Method	d 524.2								
Bromodichloromethane	ND ug/L	1.00	1	AG14707	07/30/21 08:00	07/31/21 03:5	3 1551	EPA 524.2	
Bromoform	ND ug/L	1.00	1	AG14707	07/30/21 08:00	07/31/21 03:5	3 1551	EPA 524.2	
Chloroform	ND ug/L	1.00	1	AG14707	07/30/21 08:00	07/31/21 03:5	3 1551	EPA 524.2	
Dibromochloromethane	ND ug/L	1.00	1	AG14707	07/30/21 08:00	07/31/21 03:5	3 1551	EPA 524.2	
Trihalomethanes (total)	ND ug/L	1.00	1	AG14707	07/30/21 08:00	07/31/21 03:5	3 1551	EPA 524.2	
Surrogate: Bromofluorobenzene	111 %	70-130		AG14707	07/30/21 08:00	07/31/21 03:5	8 1551	EPA 524.2	
Surrogate: Dibromofluoromethane	89.0 %	70-130		AG14707	07/30/21 08:00	07/31/21 03:5	8 1551	EPA 524.2	
Surrogate: Toluene-d8	107 %	70-130		AG14707	07/30/21 08:00	07/31/21 03:5	8 1551	EPA 524.2	

Reported:

09/29/21 09:55

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501

Project Number: Round 3 ASR Water Quality Baseline

	Result	Reporting Limit	Dilution	Batch	Prepared	Analyzed	ELAP#	# Method	Note
SSWD 7 (21G3255-02)		Sample Type:	Water		Sample	d: 07/26/21 10:0	00		
Haloacetic Acids by EPA Method 552.2									
Monobromoacetic Acid	ND ug/L	1.0	1	AG14624	07/29/21 01:00	07/30/21 06:0	3 1551	EPA 552.2	
Monochloroacetic Acid	ND ug/L	2.0	1	AG14624	07/29/21 01:00	07/30/21 06:0	3 1551	EPA 552.2	
Dibromoacetic Acid	ND ug/L	1.0	1	AG14624	07/29/21 01:00	07/30/21 06:0	3 1551	EPA 552.2	
Dichloroacetic Acid	ND ug/L	1.0	1	AG14624	07/29/21 01:00	07/30/21 06:0	3 1551	EPA 552.2	
Trichloroacetic Acid	ND ug/L	1.0	1	AG14624	07/29/21 01:00	07/30/21 06:0	3 1551	EPA 552.2	
Total Haloacetic Acids (HAA5)	ND ug/L	1.0	1	AG14624	07/29/21 01:00	07/30/21 06:0	3 1551	EPA 552.2	
Surrogate: 2,3-Dibromopropionic Acid	105 %	70-130		AG14624	07/29/21 01:00	07/30/21 06:0	3 1551	EPA 552.2	
Surrogate: 2-Bromopropionic Acid	117 %	70-130		AG14624	07/29/21 01:00	07/30/21 06:0	3 1551	EPA 552.2	
SSWD #11 (21G3255-03)		Sample Type:	Water		Sample	d: 07/26/21 10:1	.5		
Metals (Dissolved) by EPA 200 Series Methods									FILT
Mercury, dissolved	ND ug/L	0.20	1	AG14588	07/28/21 07:05	07/28/21 13:0	2 1551	EPA 245.1	
Calcium, dissolved	62 mg/L	1.0	1	AH13835	08/12/21 12:40	08/13/21 12:3	2 1551	EPA 200.7	
Iron, dissolved	ND mg/L	0.10	1	AH13835	08/12/21 12:40	08/13/21 12:3	2 1551	EPA 200.7	
Magnesium, dissolved	60 mg/L	1.0	1	AH13835	08/12/21 12:40	08/13/21 12:3	2 1551	EPA 200.7	
Potassium, dissolved	3.4 mg/L	1.0	1	AH13835	08/12/21 12:40	08/13/21 12:3	2 1551	EPA 200.7	
Sodium, dissolved	140 mg/L	1.0	1	AH13835	08/12/21 12:40	08/13/21 12:3	2 1551	EPA 200.7	
Metals (Dissolved) by EPA Method 200.8 ICP/M	IS								FILT
Aluminum, dissolved	ND ug/L	10	1	AG14507	07/27/21 14:35	07/28/21 14:3	0 1551	EPA 200.8	
Antimony, dissolved	ND ug/L	0.50	1	AG14507	07/27/21 14:35	07/28/21 14:3	0 1551	EPA 200.8	
Arsenic, dissolved	3.1 ug/L	0.50	1	AG14507	07/27/21 14:35	07/28/21 14:3	0 1551	EPA 200.8	
Barium, dissolved	27 ug/L	0.50	1	AG14507	07/27/21 14:35	07/28/21 14:3	0 1551	EPA 200.8	
Beryllium, dissolved	ND ug/L	0.10	1	AG14507	07/27/21 14:35	07/28/21 14:3	0 1551	EPA 200.8	
Boron, dissolved	780 ug/L	50	1	AG14507	07/27/21 14:35	07/28/21 14:3	0 1551	EPA 200.8	
Cadmium, dissolved	ND ug/L	0.10	1	AG14507	07/27/21 14:35	07/28/21 14:3	0 1551	EPA 200.8	
Chromium, dissolved	4.0 ug/L	0.50	1	AG14507	07/27/21 14:35	07/28/21 14:3	0 1551	EPA 200.8	
Copper, dissolved	5.5 ug/L	0.50	1	AG14507	07/27/21 14:35	07/28/21 14:3	0 1551	EPA 200.8	
Lead, dissolved	ND ug/L	0.25	1	AG14507	07/27/21 14:35	07/28/21 14:3	0 1551	EPA 200.8	
Manganese, dissolved	ND ug/L	5.0	1	AG14507	07/27/21 14:35	07/28/21 14:3	0 1551	EPA 200.8	
Molybdenum, dissolved	3.1 ug/L	0.25	1	AG14507	07/27/21 14:35	07/28/21 14:3	0 1551	EPA 200.8	
Nickel, dissolved	2.2 ug/L	0.50	1	AG14507	07/27/21 14:35	07/28/21 14:3	0 1551	EPA 200.8	
Selenium, dissolved	2.1 ug/L	2.0	1	AG14507	07/27/21 14:35	07/28/21 14:3	0 1551	EPA 200.8	
Silver, dissolved	ND ug/L	0.10	1	AG14507	07/27/21 14:35	07/28/21 14:3	0 1551	EPA 200.8	
Thallium, dissolved	ND ug/L	0.10	1	AG14507	07/27/21 14:35	07/28/21 14:3	0 1551	EPA 200.8	
Vanadium, dissolved	4.7 ug/L	1.0	1	AG14507	07/27/21 14:35	07/28/21 14:3	0 1551	EPA 200.8	
Zinc, dissolved	ND ug/L	5.0	1	AG14507	07/27/21 14:35	07/28/21 14:3	0 1551	EPA 200.8	

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501

Project Number: Round 3 ASR Water Quality Baseline

	Result	Reporting Limit Dilu	ution	Batch	Prepared	Analyzed	ELAP#	# Method	Note
SSWD #11 (21G3255-03)		Sample Type: Wat	ter		Sampled	l: 07/26/21 10:1:	5		
Conventional Chemistry Parameters by APH	A/EPA Methods								
Color	ND CU	5.0	1 .	AG14652	07/26/21 17:30	07/26/21 17:30	2728	SM2120B	
MBAS, calculated as LAS, mw 340	ND mg/L	0.050	1 .	AG14585	07/28/21 07:00	07/28/21 15:15	1551	SM5540C	
Perchlorate	ND ug/L	2.0	1 .	AG14736	07/29/21 08:00	07/29/21 13:03	2303	EPA 314.0	
Sulfide	ND mg/L	0.10	1 .	AG14583	07/28/21 07:00	07/28/21 09:30	1551	SM4500-S2 D	
Total Dissolved Solids	820 mg/L	10	1 .	AG14661	07/29/21 05:45	08/06/21 08:07	1551	SM2540C	
Turbidity	0.15 NTU	0.10	1 .	AG14641	07/26/21 18:52	07/26/21 18:52	2728	SM2130B	
Bicarbonate Alkalinity as CaCO3	260 mg/L	5.0	1 .	AH13265	08/03/21 08:00	08/03/21 17:00	1551	SM2320B	
Carbonate Alkalinity as CaCO3	ND mg/L	5.0	1 .	AH13265	08/03/21 08:00	08/03/21 17:00	1551	SM2320B	
Hydroxide Alkalinity as CaCO3	ND mg/L	5.0	1 .	AH13265	08/03/21 08:00	08/03/21 17:00	1551	SM2320B	
Total Alkalinity as CaCO3	260 mg/L	5.0	1 .	AH13265	08/03/21 08:00	08/03/21 17:00	1551	SM2320B	
Hardness, Total	401 mg/L	5	1 .	AH13835	08/12/21 12:40	08/13/21 12:32	1551	SM2340B	FILT
Anions by EPA Method 300.0									
Chloride	160 mg/L	5.0 1	10	AG14442	07/27/21 13:52	07/27/21 13:52	1551	EPA 300.0	
Fluoride	0.19 mg/L	0.10	1 .	AG14442	07/27/21 13:35	07/27/21 13:35	1551	EPA 300.0	
Nitrate as N	1.5 mg/L	0.20	1 .	AG14442	07/27/21 13:35	07/27/21 13:35	1551	EPA 300.0	
Sulfate as SO4	210 mg/L	5.0 1	10	AG14442	07/27/21 13:52	07/27/21 13:52	1551	EPA 300.0	
Microbiological Parameters by APHA Standa	rd Methods								
Total Coliforms	ND MPN/100mL	1.0	1 .	AG14786	07/26/21 16:40	07/27/21 16:40	2728	SM9223B	
E. Coli	ND MPN/100mL	1.0	1 4	AG14786	07/26/21 16:40	07/27/21 16:40	2728	SM9223B	
Volatile Organic Compounds by EPA Method	524,2								
Bromodichloromethane	ND ug/L	1.00	1 .	AG14707	07/30/21 08:00	07/31/21 04:31	1551	EPA 524.2	
Bromoform	ND ug/L	1.00	1 .	AG14707	07/30/21 08:00	07/31/21 04:31	1551	EPA 524.2	
Chloroform	ND ug/L	1.00	1 .	AG14707	07/30/21 08:00	07/31/21 04:31	1551	EPA 524.2	
Dibromochloromethane	ND ug/L	1.00	1 4	AG14707	07/30/21 08:00	07/31/21 04:31	1551	EPA 524.2	
Trihalomethanes (total)	ND ug/L	1.00	1 4	AG14707	07/30/21 08:00	07/31/21 04:31	1551	EPA 524.2	
Surrogate: Bromofluorobenzene	113 %	70-130		AG14707	07/30/21 08:00	07/31/21 04:31	1551	EPA 524.2	
Surrogate: Dibromofluoromethane	92.4 %	70-130		AG14707	07/30/21 08:00	07/31/21 04:31	1551	EPA 524.2	
Surrogate: Toluene-d8	109 %	70-130		AG14707	07/30/21 08:00	07/31/21 04:31	1551	EPA 524.2	

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501 Project Number: Round 3 ASR Water Quality Baseline

	Result	Reporting Limit	Dilution	Batch	Prepared	Analyzed	ELAP#	Method	Note
SSWD #11 (21G3255-03)		Sample Type:	Water		Sample	d: 07/26/21 10:1	5		
Haloacetic Acids by EPA Method 552.2									
Monobromoacetic Acid	ND ug/L	1.0	1	AG14624	07/29/21 01:00	07/30/21 06:4:	5 1551 E	PA 552.2	
Monochloroacetic Acid	ND ug/L	2.0	1	AG14624	07/29/21 01:00	07/30/21 06:4:	5 1551 E	PA 552.2	
Dibromoacetic Acid	ND ug/L	1.0	1	AG14624	07/29/21 01:00	07/30/21 06:4:	5 1551 E	PA 552.2	
Dichloroacetic Acid	ND ug/L	1.0	1	AG14624	07/29/21 01:00	07/30/21 06:4:	5 1551 E	PA 552.2	
Trichloroacetic Acid	ND ug/L	1.0	1	AG14624	07/29/21 01:00	07/30/21 06:4:	5 1551 E	PA 552.2	
Total Haloacetic Acids (HAA5)	ND ug/L	1.0	1	AG14624	07/29/21 01:00	07/30/21 06:4:	5 1551 E	PA 552.2	
Surrogate: 2,3-Dibromopropionic Acid	107 %	70-130		AG14624	07/29/21 01:00	07/30/21 06:4.	5 1551 E	PA 552.2	
Surrogate: 2-Bromopropionic Acid	113 %	70-130		AG14624	07/29/21 01:00	07/30/21 06:4.	5 1551 E	PA 552.2	
SSWD #2 (21G3255-04)		Sample Type:	Water		Sample	d: 07/26/21 10:3	0		
Metals (Dissolved) by EPA 200 Series Methods									FILT
Mercury, dissolved	ND ug/L	0.20	1	AG14588	07/28/21 07:05	07/28/21 13:0:	5 1551 E	PA 245.1	
Calcium, dissolved	57 mg/L	1.0	1	AH13835	08/12/21 12:40	08/13/21 12:44	4 1551 E	PA 200.7	
Iron, dissolved	ND mg/L	0.10	1	AH13835	08/12/21 12:40	08/13/21 12:44	4 1551 E	PA 200.7	
Magnesium, dissolved	72 mg/L	1.0	1	AH13835	08/12/21 12:40	08/13/21 12:44	4 1551 E	PA 200.7	
Potassium, dissolved	3.0 mg/L	1.0	1	AH13835	08/12/21 12:40	08/13/21 12:44	4 1551 E	PA 200.7	
Sodium, dissolved	130 mg/L	1.0	1	AH13835	08/12/21 12:40	08/13/21 12:44	4 1551 E	PA 200.7	
Metals (Dissolved) by EPA Method 200.8 ICP/M	MS								FILT
Aluminum, dissolved	ND ug/L	10	1	AG14507	07/27/21 14:35	07/28/21 16:27	7 1551 E	PA 200.8	
Antimony, dissolved	ND ug/L	0.50	1	AG14507	07/27/21 14:35	07/28/21 16:27	7 1551 E	PA 200.8	
Arsenic, dissolved	2.5 ug/L	0.50	1	AG14507	07/27/21 14:35	07/28/21 16:2	7 1551 E	PA 200.8	
Barium, dissolved	23 ug/L	0.50	1	AG14507	07/27/21 14:35	07/28/21 16:2	7 1551 E	PA 200.8	
Beryllium, dissolved	ND ug/L	0.10	1	AG14507	07/27/21 14:35	07/28/21 16:27	7 1551 E	PA 200.8	
Boron, dissolved	900 ug/L	50	1	AG14507	07/27/21 14:35	07/28/21 16:27	7 1551 E	PA 200.8	
Cadmium, dissolved	ND ug/L	0.10	1	AG14507	07/27/21 14:35	07/28/21 16:27	7 1551 E	PA 200.8	
Chromium, dissolved	9.9 ug/L	0.50	1	AG14507	07/27/21 14:35	07/28/21 16:27	7 1551 E	PA 200.8	
Copper, dissolved	6.8 ug/L	0.50	1	AG14507	07/27/21 14:35	07/28/21 16:27	7 1551 E	PA 200.8	
Lead, dissolved	ND ug/L	0.25	1	AG14507	07/27/21 14:35	07/28/21 16:27	7 1551 E	PA 200.8	
Manganese, dissolved	ND ug/L	5.0	1	AG14507	07/27/21 14:35	07/28/21 16:27	7 1551 E	PA 200.8	
Molybdenum, dissolved	2.4 ug/L	0.25	1	AG14507	07/27/21 14:35	07/28/21 16:27	7 1551 E	PA 200.8	
Nickel, dissolved	4.1 ug/L	0.50	1	AG14507	07/27/21 14:35	07/28/21 16:27	7 1551 E	PA 200.8	
Selenium, dissolved	ND ug/L	2.0	1	AG14507	07/27/21 14:35	07/28/21 16:27	7 1551 E	PA 200.8	
Silver, dissolved	ND ug/L	0.10	1	AG14507	07/27/21 14:35	07/28/21 16:27	7 1551 E	PA 200.8	
Thallium, dissolved	ND ug/L	0.10	1	AG14507	07/27/21 14:35	07/28/21 16:2	7 1551 E	PA 200.8	
Vanadium, dissolved	3.7 ug/L	1.0	1	AG14507	07/27/21 14:35	07/28/21 16:2	7 1551 E	PA 200.8	
Zinc, dissolved	13 ug/L	5.0	1	AG14507	07/27/21 14:35	07/28/21 16:2	7 1551 E	PA 200.8	

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501

Project Number: Round 3 ASR Water Quality Baseline

	Result	Reporting Limit Dilu	ution	Batch	Prepared	Analyzed	ELAP#	# Method	Note	
SSWD #2 (21G3255-04)	(21G3255-04) Sample Type: Water				Sampled: 07/26/21 10:30					
Conventional Chemistry Parameters by APH	A/EPA Methods									
Color	ND CU	5.0	1	AG14652	07/26/21 17:30	07/26/21 17:30	2728	SM2120B		
MBAS, calculated as LAS, mw 340	ND mg/L	0.050	1	AG14585	07/28/21 07:00	07/28/21 15:15	1551	SM5540C		
Perchlorate	ND ug/L	2.0	1	AG14736	07/29/21 08:00	07/29/21 13:19	2303	EPA 314.0		
Sulfide	ND mg/L	0.10	1	AG14583	07/28/21 07:00	07/28/21 09:30	1551	SM4500-S2 D		
Total Dissolved Solids	830 mg/L	10	1	AG14661	07/29/21 05:45	08/06/21 08:07	1551	SM2540C		
Turbidity	0.10 NTU	0.10	1	AG14641	07/26/21 18:52	07/26/21 18:52	2728	SM2130B		
Bicarbonate Alkalinity as CaCO3	300 mg/L	5.0	1	AH13265	08/03/21 08:00	08/03/21 17:00	1551	SM2320B		
Carbonate Alkalinity as CaCO3	ND mg/L	5.0	1	AH13265	08/03/21 08:00	08/03/21 17:00	1551	SM2320B		
Hydroxide Alkalinity as CaCO3	ND mg/L	5.0	1	AH13265	08/03/21 08:00	08/03/21 17:00	1551	SM2320B		
Total Alkalinity as CaCO3	300 mg/L	5.0	1	AH13265	08/03/21 08:00	08/03/21 17:00	1551	SM2320B		
Hardness, Total	439 mg/L	5	1	AH13835	08/12/21 12:40	08/13/21 12:44	1551	SM2340B	FILT	
Anions by EPA Method 300.0										
Chloride	110 mg/L	5.0 1	10	AG14442	07/27/21 14:25	07/27/21 14:25	1551	EPA 300.0		
Fluoride	0.32 mg/L	0.10	1	AG14442	07/27/21 14:08	07/27/21 14:08	1551	EPA 300.0		
Nitrate as N	2.6 mg/L	0.20	1	AG14442	07/27/21 14:08	07/27/21 14:08	1551	EPA 300.0		
Sulfate as SO4	260 mg/L	5.0 1	0	AG14442	07/27/21 14:25	07/27/21 14:25	1551	EPA 300.0		
Microbiological Parameters by APHA Standa	ard Methods									
Total Coliforms	ND MPN/100mL	1.0	1	AG14786	07/26/21 16:40	07/27/21 16:40	2728	SM9223B		
E. Coli	ND MPN/100mL	1.0	1	AG14786	07/26/21 16:40	07/27/21 16:40	2728	SM9223B		
Volatile Organic Compounds by EPA Method	1 524.2									
Bromodichloromethane	ND ug/L	1.00	1	AG14707	07/30/21 08:00	07/31/21 05:04	1551	EPA 524.2		
Bromoform	ND ug/L	1.00	1	AG14707	07/30/21 08:00	07/31/21 05:04	1551	EPA 524.2		
Chloroform	ND ug/L	1.00	1	AG14707	07/30/21 08:00	07/31/21 05:04	1551	EPA 524.2		
Dibromochloromethane	ND ug/L	1.00	1	AG14707	07/30/21 08:00	07/31/21 05:04	1551	EPA 524.2		
Trihalomethanes (total)	ND ug/L	1.00	1	AG14707	07/30/21 08:00	07/31/21 05:04	1551	EPA 524.2		
Surrogate: Bromofluorobenzene	113 %	70-130		AG14707	07/30/21 08:00	07/31/21 05:04	1551	EPA 524.2		
Surrogate: Dibromofluoromethane	91.0 %	70-130		AG14707	07/30/21 08:00	07/31/21 05:04	1551	EPA 524.2		
Surrogate: Toluene-d8	108 %	70-130		AG14707	07/30/21 08:00	07/31/21 05:04	1551	EPA 524.2		

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215 Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501 Project Number: Round 3 ASR Water Quality Baseline 09/29/21 09:55

	Result	Reporting Limit Di	ilution	Batch	Prepared	Analyzed	ELAP#	Method	Note
SSWD #2 (21G3255-04)		Sample Type: Wa							
Haloacetic Acids by EPA Method 552.2									
Monobromoacetic Acid	ND ug/L	1.0	1	AG14624	07/29/21 01:00	07/30/21 07:27	1551	EPA 552.2	
Monochloroacetic Acid	ND ug/L	2.0	1	AG14624	07/29/21 01:00	07/30/21 07:27	1551	EPA 552.2	
Dibromoacetic Acid	ND ug/L	1.0	1	AG14624	07/29/21 01:00	07/30/21 07:27	1551	EPA 552.2	
Dichloroacetic Acid	ND ug/L	1.0	1	AG14624	07/29/21 01:00	07/30/21 07:27	1551	EPA 552.2	
Trichloroacetic Acid	ND ug/L	1.0	1	AG14624	07/29/21 01:00	07/30/21 07:27	1551	EPA 552.2	
Total Haloacetic Acids (HAA5)	ND ug/L	1.0	1	AG14624	07/29/21 01:00	07/30/21 07:27	1551	EPA 552.2	
Surrogate: 2,3-Dibromopropionic Acid	93.2 %	70-130		AG14624	07/29/21 01:00	07/30/21 07:27	1551	EPA 552.2	
Surrogate: 2-Bromopropionic Acid	95.7 %	70-130		AG14624	07/29/21 01:00	07/30/21 07:27	1551	EPA 552.2	

Reported:

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215 Project: Round 3 ASR Water Quality Baseline Reported: Alameda, CA 94501 09/29/21 09:55 Project Number: Round 3 ASR Water Quality Baseline

Metals (Dissolved) by EPA 200 Series Methods - Quality Control

Analyte(s)	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AG14588 - EPA 245.1 Hg Water										
Blank (AG14588-BLK1)				Prepared &	Analyzed:	07/28/21				
Mercury, dissolved	ND	0.20	ug/L							
LCS (AG14588-BS1)				Prepared &	Analyzed:	07/28/21				
Mercury, dissolved	2.42	0.20	ug/L	2.50		96.8	85-115			
Duplicate (AG14588-DUP1)	Source: 21G2026-04		Prepared &	Analyzed:	07/28/21					
Mercury, dissolved	ND	0.20	ug/L		ND				20	
Matrix Spike (AG14588-MS1)	Source: 21G2026-04			Prepared &	Analyzed:	07/28/21				
Mercury, dissolved	2.52	0.20	ug/L	2.50	ND	101	70-130			
Matrix Spike Dup (AG14588-MSD1)	Source: 21G2026-04			Prepared &	Analyzed:	07/28/21				
Mercury, dissolved	2.64	0.20	ug/L	2.50	ND	105	70-130	4.74	20	
Batch AH13835 - Metals Digest (D)										
Blank (AH13835-BLK1)				Prepared: 08/12/21 Analyzed: 08/13/21						
Calcium, dissolved	ND	1.0	mg/L							
Iron, dissolved	ND	0.10	mg/L							
Magnesium, dissolved	ND	1.0	mg/L							
Potassium, dissolved	ND	1.0	mg/L							
Sodium, dissolved	ND	1.0	mg/L							
LCS (AH13835-BS1)		Prepared: (08/12/21 A							
Calcium, dissolved	8.00	1.0	mg/L	8.00		100	85-115			
Iron, dissolved	1.96	0.10	mg/L	2.00		97.8	85-115			
Magnesium, dissolved	8.00	1.0	mg/L	8.00		100	85-115			
Potassium, dissolved	7.66	1.0	mg/L	8.00		95.7	85-115			
Sodium, dissolved	7.87	1.0	mg/L	8.00		98.3	85-115			

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501 Project Number: Round 3 ASR Water Quality Baseline

Reported: 09/29/21 09:55

Metals (Dissolved) by EPA 200 Series Methods - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AH13835 - Metals Digest (D)										
Duplicate (AH13835-DUP1)	Sou	rce: 21G325	5-01	Prepared: (08/12/21 A	nalyzed: 08	3/13/21			
Calcium, dissolved	71.2	1.0	mg/L		70.9			0.473	20	
Iron, dissolved	ND	0.10	mg/L		ND				20	
Magnesium, dissolved	57.7	1.0	mg/L		57.3			0.743	20	
Potassium, dissolved	2.91	1.0	mg/L		2.89			0.543	20	
Sodium, dissolved	124	1.0	mg/L		125			0.750	20	
Matrix Spike (AH13835-MS1)	Sou	rce: 21G325	5-01	Prepared: (08/12/21 A	nalyzed: 08	3/13/21			
Calcium, dissolved	78.9	1.0	mg/L	8.00	70.9	101	70-130			
Iron, dissolved	2.00	0.10	mg/L	2.00	ND	99.9	70-130			
Magnesium, dissolved	66.0	1.0	mg/L	8.00	57.3	109	70-130			
Potassium, dissolved	10.8	1.0	mg/L	8.00	2.89	98.9	70-130			
Sodium, dissolved	131	1.0	mg/L	8.00	125	76.8	70-130			
Matrix Spike Dup (AH13835-MSD1)	Sou	rce: 21G325	5-01	Prepared: (08/12/21 A	nalyzed: 08	3/13/21			
Calcium, dissolved	80.3	1.0	mg/L	8.00	70.9	118	70-130	1.68	20	
Iron, dissolved	2.00	0.10	mg/L	2.00	ND	99.9	70-130	0.00220	20	
Magnesium, dissolved	66.7	1.0	mg/L	8.00	57.3	118	70-130	1.05	20	
Potassium, dissolved	10.8	1.0	mg/L	8.00	2.89	98.5	70-130	0.281	20	
Sodium, dissolved	133	1.0	mg/L	8.00	125	101	70-130	1.48	20	

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501 Project Number: Round 3 ASR Water Quality Baseline

Reported: 09/29/21 09:55

Metals (Dissolved) by EPA Method 200.8 ICP/MS - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Satch AG14507 - EPA 200.8 (D)										
Blank (AG14507-BLK1)				Prepared: ()7/27/21 Aı	nalyzed: 07	/28/21			
Aluminum, dissolved	ND	10	ug/L							
Antimony, dissolved	ND	0.50	ug/L							
Arsenic, dissolved	ND	0.50	ug/L							
Barium, dissolved	ND	0.50	ug/L							
Beryllium, dissolved	ND	0.10	ug/L							
Boron, dissolved	ND	50	ug/L							
Cadmium, dissolved	ND	0.10	ug/L							
Chromium, dissolved	ND	0.50	ug/L							
Copper, dissolved	ND	0.50	ug/L							
Lead, dissolved	ND	0.25	ug/L							
Manganese, dissolved	ND	5.0	ug/L							
Molybdenum, dissolved	ND	0.25	ug/L							
Nickel, dissolved	ND	0.50	ug/L							
Selenium, dissolved	ND	2.0	ug/L							
Silver, dissolved	ND	0.10	ug/L							
Thallium, dissolved	ND	0.10	ug/L							
Vanadium, dissolved	ND	1.0	ug/L							
Zinc, dissolved	ND	5.0	ug/L							
LCS (AG14507-BS1)				Prepared: ()7/27/21 Aı	nalyzed: 07	/28/21			
Aluminum, dissolved	590	10	ug/L	520		113	85-115			
Antimony, dissolved	21.3	0.50	ug/L	20.0		106	85-115			
Arsenic, dissolved	20.3	0.50	ug/L	20.0		102	85-115			
Barium, dissolved	20.2	0.50	ug/L	20.0		101	85-115			
Beryllium, dissolved	20.9	0.10	ug/L	20.0		104	85-115			
Boron, dissolved	99.8	50	ug/L	100		99.8	85-115			
Cadmium, dissolved	21.0	0.10	ug/L	20.0		105	85-115			
Chromium, dissolved	22.3	0.50	ug/L	20.0		111	85-115			
Copper, dissolved	21.1	0.50	ug/L	20.0		105	85-115			
Lead, dissolved	20.9	0.25	ug/L	20.0		105	85-115			
Manganese, dissolved	19.7	5.0	ug/L	20.0		98.7	85-115			
Molybdenum, dissolved	21.7	0.25	ug/L	20.0		108	85-115			
Nickel, dissolved	20.9	0.50	ug/L	20.0		104	85-115			
Selenium, dissolved	18.9	2.0	ug/L	20.0		94.6	85-115			
Silver, dissolved	20.3	0.10	ug/L	20.0		101	85-115			

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501

Project Number: Round 3 ASR Water Quality Baseline

Reported: 09/29/21 09:55

Metals (Dissolved) by EPA Method 200.8 ICP/MS - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AG14507 - EPA 200.8 (D)										
LCS (AG14507-BS1)				Prepared: (07/27/21 A	nalyzed: 07	/28/21			
Thallium, dissolved	20.5	0.10	ug/L	20.0		102	85-115			
Vanadium, dissolved	20.7	1.0	ug/L	20.0		104	85-115			
Zinc, dissolved	91.5	5.0	ug/L	100		91.5	85-115			
Duplicate (AG14507-DUP1)	Sou	rce: 21G325	5-03	Prepared: (07/27/21 A	nalyzed: 07	/28/21			
Aluminum, dissolved	ND	10	ug/L		ND			22.4	20	
Antimony, dissolved	ND	0.50	ug/L		ND				20	
Arsenic, dissolved	3.16	0.50	ug/L		3.10			1.92	20	
Barium, dissolved	26.2	0.50	ug/L		27.4			4.48	20	
Beryllium, dissolved	ND	0.10	ug/L		ND				20	
Boron, dissolved	791	50	ug/L		784			0.917	20	
Cadmium, dissolved	ND	0.10	ug/L		ND			0.318	20	
Chromium, dissolved	4.01	0.50	ug/L		3.97			1.10	20	
Copper, dissolved	5.43	0.50	ug/L		5.52			1.71	20	
Lead, dissolved	ND	0.25	ug/L		ND			0.637	20	
Manganese, dissolved	ND	5.0	ug/L		ND				20	
Molybdenum, dissolved	3.00	0.25	ug/L		3.06			1.92	20	
Nickel, dissolved	2.34	0.50	ug/L		2.22			5.44	20	
Selenium, dissolved	ND	2.0	ug/L		2.08			11.7	20	
Silver, dissolved	ND	0.10	ug/L		ND			200	20	
Thallium, dissolved	ND	0.10	ug/L		ND			200	20	
Vanadium, dissolved	4.81	1.0	ug/L		4.69			2.52	20	
Zinc, dissolved	ND	5.0	ug/L		ND			0.815	20	
Matrix Spike (AG14507-MS1)	Sou	rce: 21G325	5-03	Prepared: (07/27/21 A	nalyzed: 07	/28/21			
Aluminum, dissolved	642	10	ug/L	520	ND	122	70-130			
Antimony, dissolved	20.6	0.50	ug/L	20.0	ND	103	70-130			
Arsenic, dissolved	23.5	0.50	ug/L	20.0	3.10	102	70-130			
Barium, dissolved	43.8	0.50	ug/L	20.0	27.4	82.0	70-130			
Beryllium, dissolved	22.2	0.10	ug/L	20.0	ND	111	70-130			
Boron, dissolved	917	50	ug/L	100	784	133	70-130			QM-01
Cadmium, dissolved	19.7	0.10	ug/L	20.0	ND	98.1	70-130			
Chromium, dissolved	25.8	0.50	ug/L	20.0	3.97	109	70-130			
Copper, dissolved	24.4	0.50	ug/L	20.0	5.52	94.4	70-130			
Lead, dissolved	19.0	0.25	ug/L	20.0	ND	93.7	70-130			
Manganese, dissolved	18.8	5.0	ug/L	20.0	ND	94.0	70-130			

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501

Project Number: Round 3 ASR Water Quality Baseline

Reported: 09/29/21 09:55

Metals (Dissolved) by EPA Method 200.8 ICP/MS - Quality Control

		Reporting		Spike	Source		%REC		RPD	T.I.
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AG14507 - EPA 200.8 (D)										
Matrix Spike (AG14507-MS1)	Sour	ce: 21G325	5-03	Prepared: (07/27/21 A	nalyzed: 07	/28/21			
Molybdenum, dissolved	24.7	0.25	ug/L	20.0	3.06	108	70-130			
Nickel, dissolved	21.1	0.50	ug/L	20.0	2.22	94.5	70-130			
Selenium, dissolved	20.9	2.0	ug/L	20.0	2.08	94.2	70-130			
Silver, dissolved	18.6	0.10	ug/L	20.0	ND	92.4	70-130			
Thallium, dissolved	18.6	0.10	ug/L	20.0	ND	92.7	70-130			
Vanadium, dissolved	25.8	1.0	ug/L	20.0	4.69	105	70-130			
Zinc, dissolved	85.6	5.0	ug/L	100	ND	80.7	70-130			
Matrix Spike Dup (AG14507-MSD1)	Sour	ce: 21G325	5-03	Prepared: (07/27/21 A	nalyzed: 07	/28/21			
Aluminum, dissolved	656	10	ug/L	520	ND	125	70-130	2.12	20	
Antimony, dissolved	20.8	0.50	ug/L	20.0	ND	104	70-130	0.764	20	
Arsenic, dissolved	23.6	0.50	ug/L	20.0	3.10	103	70-130	0.652	20	
Barium, dissolved	44.1	0.50	ug/L	20.0	27.4	83.3	70-130	0.575	20	
Beryllium, dissolved	22.9	0.10	ug/L	20.0	ND	114	70-130	2.95	20	
Boron, dissolved	947	50	ug/L	100	784	163	70-130	3.18	20	QM-0
Cadmium, dissolved	19.7	0.10	ug/L	20.0	ND	98.1	70-130	0.0234	20	
Chromium, dissolved	26.5	0.50	ug/L	20.0	3.97	113	70-130	2.57	20	
Copper, dissolved	24.5	0.50	ug/L	20.0	5.52	95.1	70-130	0.586	20	
Lead, dissolved	19.2	0.25	ug/L	20.0	ND	94.9	70-130	1.30	20	
Manganese, dissolved	19.0	5.0	ug/L	20.0	ND	95.1	70-130	1.15	20	
Molybdenum, dissolved	24.7	0.25	ug/L	20.0	3.06	108	70-130	0.279	20	
Nickel, dissolved	21.2	0.50	ug/L	20.0	2.22	94.7	70-130	0.125	20	
Selenium, dissolved	21.2	2.0	ug/L	20.0	2.08	95.5	70-130	1.25	20	
Silver, dissolved	18.7	0.10	ug/L	20.0	ND	92.9	70-130	0.460	20	
Γhallium, dissolved	18.7	0.10	ug/L	20.0	ND	93.4	70-130	0.768	20	
Vanadium, dissolved	25.8	1.0	ug/L	20.0	4.69	105	70-130	0.0392	20	
Zinc, dissolved	85.7	5.0	ug/L	100	ND	80.8	70-130	0.0858	20	

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215 Project: Round 3 ASR Water Quality Baseline Reported: Alameda, CA 94501 09/29/21 09:55 Project Number: Round 3 ASR Water Quality Baseline

Conventional Chemistry Parameters by APHA/EPA Methods - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AG14583 - General Preparation										
Blank (AG14583-BLK1)				Prepared &	Analyzed:	07/28/21				
Sulfide	ND	0.10	mg/L							
LCS (AG14583-BS1)				Prepared &	Analyzed:	07/28/21				
Sulfide	0.209	0.10	mg/L	0.200		105	85-115			
Duplicate (AG14583-DUP1)	Sour	ce: 21G325	5-01	Prepared &	Analyzed:	07/28/21				
Sulfide	ND	0.10	mg/L		ND				15	
Matrix Spike (AG14583-MS1)	Sour	ce: 21G325	5-01	Prepared &	Analyzed:	07/28/21				
Sulfide	0.167	0.10	mg/L	0.200	ND	83.7	80-120			
Matrix Spike Dup (AG14583-MSD1)	Sour	ce: 21G325	5-01	Prepared &	Analyzed:	07/28/21				
Sulfide	0.165	0.10	mg/L	0.200	ND	82.7	80-120	1.20	15	
atch AG14585 - General Preparation										
Blank (AG14585-BLK1)				Prepared &	Analyzed:	07/28/21				
MBAS, calculated as LAS, mw 340	ND	0.050	mg/L							
LCS (AG14585-BS1)				Prepared &	Analyzed:	07/28/21				
MBAS, calculated as LAS, mw 340	0.192	0.050	mg/L	0.200		95.8	80-120			
Matrix Spike (AG14585-MS1)	Sour	ce: 21G325	5-01	Prepared &	Analyzed:	07/28/21				
MBAS, calculated as LAS, mw 340	0.197	0.050	mg/L	0.200	ND	98.7	80-120			
Matrix Spike Dup (AG14585-MSD1)	Sour	ce: 21G325	5-01	Prepared &	Analyzed:	07/28/21				
MBAS, calculated as LAS, mw 340	0.183	0.050	mg/L	0.200	ND	91.4	80-120	7.73	20	

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215 Project: Round 3 ASR Water Quality Baseline Alameda, CA 94501

09/29/21 09:55 Project Number: Round 3 ASR Water Quality Baseline

Conventional Chemistry Parameters by APHA/EPA Methods - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AG14641 - General Prep (BAL)										
Duplicate (AG14641-DUP1)	Sou	rce: 21G328	4-04	Prepared &	Analyzed:	07/26/21				
Turbidity	18.0	0.10	NTU		20.0			10.5	15	
Duplicate (AG14641-DUP2)	Sou	rce: 21G325	5-03	Prepared &	Analyzed:	07/26/21				
Turbidity	0.200	0.10	NTU		0.150			28.6	15	A-01
Batch AG14661 - General Preparation										
Blank (AG14661-BLK1)				Prepared: (07/29/21 Aı	nalyzed: 08	/06/21			
Total Dissolved Solids	ND	10	mg/L							
Duplicate (AG14661-DUP1)	Sour	rce: 21G293	9-01	Prepared: (07/29/21 Aı	nalyzed: 08	/06/21			
Total Dissolved Solids	308	10	mg/L		306			0.651	15	
Duplicate (AG14661-DUP2)	Sou	rce: 21G298	3-01	Prepared: (07/29/21 Aı	nalyzed: 08	/06/21			
Total Dissolved Solids	188	10	mg/L		194			3.14	15	
Batch AG14736 - NB General Prep										
Blank (AG14736-BLK1)				Prepared &	Analyzed:	07/29/21				
Perchlorate	ND	2.0	ug/L							
LCS (AG14736-BS1)				Prepared &	Analyzed:	07/29/21				
Perchlorate	9.67	2.0	ug/L	10.0		96.7	85-115			
Duplicate (AG14736-DUP1)	Sou	rce: 21G327	9-01	Prepared &	Analyzed:	07/29/21				
Perchlorate	ND	2.0	ug/L		ND				15	

Reported:

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215 Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501 09/29/21 09:55 Project Number: Round 3 ASR Water Quality Baseline

Conventional Chemistry Parameters by APHA/EPA Methods - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AG14736 - NB General Prep										
Matrix Spike (AG14736-MS1)	Sou	rce: 21G325	5-01	Prepared &	Analyzed:	07/29/21				
Perchlorate	10.2	2.0	ug/L	10.0	ND	102	70-130			
Matrix Spike Dup (AG14736-MSD1)	Sou	rce: 21G325	5-01	Prepared &	Analyzed:	07/29/21				
Perchlorate	10.0	2.0	ug/L	10.0	ND	100	70-130	1.58	15	
Batch AH13265 - General Preparation										
Blank (AH13265-BLK1)				Prepared &	Analyzed:	08/03/21				
Carbonate Alkalinity as CaCO3	ND	5.0	mg/L							
Total Alkalinity as CaCO3	ND	5.0	mg/L							
Hydroxide Alkalinity as CaCO3	ND	5.0	mg/L							
Bicarbonate Alkalinity as CaCO3	ND	5.0	mg/L							
LCS (AH13265-BS1)				Prepared &	Analyzed:	08/03/21				
Total Alkalinity as CaCO3	75.0	5.0	mg/L	80.0		93.8	70-130			
Duplicate (AH13265-DUP1)	Sou	rce: 21G328	4-01	Prepared &	Analyzed:	08/03/21				
Total Alkalinity as CaCO3	76.0	5.0	mg/L		78.0			2.60	20	
Hydroxide Alkalinity as CaCO3	ND	5.0	mg/L		ND				20	
Carbonate Alkalinity as CaCO3	ND	5.0	mg/L		ND				20	
Bicarbonate Alkalinity as CaCO3	76.0	5.0	mg/L		78.0			2.60	20	
Batch AH13835 - Metals Digest (D)										
Blank (AH13835-BLK1)				Prepared: (08/12/21 A	nalyzed: 08	/13/21			
Hardness, Total	ND	5	mg/L							

Reported:

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501

Project Number: Round 3 ASR Water Quality Baseline

Reported: 09/29/21 09:55

Anions by EPA Method 300.0 - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AG14442 - EPA 300.0										
Blank (AG14442-BLK1)				Prepared &	Analyzed:	07/27/21				
Chloride	ND	0.50	mg/L							
Nitrate as N	ND	0.20	mg/L							
Fluoride	ND	0.10	mg/L							
Sulfate as SO4	ND	0.50	mg/L							
LCS (AG14442-BS1)				Prepared 8	Analyzed:	07/27/21				
Chloride	11.9	0.50	mg/L	11.1		107	90-110			
Nitrate as N	5.99	0.20	mg/L	5.56		108	90-110			
Sulfate as SO4	24.2	0.50	mg/L	22.2		109	90-110			
Fluoride	6.07	0.10	mg/L	5.56		109	90-110			
Duplicate (AG14442-DUP1)	Sou	rce: 21G326	2-01	Prepared 8	Analyzed:	07/27/21				
Nitrate as N	ND	0.20	mg/L		ND				20	
Chloride	ND	0.50	mg/L		ND			0.976	20	
Sulfate as SO4	ND	0.50	mg/L		ND				20	
Fluoride	ND	0.10	mg/L		ND				20	
Matrix Spike (AG14442-MS1)	Sou	rce: 21G326	2-01	Prepared &	Analyzed:	07/27/21				
Fluoride	5.30	1.0	mg/L	5.56	ND	95.4	80-120			
Sulfate as SO4	20.7	5.0	mg/L	22.2	ND	93.1	80-120			
Nitrate as N	5.50	2.0	mg/L	5.56	ND	99.0	80-120			
Chloride	10.6	5.0	mg/L	11.1	ND	95.8	80-120			
Matrix Spike (AG14442-MS2)	Sou	rce: 21G328	4-05	Prepared: (07/27/21 A	nalyzed: 07	/29/21			
Sulfate as SO4	25.9	5.0	mg/L	22.2	ND	116	80-120			
Chloride	57.9	5.0	mg/L	11.1	49.6	75.0	80-120			QM-0
Nitrate as N	5.78	2.0	mg/L	5.56	ND	104	80-120			
Fluoride	5.04	1.0	mg/L	5.56	ND	90.8	80-120			

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501

Project Number: Round 3 ASR Water Quality Baseline

Reported: 09/29/21 09:55

Anions by EPA Method 300.0 - Quality Control

		Reporting		Spike	Source		%REC		RPD	
nalyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AG14442 - EPA 300.0										
Matrix Spike Dup (AG14442-MSD1)	Sour	ce: 21G326	: 21G3262-01		k Analyzed:	Analyzed: 07/27/21				
Fluoride	5.33	1.0	mg/L	5.56	ND	96.0	80-120	0.627	20	
Nitrate as N	5.52	2.0	mg/L	5.56	ND	99.4	80-120	0.319	20	
Sulfate as SO4	21.1	5.0	mg/L	22.2	ND	95.0	80-120	2.02	20	
Chloride	10.7	5.0	mg/L	11.1	ND	96.7	80-120	0.935	20	

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501 Project Number: Round 3 ASR Water Quality Baseline

Reported: 09/29/21 09:55

Analyte(s)	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AG14707 - VOAs in Water GCMS						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
Blank (AG14707-BLK1)				Prepared &	z Analyzed:	07/30/21				
Bromodichloromethane	ND	1.00	ug/L	1 repuise co	v 1 11101 j 2001.	07750721				
Bromoform	ND	1.00	ug/L							
Chloroform	ND	1.00	ug/L							
Dibromochloromethane	ND	1.00	ug/L							
Trihalomethanes (total)	ND	1.00	ug/L							
Surrogate: Bromofluorobenzene	26.6		ug/L	25.0		106	70-130			
Surrogate: Dibromofluoromethane	21.4		ug/L	25.0		85.6	70-130			
Surrogate: Toluene-d8	28.2		ug/L	25.0		113	70-130			
LCS (AG14707-BS1)				Prepared &	z Analyzed:	07/30/21				
Bromodichloromethane	4.22	1.00	ug/L	5.00	,	84.4	70-130			
Bromoform	4.61	1.00	ug/L	5.00		92.2	70-130			
Chloroform	4.14	1.00	ug/L	5.00		82.8	70-130			
Dibromochloromethane	4.54	1.00	ug/L	5.00		90.8	70-130			
Surrogate: Bromofluorobenzene	28.8		ug/L	25.0		115	70-130			
Surrogate: Dibromofluoromethane	22.7		ug/L	25.0		90.7	70-130			
Surrogate: Toluene-d8	28.2		ug/L	25.0		113	70-130			
LCS Dup (AG14707-BSD1)				Prepared &	Analyzed:	07/30/21				
Bromodichloromethane	4.25	1.00	ug/L	5.00		85.0	70-130	0.708	30	
Bromoform	4.21	1.00	ug/L	5.00		84.2	70-130	9.07	30	
Chloroform	4.04	1.00	ug/L	5.00		80.8	70-130	2.44	30	
Dibromochloromethane	4.45	1.00	ug/L	5.00		89.0	70-130	2.00	30	
Surrogate: Bromofluorobenzene	27.9		ug/L	25.0		112	70-130			
Surrogate: Dibromofluoromethane	21.9		ug/L	25.0		87.6	70-130			
Surrogate: Toluene-d8	27.9		ug/L	25.0		112	70-130			

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215 Alameda, CA 94501

Project: Round 3 ASR Water Quality Baseline

Project Number: Round 3 ASR Water Quality Baseline

Reported: 09/29/21 09:55

Haloacetic Acids by EPA Method 552.2 - Quality Control

Analyta(s)	D agusté	Reporting Limit	Units	Spike	Source	%REC	%REC	RPD	RPD Limit	Flag
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	riag
Satch AG14624 - EPA 552.2										
Blank (AG14624-BLK1)				Prepared &	ኔ Analyzed:	07/29/21				
Monobromoacetic Acid	ND	1.0	ug/L							
Monochloroacetic Acid	ND	2.0	ug/L							
Dibromoacetic Acid	ND	1.0	ug/L							
Dichloroacetic Acid	ND	1.0	ug/L							
Trichloroacetic Acid	ND	1.0	ug/L							
Total Haloacetic Acids (HAA5)	ND	1.0	ug/L							
Surrogate: 2,3-Dibromopropionic Acid	9.63		ug/L	9.85		97.7	70-130			
Surrogate: 2-Bromopropionic Acid	10.6		ug/L	10.0		106	70-130			
LCS (AG14624-BS1)				Prepared: (07/29/21 A	nalyzed: 07	//30/21			
Monobromoacetic Acid	24.1	1.0	ug/L	25.0		96.5	70-130			
Monochloroacetic Acid	24.8	2.0	ug/L	25.0		99.2	70-130			
Dibromoacetic Acid	23.8	1.0	ug/L	25.0		95.0	70-130			
Dichloroacetic Acid	24.6	1.0	ug/L	25.0		98.4	70-130			
Trichloroacetic Acid	22.5	1.0	ug/L	25.0		90.0	70-130			
Surrogate: 2,3-Dibromopropionic Acid	10.5		ug/L	9.85		106	70-130			
Surrogate: 2-Bromopropionic Acid	11.0		ug/L	10.0		110	70-130			
LCS Dup (AG14624-BSD1)				Prepared: (07/29/21 A	nalyzed: 07	//30/21			
Monobromoacetic Acid	24.1	1.0	ug/L	25.0		96.5	70-130	0.0174	20	
Monochloroacetic Acid	24.3	2.0	ug/L	25.0		97.0	70-130	2.21	20	
Dibromoacetic Acid	24.8	1.0	ug/L	25.0		99.2	70-130	4.31	20	
Dichloroacetic Acid	24.8	1.0	ug/L	25.0		99.2	70-130	0.767	20	
Trichloroacetic Acid	24.7	1.0	ug/L	25.0		98.9	70-130	9.42	20	
Surrogate: 2,3-Dibromopropionic Acid	10.5		ug/L	9.85		107	70-130			
Surrogate: 2-Bromopropionic Acid	10.8		ug/L	10.0		108	70-130			
Matrix Spike (AG14624-MS1)	So	urce: 21G325	5-01	Prepared: (07/29/21 A	nalyzed: 07	//30/21			
Monobromoacetic Acid	28.8	1.0	ug/L	25.0	ND	115	70-130			
Monochloroacetic Acid	30.5	2.0	ug/L	25.0	ND	122	70-130			
Dibromoacetic Acid	29.2	1.0	ug/L	25.0	ND	117	70-130			
Dichloroacetic Acid	29.1	1.0	ug/L	25.0	ND	116	70-130			
Trichloroacetic Acid	27.7	1.0	ug/L	25.0	ND	111	70-130			
Surrogate: 2,3-Dibromopropionic Acid	12.7		ug/L	9.85		129	70-130			

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215 Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501 09/29/21 09:55 Project Number: Round 3 ASR Water Quality Baseline

Haloacetic Acids by EPA Method 552.2 - Quality Control

		•			- •					
		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AG14624 - EPA 552.2										
Matrix Spike (AG14624-MS1)	Sour	ce: 21G325	5-01	Prepared: (07/29/21 A	nalyzed: 07	//30/21			
Surrogate: 2-Bromopropionic Acid	11.6		ug/L	10.0		116	70-130			
Matrix Spike (AG14624-MS2)	Sour	ce: 21G328	7-01	Prepared: (07/29/21 A	nalyzed: 07	//30/21			
Monobromoacetic Acid	31.2	1.0	ug/L	25.0	ND	125	70-130			
Monochloroacetic Acid	177	2.0	ug/L	25.0	ND	709	70-130			QM-07
Dibromoacetic Acid	32.5	1.0	ug/L	25.0	2.34	121	70-130			
Dichloroacetic Acid	41.8	1.0	ug/L	25.0	9.49	129	70-130			
Trichloroacetic Acid	37.4	1.0	ug/L	25.0	6.12	125	70-130			
Surrogate: 2,3-Dibromopropionic Acid	10.4		ug/L	9.85		106	70-130			
Surrogate: 2-Bromopropionic Acid	10.5		ug/L	10.0		105	70-130			

Reported:

Alpha Analytical Laboratories, Inc.

email: clientservices@alpha-labs.com

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501

Project Number: Round 3 ASR Water Quality Baseline

Reported: 09/29/21 09:55

Notes and Definitions

A-01 Duplicate RPD outside of allowed limit, however, sample result is close to reporting limit and difference between replicates is

less than reporting limit for the analysis.

FILT The sample was filtered in the lab prior to analysis.

QM-01 The spike recovery for this QC sample is outside of established control limits possibly due to a sample matrix interference.

QM-07 The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS

recovery.

ND Analyte NOT DETECTED at or above the reporting limit

dry Sample results reported on a dry weight basis

REC Recovery

RPD Relative Percent Difference

Los Angeles (Service Center) 310-743-5711 1230 E 233rd St #205, Carson CA 90745

San Diego Laboratory (3055) 760-930-2555 2722 Loker Ave West, Ste A, Carlsbad CA 92010 North Bay Laboratory (2303) 707-769-3128 110 Liberty Street, Petaluma CA 94952

Bay Area Laboratory (2728) 925-828-6226 262 Rickenbacker Circle, Livermore CA 94551

Central Valley Laboratory (2922) 916-686-5190 9090 Union Park Way #113, Elk Grove CA 95624 **Chain of Custody Record**

Reports and Invoices delivered by email as PDF files

clientservices@alpha-labs.com

Lab No. 人(タクレフノ Pg	of
--------------------	----

Report to	Invoice	to (if different)		4				ect I	inio_			+		_			_	~		13 1	一	Ť	_	$\overline{}$				─		tan	dard	╗	Uk	ah
ompany:	Contact:					t Nam nd 3 /			ater	Que	ılltv		1														١			10-0			23	
Todd Groundwater	1			_ ['	uli			selin		-u(U	y	J										- .	۱,	۱,		-		j	ļ	0	•	ļ		
Attn:	Email Address:			Pı	ojec	t Nun	mbe.	HT:	_			1											Od Cr Cd Cd Cd Cd Cd Cd Cd Cd Cd Cd Cd Cd Cd	TI V Zn		1		'	<u> </u>	RUS		\dashv		more
Nicole Grimm												1							y,	, 				S						-day	259		1.7	Grove
Phone:	Phone:			P	O NL	umbe	rr:	_	_			ē	ة آ						٩	ا يُو	;	ğ.	Ba Be	ر ا ا			'	\	1	0		_	CIK (
510-747-6920													Sample ID						بإ) I	;	Fe K Mg Na	Al As B	Z Z		<u>ڇ</u> ا			2.	_	759	%	Deta	luma
Physical Address:				F)	requi	ency:		-				ğ	per S	1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1					ū	2	Į,	a	ᇫ	<u>₹</u>	_	Met		۱ ۱		0			1 616	
2490 Mariner Square Loop, Suite 215, Alar	meda CA 94501		_									1 /	جَ اِفَعَ	₹ ¥	اچ				4	ָבֶּע (בְּיֵע (בְּיִע (בְּיִע (בְּיִע (בִּיע (בּיִנ (בְּיִבְּע (בִּיע (בִּיע (בִּיע (בְּיִבְּע (בִּיע (בִּיע (בִּיע (בִּיע (בּיבָּע (בִּיי (בִּיע (בִּיע (בִּיי בּיבָּע (בִּיבָּע (בִּיי בּיבָּע (בִּיבָּע (בְּיבָּע (בְּיבָּע (בִּיבָּע (בְּיבָּע (בְּבָּע (בְּיבָּע ּע (בְּיבָּבְּע (בְּיבָּבְּע (בְּיבָּבְּע (בְּיבָּבְּע (בְיבָּבְּע (בְּיבָּבְּע (בְּבָּבְּבָּבְּע (בְּיבָּבְּבָּבְּע (בְּיבָּבְּבָּבְּבָּבְּבָּבְּבָּבְּבָּבְּבָּבְּבָּבְּבָּבְּבָּבְּבָּבְּבָּבְּבָּבְּבָּבְּבָּבְּבָּבְבָּבְּבָּבְבָּבְּבָּבְבָּבְּבָּבְּבָּבְבָּבְּבָּבְבָּבְבָּבְבָּבְבָּבְּבָבְבָּבְבָּבְּבָּבְבָבְבָ	a fe	<u>ا</u> ج	<u>۲</u>	8 - ₹	Ĭ.	Ž Š	1		Γ		her		\	sbad
Email address:			Co	ontaine	<u>"</u>]	Pres	serv	/atio	ΨŢ	Mi	atrix	4	Containers	= <u>+</u>	됩				1	ر ا و	7 ·	etaj	etal:	letal:	≸	isso	۱	\	1	0)		Can	Juau
ngrimm@toddgroundwater.com						1	1	11				Ç	of Co	GW 30hr Quantifray	를 를	. j			<u> </u>	ع ق ۲ ۲	3	0.7 m	0.8 m	0.8 m	510	for D	Ē		_	_	day	/s	100 4	ngeles
Field Sampler - Printed Name and Signature:	ning		ottle	de de		ဗ			1 Water	y rate	Soil		Total Number o	- TCEC	BAL - Color and Turbidity NR - Perchlorate	el culo			Sumde Albainit, Total / Chloride / Elucide / MRAS	iny. 10	Nitrate as N / TDS / Sultate	Dissolved 200.7 metals - Ca	Dissolved 200.8 metals - Ag	Dissolved 200.8 metals - Mn Mo Ni Pb Sb	Dissolved 245.1 CVAA - Hg	Lab Filtration for Dissolved Metals	Metals Digestion			Poly	size	e		
		oled on	iss b	Poly bottle .	وَ	ZSZ -	<u>ල</u>	ğ	JE JE	astev	ا ٍ []	<u>ē</u>	Total N	BAL-	١ ا ا	NB - P		MHT S	الارا الارا:	rall i	irrati	ossic	SSO	Sisso	isso	ab F	Jetal		250mL	ğ	기를 라	넕	Sourc	e Code
Sample Identification	Time	Date	6 유	हिट्ट	िह	뾛	鶽	ğ	žĊ	봑	'바		_	$\neg \vdash$	#	Z 1	+	+	"+	+	4	4	긔	쒸	-	H	2	\vdash	٣	5	╀	橧	-	
SSWD 5	09.20	7/26/21	1	×	\coprod	\×	\downarrow	\coprod	<u>'</u>	<u>*</u>	#	1	1 >	×	+	_	+	\bot	+	4	4	4	4	-	\dashv	H	<u> </u>	H	H	+	+	↓ ×		
			×	Ш	Ц	\coprod	\perp	Ц	××	×	Ц	Ĺ	1	1	×	_	\downarrow	\perp	1	\perp	1	\bot	\perp	'			<u> </u>	Ш	${f \parallel}$	4	+	4		
			۱ آ	x	$\int \int$	\mathbb{I}			x)	×			1			×			\perp	\perp						L	$oxed{oxed}$	Ш	×	\perp	\perp	_		
			×	11	\prod	\prod	T	×	П,	×	П	T	1	T	T	T,	×	T	T	Ţ	_[_1												
			×	$\dagger \dagger$	力	×	十	\prod	T,	×	\top	7	3	\forall	十	1	7	×	T	十											\int	\int		
1.			4	×	力	1	十	×	П,	×	\prod	7	1	寸	十	十	7	寸	×	寸	\exists	\Box				Γ			×		Ţ	\int		
			H	†;†	九	#	十	十	\	*	#	4	寸	+	十	十	T	十	十	x	×	×	x	×	×	x	×	Π	П	П	 ,	×		
			H	+	+	H	+	\dagger	H	+	+	4	十	十	十	十	\dagger	\forall	十	十	\dashv	\dashv				T	T	T		П	\dagger	†		
			H	++	+	H	+	+	H	+	++	十	十	十	十	十	+	+	十	十	\dashv	\dashv			_	T	T	T	\dagger	H	\dagger	+	1	
			+	++	+	$oldsymbol{H}$	+	+	H	+	+	4	+	+	+	+	十	+	+	\dashv	\dashv	\dashv	<u>'</u>		-	+	T	+	\dagger	${\sf H}$	+	+	\vdash	
			\coprod	11	1	μ	4	+	μ	4	++	4	+	+	+	+	+	\dashv	4	+	\dashv	-	<u>'</u>	\vdash	-	+	\vdash	+	+	H	+	+	 	
												IJ		1		\perp	\perp	\bot	\perp	\perp			<u>'</u> ا		<u></u>		لِــا	_		Ц	\perp	\perp		
Relinquished by		Received	by				I			īme		1	_		Date		4		_	_	_		_		Addi	ition	al Ro	equir	em	ente	<u> </u>			
Nicole Grimm	/	787		_	_	_	\int	1.	33	38			7/	26	6/2			C		CA [Writ		W On El	DΤ		5	State	Sys	tem l	No:					
1-11		MH					\int	Ĩ	189	43			-7	1/2	, 3 <u>Ç/</u>	/21	'士				_											_		
MH		MH					T				45	-		_	/26) (cke												
7-11/		<u>, , , , , , , , , , , , , , , , , , , </u>					丁						1				1	1		EDF	· Re	por	t	Sar	nplin	ng Co	ompa	any Lo	.og (Code	9 :	_		

Los Angeles (Service Center) 310-743-5711 1230 E 233rd St #205, Carson CA 90745

San Diego Laboratory (3055) 760-930-2555 2722 Loker Ave West, Ste A, Carlsbad CA 92010 North Bay Laboratory (2303) 707-769-3128 110 Liberty Street, Petaluma CA 94952

Bay Area Laboratory (2728) 925-828-6226 262 Rickenbacker Circle, Livermore CA 94551

Central Valley Laboratory (2922) 916-686-5190 9090 Union Park Way #113, Elk Grove CA 95624 **Chain of Custody Record**

Reports and Invoices delivered by email as PDF files

clientservices@alpha-labs.com

TAT

Temp *C

Lab No. 216	3255	Pg_	<u>2</u>	of_	4

Beneat to	Involce	to (if different)		Т		P	roje	ct In	fo								-	\nah	/sis f	Requ	est								TAT			Temp °C
Report to Company:	Contact:	to (ii dilleton)		Pi	roject				_				П						Т	T	Т				П				tanda		Τ	Ukiah
Joinparty.					Rour	-		Wat		Qual	lity	Į					ĺ	- 1					-	ļ			ı	1	10-da	зу	I	25
Todd Groundwater				+	!			eline	•			ł	1								- 1	ج	2		1				0		H	Livermore
Attn:	Email Address:			1	rojec	Nur	nper						1							-	- 1	Cd Cr Cu	uZ∧∏		ļ		j		RUS		1	1.7
Nicole Grimm																			နှ			ပို့	b Se					5-0	day 2	25%	ŀ	Elk Grove
Phone:	Phone:			P	O Nu	mbe	r:					흑							₩ B		S Na	Bal	န္	ı	ļ				0			
510-747-6920												Sample ID	_						Alkalinity, Total / Chloride / Fluoride / MBAS		K Mg Na	Al As B Ba Be	Dissolved 200.8 metals - Mn Mo Ni Pb Sb Se		<u>8</u>		ſ	2-0	day 7	75%	-	Petaluma
Physical Address:				F	reque	ency:							ıtıtra						윤		E	ᇫ	ž		Set.				0		ı	, omining
2490 Mariner Square Loop, Suite 215, Ala	meda CA 94501											of Containers per	BAL - TCEC GW 30hr Quantitray	<u>₹</u>					de/	lfate	Dissolved 200.7 metals - Ca	Dissolved 200.8 metals - Ag	S-M	Dissolved 245.1 CVAA - Hg	Lab Filtration for Dissolved Metals		Ī		Othe	er	7	Carlsbad
Email address:			Co	ntaine	er	Pres	serva	ation	\vdash	Mat	rix	igi.	ģ	ള					흗	ซี	etal	etal	etal	}	issc				0		1	Cunsbaa
ngrimm@toddgroundwater.com												ပို	3W 3	BAL - Color and Turbidity	ate				Jal/C	Nitrate as N / TDS / Sulfate	0.7 m	0.8 m	0.8 m	5.1 C	for C	ţi	ĺ	_	·	lays	L	Los Angeles
Field Sampler - Printed Name and Signature:	~ `	•	٥]→[1			/ater	اۃ	1		ပ္ပ	ğ	텵				ē	ž	ğ	7 200	120	124	tion	iges	ŀ	P	oly s		\dashv	ros vuideres
Nicole Grimm	nu		Na I	i de	į.	ဒ္ဓါ			ģ	wate	ł	Ę	Ę	3	Perc	<u>ر</u>	5	e e	ig Ş	te as	Š	olvec	okec	olvec	Filtra	ls D	ı			т	1	
		led on	40mL vial Glass bottle	S 8	<u>اچ</u>	a2S		the se	Ę	/aste	ة عاق	Total Number	¥	¥	NB - Perchlorate	HAA5	ΙĒ	Sulfide	∦ ai	ig i	iss	Diss	SsiC	Diss	Lab	Metals Digestion		500	300mL	盲	ğ	Source Code
Sample Identification	Time	Date	취교	ďζ	기호	ZĮĬ	벁	이 Ž	P	쇰	တုင	1	1	1	屵	┝	┼	۳	-	-	ᅴ	_			H			+	午	Ħ	╗	
SSWD7	10:00	7/26/21	Щ	×	Ц	×	\sqcup		×	Ц	\bot	1	×	╀	\vdash	_				_	\dashv		Н		Н		\dashv	+	+	H	4	
- •			×					×	×	\prod		1	L	×		上							Щ		Ц			\perp	\downarrow	Ц	4	
			П	×	П		П	,	×	П	T	1			×													x				
			H	H	H	$\dag \uparrow$	T	x	×	$ \cdot $	十	1	1	T	T	×													Τ	П	T	
			H	H	+	\mathbb{H}	+	H	+	Н	+	13	+	+	\vdash	\vdash	×	_				\vdash	\vdash	\vdash		\vdash		H	T	\sqcap	1	
			\parallel	H	\perp	Ľ	\perp	$oxed{+}$	 *	\mathbb{H}	${oldsymbol{+}}$	╂	╁	+	╀	┝	┼	_						\vdash	_	_	\vdash	H	十	H	+	
			Ш	×		Ц	_	×	Į×	Ц	Ц	\perp^1	1	1	_	$oldsymbol{\perp}$	_	×			_			_	_		Ц	ľ	+	\sqcup	4	
				×				,	Κ										×	×	×	×	×	x	×	×		Ц	\perp	×	_	
			11	\prod	1	Π	T	П	T	П	T	Τ	Τ				Γ															
			$\dagger \dagger$	$\dagger \dagger$	十	H	+	$\dagger \dagger$	t	T	H	T	十	T	T	T	T		Г									П	T			
			++	╫	+	H	+	H	+	+	H	╁	+	十	╁	t	T		-			_	\vdash		\vdash	一	Н	H	T	$\dagger \dagger$	1	
		<u> </u>	$\downarrow \downarrow$	44	\bot	$oldsymbol{\downarrow}$	\bot	\sqcup	1	\perp	$oldsymbol{arphi}$	4	_	+	╀-	╀	╀	├-	⊢	⊢	_	⊢	╀	\vdash	┢	-	\vdash	H	+	H	H	
								Ш									<u> </u>		L				L				ليا	Ц		Ш	Ц	
Relinquished by		Received	by				I		Tlr			Ţ		Dat			_							Addi	tion	al Re	quire	eme	nts			
Nicole Grimm		JP .						13	<u>' </u>	8	<u>, </u>		7/2					0		DD ite-(W On E	DT		5	State	Syst	em N	lo: _				
HPP		Mt	1					1	8	43	~ [^]		7/	2	6/	21	上															
MH		MH					T				15			7/.	26		1	0	CA Ge		acke	er	Fa	acility	/ Glo	bai II) No:					
J*/17		1 177					十			<u> </u>	-	+						-			вро		Sar	mplin	g Co	mpa	ny Lo	og C	ode:		_	

Los Angeles (Service Center) 310-743-5711 1230 E 233rd St #205, Carson CA 90745

San Diego Laboratory (3055) 760-930-2555 2722 Loker Ave West, Ste A, Carlsbad CA 92010 North Bay Laboratory (2303) 707-769-3128 110 Liberty Street, Petaluma CA 94952

Bay Area Laboratory (2728) 925-828-6226 262 Rickenbacker Circle, Livermore CA 94551

Central Valley Laboratory (2922) 916-686-5190 9090 Union Park Way #113, Elk Grove CA 95624

Chain of Custody Record

Reports and Invoices delivered by email as PDF files

clientservices@alpha-labs.com

TAT

Lab No.	21	4	32	55

Report to	Invoice	to (if different)				Pı	rojec	t Infe	,								-	naly	sis i	Requ	iest								TAT	<u>r</u>	<u> </u>	Temp *C
Company:	Contact:	20 (11 411-01-01-0)		Pro	oject	Nam					7					П			\Box		Ī	\Box							tand			Ukiah
Todd Groundwater				R	toun			Wate	r Q	ualit	У								-							1	1		10-da	ау	1	25
	Email Address:			Pro	niect	Num		line	_		\dashv	1		ı		l				l	ı	Cd Cr Cu	2		l		ı		0		┛	Livermore
Attn:	Email Address.			- [' "	Jool	· · · · · ·					ı				ı	- 1						ا چ	É			1	Γ		RUS		1	1.7
Nicole Grimm											_			l	- 1	ļ			γ			8	Sa					5-0	day :	25%	ŀ	Elk Grove
Phone:	Phone:			PC) Nu	mber	:				ı	le II	l I	ļ	ı			1	8	l	ž	Ba	Sa		1	1			0			0.010
510-747 -69 20											┛	Sample ID			1		- 1		ge/		Fe K Mg Na	As B	ž	١	<u>≈</u>			2-0	_	75%	7	Petaluma
Physical Address:				Fre	eque	ncy:							titra	ı					흹		E	<u>₹</u>	Š.		Meta				0		١	retaluma
2490 Mariner Square Loop, Suite 215, Ala	meda CA 94501											of Containers per	GW 30hr Quantifray	₹			l		de/	Ifate	Ö	<u>۲</u>	Ž	되	<u>₹</u>				Oth	er	1	Cadabad
Email address:			Cor	ntaine	ŗŢ	Pres	erva	tion	Ą	/latrix		ntair	Ohr (<u>f</u>				ı	퉏	ng	etals	eta	etals	≸	issol	Ì			0			Carlsbad
ngrimm@toddgroundwater.com		ľ	H									ပ္ခ်	W.3	달	章			1	2	2	Ε.	80 E	8. E	2	ο̈́	<u>.</u>		ĺ	,	days	L	
Field Sampler - Printed Name and Signature	:			l →			П		ater	_		ě		ran	hlora				힐	ž	8	8	8	245	ig l	gest	, ,	_ 	oly :		4	Los Angeles
Nicole Grimm 7		<u> </u>		Poly bottle ↓ Glass jar		ျ			<u>ق</u>	wate	 	Total Number	BAL - TCEC	BAL - Color and Turbidity	NB - Perchlorate	اي	_	<u>.</u>	Alkalinity, Total / Chloride / Fluoride / MBAS	Nitrate as N / TDS / Sulfate	Dissolved 200.7 metals - Ca	Dissolved 200.8 metals - Ag Al As B Ba Be	Dissolved 200.8 metals - Mn Mo Ni Pb Sb Se TI V Zn	Dissolved 245.1 CVAA - Hg	Lab Filtration for Dissolved Metals	Metals Digestion	, I		7	ТТ	1	
1110		led on	ass I	d y bo	١	Z Z	S	<u> </u>	īķ.	asi ≅	her	tai	AL-	AL-	8	HAA5	THM T	Sulfide	lkali	İta	isso	isso	issc	issc	ab F	/eta		٤١٥	٥	Half G	탏	Source Code
Sample Identification	Time	Date	6 🗓	2 0	Ŏ.	킬프	토	5 ž	힉	<u>≽ ഗ</u>	P	7	-	В	Z	Ξ_		<u>"</u>	╣	_			-		ᅱ	_	\vdash	7	, 	幵	쒸	
SSWD #11	10:15	7/26/21		×	Ц	×	Ш	Ц	×	\bot	Ц	1	x					_		_							\square	\dashv	+	${f H}$	×	
•			×		11			×	x			1		×														Ш	\perp	Ш		
		†	+	I,	П		П	×	×	T	П	1			x													×		Ш	ı	
	1	1	+	Ĥ	$oldsymbol{H}$	╁	╁	+	Н	┿	Н	١.	╁	\vdash	\vdash				\dashv	_	_		Н				П	廾	十	$\dagger \dagger$	†	
			×	Ш	Ц	_	\sqcup	<u> </u>	Ľ	\bot	\sqcup	1	↓ _	L	Н	×			\dashv				\vdash		Н		\vdash	H	+	${f H}$	+	
			×		Ц	×			×		Ц	3					х											Ц	4	\coprod	_	
				x				×	x			1	ļ					x										×		Ш		
				_x	П		П	×	×		Τ	1							x	x	х	х	×	×	×	х		П		x		
			+	H	Н	+	H	十	H	+	+	┢	╅			_		_						<u> </u>			П	П	Ť	П	T	
	ļ		$oldsymbol{\perp}$	Н	Н	\vdash	₩		H	+	╁	-	╁	⊢	-	┝	├	_			┝		-	-	_		\vdash	H	+	₩	\dashv	
					Ш	Ш	Ц		Ц	\perp				_		L	_	_			_	L	<u> </u>	_		_	\sqcup	Н	4	\dashv	Ц	
													1										1			l			┙			
		1	H	$\dagger \dagger$	Ħ	十	$\dagger \dagger$	\top	П	十	T	T	T	Γ	Π		Γ											П		\prod		
		Bassing!		Ш	Ш	Ш	╀┦	Щ.	Ilm	ᆫᆜ		╀	J	Dat	<u></u>	L	┼─	L	L	<u> </u>	Щ	Ц_	Ь,	i Addi	tions	l Re	quire	لب eme	nts	لــــــــــــــــــــــــــــــــــــــ	1	
Relinquished by		Received !	IJ				+-	/				╁	7/2	7	2	7	1	_	CA	DD	w								****			
Micole Grimm	/	//					+′					+	/_	1-			1	0			on E	DT		S	State	Syst	tem N	lo: -				
187		ME	4					12	36	15	_		<u> 1/</u>	<u> 24</u>	2/2	<u>!l</u>								****	.				_			
MH		Mt						2	2	43	-		1	/2	26			0	CA Ge		acke	er	Fa	cility	Glot	oai II	O No:	_				
1"177		7-11	/			_	十		<u></u>	<u> </u>		十					1	•			вро		Sar	nplin	g Co	mpa	ny Lo	ng Co	ode:			
							1_																									

Los Angeles (Service Center) 310-743-5711 1230 E 233rd St #205, Carson CA 90745

San Diego Laboratory (3055) 760-930-2555 2722 Loker Ave West, Ste A, Carlsbad CA 92010 North Bay Laboratory (2303) 707-769-3128 110 Liberty Street, Petaluma CA 94952

Bay Area Laboratory (2728) 925-828-6226 262 Rickenbacker Circle, Livermore CA 94551

Central Valley Laboratory (2922) 916-686-5190 9090 Union Park Way #113, Elk Grove CA 95624

Chain of Custody Record

Reports and Invoices delivered by email as PDF files

clientservices@alpha-labs.com

	210	27EC		4		U
Lab No.	70	7077	Pg_	1	of_	

Report to	Invoice	to (if different)					Pro	oject	t inn	<u> </u>		_	<u> </u>						Anar	ys is	Keq	nest				_			—		<u> </u>	ᆜ	10mp C
Company:	Contact:					ect Na und 3			Al ate		IK	4,																		Stan 10-			Ukiah ∕
Todd Groundwater	1				Kol	Jna J		SK V Iasel)r u	(Uanc	^{ty}										İ	,	ا ۽ ا	.					0	•		25
Attn:	Email Address:			T	Proje	ect Nu	umb	er:				\neg									-		C, C		.				⊢	RUS		_	Livermore
Nicole Grimm									****											S)			Dissolved 200.8 metals - Ag Al As B Ba Be Cd Cr Cu	Dissolved 200.8 metals - Mn Mo Ni Pb Sb Se TI V Zn						-day	259		1.7
Phone:	Phone:			F	PO N	Numb	er:						<u>ē</u>							MB/		S	Ba B	b Sb						0)		Elk Grove
510-747-6920				\perp									Sample ID	>						Alkalinity, Total / Chloride / Fluoride / MBAS		Fe K Mg Na	As B	N N		2 <u>8</u>			2	-day		%	Petaluma
Physical Address:				ĮF	-requ	uency	y:							ıtitra						Fluo	- 1	F.	Ϋ́	Σ		Met				0)		retaluma
2490 Mariner Square Loop, Suite 215, Ala	meda CA 94501												Ser S	Duar	<u>⊊</u>					de /	fate	S	٠¥	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	운"	Š			Г	Otl		コ	
Email address:			<u>~~</u>	ontain	ner	Pr	eser	rvatio	ion	H	Matrix	X	ntai	يَّو	pig					hlori	Su'	etals	etals	etals	≸	issol				0)		Carlsbad
ngrimm@toddgroundwater.com		J											of Containers per	× 3	E E	ate				J/C	TDS	Ē	.8 m	8 E	0	ا م	<u>8</u>				day	vs.	
Field Sampler - Printed Name and Signature	-			اِحا						ater	*		ĕ) 	م a	등				Tota	ż	200	200	200	1245	tion 1	gesti		F	Poly			Los Angeles
Nicole brimn	~~~		<u>aal</u>	g g	<u>a</u>	ဒ္ဓ				ē	wate		E I	Þ	3	Perc	, n	_	يو ا	inity,	te as	lved	olved	S S	Š	iltra	S D		_	Ť	_	_	
Sample Identification	Samp Time	oled on Date	40mL vial Glass bottle	Sign P	Glass	Na2S	달	SE SE	None	Drinkii	Waste	Other	Total Number	BAL - TCEC GW 30hr Quantitray	BAL - Color and Turbidity	NB - Perchlorate	HAA	É	Sulfide	Alkali	Nitrate as N / TDS / Sulfate	Dissolved 200.7 metals -	Disso	Disso	Dissolved 245.1 CVAA - Hg	Lab Filtration for Dissolved Metals	Metals Digestion		250m	500mL	Haff .	bacti	Source Code
55WD \$2	10:30	7/26/21	Ì	×		×	T	T	\prod	×			1	×																	T	×	
			×	\prod	十	\prod	T	T	×	×	T	\prod	1		×										\bigcap				П		T		
			十	×	十	#	十	+	×	×	\top	11	1			x		T						П	П	Г		П	×	T	T	\prod	
			Τ,	<u>, </u>	十	#	十	†,	,	×	1	†	1				×							П				П	П	十	T	П	
			I,	+	十	T _x	十	十	$\dagger \dagger$	×	十	十	3					×						П		一	厂	П	Π	_	+	\prod	
			H	 	十	+	什	+,	*	×	十	+	1	一	\dagger	\vdash		\vdash	×					H		\vdash	\vdash		×	十	\dagger	$\dagger \dagger$	
		1	H	#	十	+	H	+	╫	Ĥ	+	+	1	十	+	-	┝	\vdash		×	×	×	x	x	x	×	×	H	H	十	+	H	
			H	+	+	H	H	+	+	Ĥ	+	+	├	\vdash	\vdash	+-	┝	\vdash		Î	<u> </u>	Ĥ	_	H	<u> </u>	Ë	Ë	\vdash	H	十	+	H	
	1	<u>'</u>	igoplus	#	\dashv	┦	H	+	+	dash	\vdash	+	╀	-	╀	├-	├-	-			┢		ļ	H	\vdash	├	├	dash	H	\vdash	+	+	
			$oxed{+}$	$oldsymbol{\perp}$	H	╀	H	+	+	dash	${f H}$	+	╀	╀	╀	╀	\vdash	-	├		_	\vdash	-	\vdash	_	├-	├	\vdash	H	$oldsymbol{+}$	+	H	
		<u> </u>	Щ	卫	Ц	\perp	Ц		\perp	L	4	\perp	丄	L	igspace	_	L	_				_		igspace	<u>_</u>	丄	╙	┦	Ц	Ц	+	Ш	
				\[\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	\mathbb{L}	1							1																				
Relinquished by	' 	Received	by_				コ	————— ———		Tim			匚		Dat										Addi	tions	al Re	quire	eme	nts			
Micole Grim		M						11	73	8	7 —]2	10	26/	12	_		0		DD\ ite-C	W On E	DT		S	State	Syst	tem N	lo:				
1/81		MH	<u> </u>						18	4	5		$oldsymbol{ol}}}}}}}}}}}}}}$	1/	2	s/:	2/	一															
MH		MH	<u>. </u>								45		$oldsymbol{oldsymbol{oldsymbol{oldsymbol{eta}}}$	1	1/2	6/	21		0		oTra	acke epor						O No:					
								1										İ		ED	r K	epor	ι	Ou	.,			,	, g O		•		

WORK ORDER

21G3255

Alpha Analytical Laboratories Ukiah to North Bay Chain of Custody

Client:	Todd Groundwater	Client Code:	DP_TODENG	Bid:	Round 3 ASR Water Quality
Project:	Round 3 ASR Water Quality Baseline	Project Number:	Round 3 ASR Water	Qualit PO #:	

Date Due:

08/10/21 15:00 (10 day TAT)

Received By:

Martin J. Henebury

Logged In By: Sheri L. Speaks

Date Received: 07/26/21 22:45

Date Logged 07/27/21 07:13

Samples Received at: ______ deg C

All containers received and intact:

YES

NO

Printed: 7/27/2021 7:30:16AM

Analysis	Department	Expires	Comments	
21G3255-01 SSWD 5 [Water] NB Perchlorate EPA 314.0	Sampled 07/26/21 09:20 NB Wet Chem	08/23/21 23:59		
21G3255-02 SSWD 7 [Water] NB Perchlorate EPA 314.0	Sampled 07/26/21 10:00 NB Wet Chem	08/23/21 23:59		
21G3255-03 SSWD #11 [Wate NB Perchlorate EPA 314.0	er] Sampled 07/26/21 10 NB Wet Chem	: 15 08/23/21 23:59		
21G3255-04 SSWD #2 [Wate NB Perchlorate EPA 314.0	er] Sampled 07/26/21 10:3	30 08/23/21 23:59		

Containers Supplied:

250mL Poly Unpres (C)

250mL Poly Unpres (C)

250mL Poly Unpres (C)

250mL Poly Unpres (C)

Relinquished By

Date

Time

Received By

Date

Timo

Relinguished By

Date

Time

Received By

Date

Time

Alpha Analytical Laboratories, Inc.

email: clientservices@alpha-labs.com

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

24 September 2021

Todd Groundwater

Attn: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Alameda, CA 94501

RE: Round 3 ASR Water Quality Baseline

Work Order: 21H2617

Enclosed are the results of analyses for samples received by the laboratory on 08/18/21 22:15. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jeanette L. Poplin For David S. Pingatore

Jeanette Popli

Project Manager

Alpha Analytical Laboratories, Inc.

email: clientservices@alpha-labs.com

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501

Project Number: Round 3 ASR Water Quality Baseline

Reported: 09/24/21 14:03

Bay Area: 262 Rickenbacker Circle | Livermore, CA 94551 | T: 925-828-6226 | F: 925-828-6309 | ELAP# 2728 Central Valley: 9090 Union Park Way Suite 113 | Elk Grove, CA 95624 | T: 916-686-5190 | F: 916-686-5192 | ELAP# 2922 North Bay: 110 Liberty Street | Petaluma, CA 94952 | T: 707-769-3128 | F: 707-769-8093 | ELAP# 2303 San Diego: 2722 Loker Avenue West Suite A | Carlsbad, CA 92010 | T: 760-930-2555 | F: 760-930-2510 | ELAP# 3055

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
3121	21H2617-01	Water	08/18/21 08:38	08/18/21 22:15
3123	21H2617-02	Water	08/18/21 12:00	08/18/21 22:15

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline Project Number: Round 3 ASR Water Quality Baseline

Alameda, CA 94501

Reported: 09/24/21 14:03

	Result	Reporting Limit Dilution	on Batch	Prepared	Analyzed	ELAP# Method	Note
3121 (21H2617-01)		Sample Type: Water		Sample	d: 08/18/21 08:38	8	
Metals by EPA 200 Series Methods				_			
Silica (SiO2)	18 mg/L	1.0 1	AI13078	09/01/21 11:47	09/03/21 15:15	2303 EPA 200.7	
Calcium	52 mg/L	1.0 1	AH14695	08/31/21 08:57	09/03/21 18:06	1551 EPA 200.7	
Chromium, hexavalent	11 ug/L	1.0 1	AH14395	08/23/21 15:19	08/24/21 00:46	1551 EPA 218.6	
Magnesium	59 mg/L	1.0 1	AH14695	08/31/21 08:57	09/03/21 18:06	1551 EPA 200.7	
Metals by EPA Method 200.8 ICP/MS							
Cobalt	ND ug/L	0.40 4	AH14675	08/27/21 13:50	08/30/21 17:01	1551 EPA 200.8	R-01
Uranium	2.9 pCi/l	1.0 4	AH14675	08/27/21 13:50	08/30/21 17:01	1551 EPA 200.8	
Conventional Chemistry Parameters by Al	PHA/EPA Methods						
Ammonia as NH3	ND mg/L	0.50 1	AI13121	09/07/21 09:30	09/07/21 16:30	1551 SM4500NH3B,C	
Hardness, Total	374 mg/L	5 1	AH14695	08/31/21 08:57	09/03/21 18:06	1551 SM2340B	
Phosphorus, total	0.079 mg/L	0.040 1	AH14650	08/27/21 10:18	08/27/21 16:20	1551 SM4500-PE	
Total Organic Carbon	ND mg/L	1.00 1	AH14594	08/31/21 14:40	09/01/21 00:45	1551 SM5310C	
Volatile Organic Compounds by EPA Meth	nod 524.2						
Acetone	ND ug/L	5.0 1	AH14583	08/26/21 12:00	08/26/21 15:32	1551 EPA 524.2	
Acrylonitrile	ND ug/L	5.0 1	AH14583	08/26/21 12:00	08/26/21 15:32	1551 EPA 524.2	
Benzene	ND ug/L	0.50 1	AH14583	08/26/21 12:00	08/26/21 15:32	1551 EPA 524.2	
Bromobenzene	ND ug/L	0.50 1	AH14583	08/26/21 12:00	08/26/21 15:32	1551 EPA 524.2	
Bromochloromethane	ND ug/L	0.50 1	AH14583	08/26/21 12:00	08/26/21 15:32	1551 EPA 524.2	
Bromodichloromethane	ND ug/L	1.0 1	AH14583	08/26/21 12:00	08/26/21 15:32	1551 EPA 524.2	
Bromoform	ND ug/L	1.0 1	AH14583	08/26/21 12:00	08/26/21 15:32	1551 EPA 524.2	
Bromomethane	ND ug/L	0.50 1	AH14583	08/26/21 12:00	08/26/21 15:32	1551 EPA 524.2	
n-Butylbenzene	ND ug/L	0.50 1	AH14583	08/26/21 12:00	08/26/21 15:32	1551 EPA 524.2	
sec-Butylbenzene	ND ug/L	0.50 1	AH14583	08/26/21 12:00	08/26/21 15:32	1551 EPA 524.2	
tert-Butylbenzene	ND ug/L	0.50 1	AH14583	08/26/21 12:00	08/26/21 15:32	1551 EPA 524.2	
Carbon disulfide	ND ug/L	0.50 1	AH14583	08/26/21 12:00	08/26/21 15:32	1551 EPA 524.2	
Carbon tetrachloride	ND ug/L	0.50 1	AH14583	08/26/21 12:00	08/26/21 15:32	1551 EPA 524.2	
Chlorobenzene	ND ug/L	0.50 1	AH14583	08/26/21 12:00	08/26/21 15:32	1551 EPA 524.2	
Chloroethane	ND ug/L	0.50 1	AH14583	08/26/21 12:00	08/26/21 15:32	1551 EPA 524.2	
Chloroform	ND ug/L	1.0 1	AH14583	08/26/21 12:00	08/26/21 15:32	1551 EPA 524.2	
Chloromethane	ND ug/L	0.50 1	AH14583	08/26/21 12:00	08/26/21 15:32	1551 EPA 524.2	
2-Chlorotoluene	ND ug/L	0.50 1	AH14583	08/26/21 12:00	08/26/21 15:32	1551 EPA 524.2	
4-Chlorotoluene	ND ug/L	0.50 1	AH14583	08/26/21 12:00	08/26/21 15:32	1551 EPA 524.2	
Dibromochloromethane	ND ug/L	1.0 1	AH14583	08/26/21 12:00	08/26/21 15:32	1551 EPA 524.2	
Dibromomethane	ND ug/L	0.50 1	AH14583	08/26/21 12:00	08/26/21 15:32	1551 EPA 524.2	
1,2-Dichlorobenzene	ND ug/L	0.50 1	AH14583	08/26/21 12:00	08/26/21 15:32	1551 EPA 524.2	
1,3-Dichlorobenzene	ND ug/L	0.50 1	AH14583	08/26/21 12:00	08/26/21 15:32	1551 EPA 524.2	
1,4-Dichlorobenzene	ND ug/L	0.50 1	AH14583	08/26/21 12:00	08/26/21 15:32	1551 EPA 524.2	
Dichlorodifluoromethane	ND ug/L	0.50 1	AH14583	08/26/21 12:00	08/26/21 15:32	1551 EPA 524.2	
1,1-Dichloroethane	ND ug/L	0.50 1	AH14583	08/26/21 12:00	08/26/21 15:32	1551 EPA 524.2	
1,2-Dichloroethane	ND ug/L	0.50 1	AH14583	08/26/21 12:00	08/26/21 15:32	1551 EPA 524.2	

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501

Project Number: Round 3 ASR Water Quality Baseline

Reported: 09/24/21 14:03

	Result	Reporting Limit Dilut	ion Ba	atch	Prepared	Analyzed	ELAP#	Method	Note
3121 (21H2617-01)		Sample Type: Wate	r		Sampled	l: 08/18/21 08:	38		
Volatile Organic Compounds by EPA Metho	od 524.2 (cont'd)								
1,1-Dichloroethene	ND ug/L	0.50 1	AH	14583	08/26/21 12:00	08/26/21 15:3	32 1551	EPA 524.2	
cis-1,2-Dichloroethene	ND ug/L	0.50 1	AH	14583	08/26/21 12:00	08/26/21 15:3	32 1551	EPA 524.2	
trans-1,2-Dichloroethene	ND ug/L	0.50 1	AH	14583	08/26/21 12:00	08/26/21 15:3	32 1551	EPA 524.2	
1,3-Dichloropropene (total)	ND ug/L	0.50 1	AH	14583	08/26/21 12:00	08/26/21 15:3	32 1551	EPA 524.2	
1,2-Dichloropropane	ND ug/L	0.50 1	AH	14583	08/26/21 12:00	08/26/21 15:3	32 1551	EPA 524.2	
1,3-Dichloropropane	ND ug/L	0.50 1	AH	14583	08/26/21 12:00	08/26/21 15:3	32 1551	EPA 524.2	
2,2-Dichloropropane	ND ug/L	0.50 1	AH	14583	08/26/21 12:00	08/26/21 15:3	32 1551	EPA 524.2	
1,1-Dichloropropene	ND ug/L	0.50 1	AH	14583	08/26/21 12:00	08/26/21 15:3	32 1551	EPA 524.2	
cis-1,3-Dichloropropene	ND ug/L	0.50 1	AH	14583	08/26/21 12:00	08/26/21 15:3	32 1551	EPA 524.2	
trans-1,3-Dichloropropene	ND ug/L	0.50 1	AH	14583	08/26/21 12:00	08/26/21 15:3	32 1551	EPA 524.2	
Ethylbenzene	ND ug/L	0.50 1	AH	14583	08/26/21 12:00	08/26/21 15:3	32 1551	EPA 524.2	
Hexachlorobutadiene	ND ug/L	0.50 1	AH	14583	08/26/21 12:00	08/26/21 15:3	32 1551	EPA 524.2	
Isopropylbenzene	ND ug/L	0.50 1	AH	14583	08/26/21 12:00	08/26/21 15:3	32 1551	EPA 524.2	
p-Isopropyltoluene	ND ug/L	0.50 1	AH	14583	08/26/21 12:00	08/26/21 15:3	32 1551	EPA 524.2	
Methyl ethyl ketone	ND ug/L	5.0 1	AH	14583	08/26/21 12:00	08/26/21 15:3	32 1551	EPA 524.2	
Methyl isobutyl ketone	ND ug/L	5.0 1	AH	14583	08/26/21 12:00	08/26/21 15:3	32 1551	EPA 524.2	
Methyl tert-butyl ether	ND ug/L	3.0 1	AH	14583	08/26/21 12:00	08/26/21 15:3	32 1551	EPA 524.2	
Methylene chloride	ND ug/L	0.50 1	AH	14583	08/26/21 12:00	08/26/21 15:3	32 1551	EPA 524.2	
Naphthalene	ND ug/L	0.50 1	AH	14583	08/26/21 12:00	08/26/21 15:3	32 1551	EPA 524.2	
n-Propylbenzene	ND ug/L	0.50 1	AH	14583	08/26/21 12:00	08/26/21 15:3	32 1551	EPA 524.2	
Styrene	ND ug/L	0.50 1	AH	14583	08/26/21 12:00	08/26/21 15:3	32 1551	EPA 524.2	
1,1,1,2-Tetrachloroethane	ND ug/L	0.50 1	AH	14583	08/26/21 12:00	08/26/21 15:3	32 1551	EPA 524.2	
1,1,2,2-Tetrachloroethane	ND ug/L	0.50 1	AH	14583	08/26/21 12:00	08/26/21 15:3	32 1551	EPA 524.2	
Tetrachloroethene	ND ug/L	0.50 1	AH	14583	08/26/21 12:00	08/26/21 15:3	32 1551	EPA 524.2	
Toluene	ND ug/L	0.50 1	AH	14583	08/26/21 12:00	08/26/21 15:3	32 1551	EPA 524.2	
1,2,3-Trichlorobenzene	ND ug/L	0.50 1	AH	14583	08/26/21 12:00	08/26/21 15:3	32 1551	EPA 524.2	
1,2,4-Trichlorobenzene	ND ug/L	0.50 1	AH	14583	08/26/21 12:00	08/26/21 15:3	32 1551	EPA 524.2	
1,1,1-Trichloroethane	ND ug/L	0.50 1	AH	14583	08/26/21 12:00	08/26/21 15:3	32 1551	EPA 524.2	
1,1,2-Trichloroethane	ND ug/L	0.50 1	AH	14583	08/26/21 12:00	08/26/21 15:3	32 1551	EPA 524.2	
Trichloroethene	ND ug/L	0.50 1	AH	14583	08/26/21 12:00	08/26/21 15:3	32 1551	EPA 524.2	
Trichlorofluoromethane	ND ug/L	5.0 1	AH	14583	08/26/21 12:00	08/26/21 15:3	32 1551	EPA 524.2	
Trichlorotrifluoroethane	ND ug/L	10 1	AH	14583	08/26/21 12:00	08/26/21 15:3	32 1551	EPA 524.2	
1,2,4-Trimethylbenzene	ND ug/L	0.50 1	AH	14583	08/26/21 12:00	08/26/21 15:3	32 1551	EPA 524.2	
1,3,5-Trimethylbenzene	ND ug/L	0.50 1	AH	14583	08/26/21 12:00	08/26/21 15:3	32 1551	EPA 524.2	
Vinyl chloride	ND ug/L	0.50 1			08/26/21 12:00	08/26/21 15:3			
m,p-Xylene	ND ug/L	0.50 1			08/26/21 12:00	08/26/21 15:3			
o-Xylene	ND ug/L	0.50 1	AH	14583	08/26/21 12:00	08/26/21 15:3	32 1551	EPA 524.2	
Xylenes (total)	ND ug/L	0.50 1			08/26/21 12:00	08/26/21 15:3			
Trihalomethanes (total)	ND ug/L	0.50 1			08/26/21 12:00	08/26/21 15:3			
Surrogate: Bromofluorobenzene	110 %	70-130			08/26/21 12:00	08/26/21 15:3			

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215 Project: Round 3 ASR Water Quality Baseline Reported: Alameda, CA 94501 Project Number: Round 3 ASR Water Quality Baseline 09/24/21 14:03

	Result	Reporting Limit Dilution	n Batch	Prepared	Analyzed	ELAP#	Method	Note
3121 (21H2617-01)		Sample Type: Water		Sampled	I: 08/18/21 08:38	8		
Volatile Organic Compounds by EPA Metho	d 524.2 (cont'd)							
Surrogate: Dibromofluoromethane	93.3 %	70-130	AH14583	08/26/21 12:00	08/26/21 15:32	1551	EPA 524.2	
Surrogate: Toluene-d8	105 %	70-130	AH14583	08/26/21 12:00	08/26/21 15:32	1551	EPA 524.2	
3123 (21H2617-02)		Sample Type: Water		Sampled	1: 08/18/21 12:00	0		
Metals by EPA 200 Series Methods								
Silica (SiO2)	33 mg/L	1.0 1	AI13078	09/01/21 11:47	09/03/21 15:15	2303	EPA 200.7	
Calcium	44 mg/L	1.0 1	AH14695	08/31/21 08:57	09/03/21 18:19	1551	EPA 200.7	
Chromium, hexavalent	11 ug/L	1.0 1	AH14395	08/23/21 15:19	08/24/21 02:12	1551	EPA 218.6	
Magnesium	25 mg/L	1.0 1	AH14695	08/31/21 08:57	09/03/21 18:19	1551	EPA 200.7	
Metals by EPA Method 200.8 ICP/MS								
Cobalt	1.8 ug/L	0.40 4	AH14675	08/27/21 13:50	08/30/21 17:09	1551	EPA 200.8	
Uranium	ND pCi/l	1.0 4	AH14675	08/27/21 13:50	08/30/21 17:09	1551	EPA 200.8	
Conventional Chemistry Parameters by API	HA/EPA Methods							
Ammonia as NH3	ND mg/L	0.50 1	AI13121	09/07/21 09:30	09/07/21 16:30	1551	SM4500NH3B,C	
Hardness, Total	213 mg/L	5 1	AH14695	08/31/21 08:57	09/03/21 18:19	1551	SM2340B	
Phosphorus, total	0.20 mg/L	0.040 1	AH14650	08/27/21 10:18	08/27/21 16:20	1551	SM4500-P E	
Total Organic Carbon	ND mg/L	1.00 1	AH14594	08/31/21 14:40	09/01/21 00:58	1551	SM5310C	
Volatile Organic Compounds by EPA Metho	d 524.2							
Acetone	ND ug/L	5.0 1	AH14583	08/26/21 12:00	08/26/21 16:05	1551	EPA 524.2	
Acrylonitrile	ND ug/L	5.0 1	AH14583	08/26/21 12:00	08/26/21 16:05	1551	EPA 524.2	
Benzene	ND ug/L	0.50 1	AH14583	08/26/21 12:00	08/26/21 16:05	1551	EPA 524.2	
Bromobenzene	ND ug/L	0.50 1	AH14583	08/26/21 12:00	08/26/21 16:05	1551	EPA 524.2	
Bromochloromethane	ND ug/L	0.50 1	AH14583	08/26/21 12:00	08/26/21 16:05	1551	EPA 524.2	
Bromodichloromethane	ND ug/L	1.0 1	AH14583	08/26/21 12:00	08/26/21 16:05	1551	EPA 524.2	
Bromoform	ND ug/L	1.0 1	AH14583	08/26/21 12:00	08/26/21 16:05	1551	EPA 524.2	
Bromomethane	ND ug/L	0.50 1	AH14583	08/26/21 12:00	08/26/21 16:05	1551	EPA 524.2	
n-Butylbenzene	ND ug/L	0.50 1	AH14583	08/26/21 12:00	08/26/21 16:05	1551	EPA 524.2	
sec-Butylbenzene	ND ug/L	0.50 1	AH14583	08/26/21 12:00	08/26/21 16:05	1551	EPA 524.2	
tert-Butylbenzene	ND ug/L	0.50 1	AH14583	08/26/21 12:00	08/26/21 16:05	1551	EPA 524.2	
Carbon disulfide	ND ug/L	0.50 1	AH14583	08/26/21 12:00	08/26/21 16:05	1551	EPA 524.2	
Carbon tetrachloride	ND ug/L	0.50 1	AH14583	08/26/21 12:00	08/26/21 16:05	1551	EPA 524.2	
Chlorobenzene	ND ug/L	0.50 1	AH14583	08/26/21 12:00	08/26/21 16:05	1551	EPA 524.2	
Chloroethane	ND ug/L	0.50 1	AH14583	08/26/21 12:00	08/26/21 16:05	1551	EPA 524.2	
Chloroform	ND ug/L	1.0 1	AH14583	08/26/21 12:00	08/26/21 16:05	1551	EPA 524.2	
Chloromethane	ND ug/L	0.50 1	AH14583	08/26/21 12:00	08/26/21 16:05	1551	EPA 524.2	
2-Chlorotoluene	ND ug/L	0.50 1	AH14583	08/26/21 12:00	08/26/21 16:05	1551	EPA 524.2	
4-Chlorotoluene	ND ug/L	0.50 1	AH14583	08/26/21 12:00	08/26/21 16:05	1551	EPA 524.2	
Dibromochloromethane	ND ug/L	1.0 1	AH14583	08/26/21 12:00	08/26/21 16:05	1551	EPA 524.2	
Dibromomethane	ND ug/L	0.50 1	AH14583	08/26/21 12:00	08/26/21 16:05	1551	EPA 524.2	
1,2-Dichlorobenzene	ND ug/L	0.50 1	AH14583	08/26/21 12:00	08/26/21 16:05	1551	EPA 524.2	

Reported:

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501

Project Number: Round 3 ASR Water Quality Baseline 09/24/21 14:03

	Result	Reporting Limit D	Dilution	Batch	Prepared	Analyzed	ELAP#	Method	Note
3123 (21H2617-02)		Sample Type: W	ater		Sampled	: 08/18/21 12:	00		
Volatile Organic Compounds by EPA Meth	nod 524.2 (cont'd)								
1,3-Dichlorobenzene	ND ug/L	0.50	1	AH14583	08/26/21 12:00	08/26/21 16:	05 1551	EPA 524.2	
1,4-Dichlorobenzene	ND ug/L	0.50	1	AH14583	08/26/21 12:00	08/26/21 16:	05 1551	EPA 524.2	
Dichlorodifluoromethane	ND ug/L	0.50	1	AH14583	08/26/21 12:00	08/26/21 16:	05 1551	EPA 524.2	
1,1-Dichloroethane	ND ug/L	0.50	1	AH14583	08/26/21 12:00	08/26/21 16:	05 1551	EPA 524.2	
1,2-Dichloroethane	ND ug/L	0.50	1	AH14583	08/26/21 12:00	08/26/21 16:	05 1551	EPA 524.2	
1,1-Dichloroethene	ND ug/L	0.50	1	AH14583	08/26/21 12:00	08/26/21 16:	05 1551	EPA 524.2	
cis-1,2-Dichloroethene	ND ug/L	0.50	1	AH14583	08/26/21 12:00	08/26/21 16:	05 1551	EPA 524.2	
trans-1,2-Dichloroethene	ND ug/L	0.50	1	AH14583	08/26/21 12:00	08/26/21 16:	05 1551	EPA 524.2	
1,3-Dichloropropene (total)	ND ug/L	0.50	1	AH14583	08/26/21 12:00	08/26/21 16:	05 1551	EPA 524.2	
1,2-Dichloropropane	ND ug/L	0.50	1	AH14583	08/26/21 12:00	08/26/21 16:	05 1551	EPA 524.2	
1,3-Dichloropropane	ND ug/L	0.50	1	AH14583	08/26/21 12:00	08/26/21 16:	05 1551	EPA 524.2	
2,2-Dichloropropane	ND ug/L	0.50	1	AH14583	08/26/21 12:00	08/26/21 16:	05 1551	EPA 524.2	
1,1-Dichloropropene	ND ug/L	0.50	1	AH14583	08/26/21 12:00	08/26/21 16:	05 1551	EPA 524.2	
cis-1,3-Dichloropropene	ND ug/L	0.50	1	AH14583	08/26/21 12:00	08/26/21 16:	05 1551	EPA 524.2	
trans-1,3-Dichloropropene	ND ug/L	0.50	1	AH14583	08/26/21 12:00	08/26/21 16:	05 1551	EPA 524.2	
Ethylbenzene	ND ug/L	0.50	1	AH14583	08/26/21 12:00	08/26/21 16:	05 1551	EPA 524.2	
Hexachlorobutadiene	ND ug/L	0.50	1	AH14583	08/26/21 12:00	08/26/21 16:	05 1551	EPA 524.2	
Isopropylbenzene	ND ug/L	0.50	1	AH14583	08/26/21 12:00	08/26/21 16:	05 1551	EPA 524.2	
p-Isopropyltoluene	ND ug/L	0.50	1	AH14583	08/26/21 12:00	08/26/21 16:	05 1551	EPA 524.2	
Methyl ethyl ketone	ND ug/L	5.0	1	AH14583	08/26/21 12:00	08/26/21 16:	05 1551	EPA 524.2	
Methyl isobutyl ketone	ND ug/L	5.0	1	AH14583	08/26/21 12:00	08/26/21 16:	05 1551	EPA 524.2	
Methyl tert-butyl ether	ND ug/L	3.0	1	AH14583	08/26/21 12:00	08/26/21 16:	05 1551	EPA 524.2	
Methylene chloride	ND ug/L	0.50	1	AH14583	08/26/21 12:00	08/26/21 16:	05 1551	EPA 524.2	
Naphthalene	ND ug/L	0.50	1	AH14583	08/26/21 12:00	08/26/21 16:	05 1551	EPA 524.2	
n-Propylbenzene	ND ug/L	0.50	1	AH14583	08/26/21 12:00	08/26/21 16:	05 1551	EPA 524.2	
Styrene	ND ug/L	0.50	1	AH14583	08/26/21 12:00	08/26/21 16:	05 1551	EPA 524.2	
1,1,1,2-Tetrachloroethane	ND ug/L	0.50	1	AH14583	08/26/21 12:00	08/26/21 16:	05 1551	EPA 524.2	
1,1,2,2-Tetrachloroethane	ND ug/L	0.50	1	AH14583	08/26/21 12:00	08/26/21 16:	05 1551	EPA 524.2	
Tetrachloroethene	ND ug/L	0.50	1	AH14583	08/26/21 12:00	08/26/21 16:	05 1551	EPA 524.2	
Toluene	ND ug/L	0.50	1	AH14583	08/26/21 12:00	08/26/21 16:	05 1551	EPA 524.2	
1,2,3-Trichlorobenzene	ND ug/L	0.50	1	AH14583	08/26/21 12:00	08/26/21 16:	05 1551	EPA 524.2	
1,2,4-Trichlorobenzene	ND ug/L	0.50	1		08/26/21 12:00	08/26/21 16:			
1,1,1-Trichloroethane	ND ug/L	0.50	1	AH14583	08/26/21 12:00	08/26/21 16:	05 1551	EPA 524.2	
1,1,2-Trichloroethane	ND ug/L	0.50	1	AH14583		08/26/21 16:			
Trichloroethene	ND ug/L	0.50	1	AH14583	08/26/21 12:00	08/26/21 16:			
Trichlorofluoromethane	ND ug/L	5.0	1	AH14583		08/26/21 16:			
Trichlorotrifluoroethane	ND ug/L	10	1		08/26/21 12:00	08/26/21 16:			
1,2,4-Trimethylbenzene	ND ug/L	0.50	1		08/26/21 12:00	08/26/21 16:			
1,3,5-Trimethylbenzene	ND ug/L	0.50	1	AH14583	08/26/21 12:00	08/26/21 16:			
Vinyl chloride	ND ug/L	0.50	1		08/26/21 12:00	08/26/21 16:			

Reported:

09/24/21 14:03

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215 Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501 Project Number: Round 3 ASR Water Quality Baseline

	Result	Reporting Limit Dilution	n Batch	Prepared	Analyzed	ELAP#	Method	Note
3123 (21H2617-02)		Sample Type: Water		Sampleo	1: 08/18/21 12:0)0		
Volatile Organic Compounds by EPA Method	d 524.2 (cont'd)							
m,p-Xylene	ND ug/L	0.50 1	AH14583	08/26/21 12:00	08/26/21 16:0	5 1551	EPA 524.2	
o-Xylene	ND ug/L	0.50 1	AH14583	08/26/21 12:00	08/26/21 16:0	5 1551	EPA 524.2	
Xylenes (total)	ND ug/L	0.50 1	AH14583	08/26/21 12:00	08/26/21 16:0	5 1551	EPA 524.2	
Trihalomethanes (total)	ND ug/L	0.50 1	AH14583	08/26/21 12:00	08/26/21 16:0	5 1551	EPA 524.2	
Surrogate: Bromofluorobenzene	112 %	70-130	AH14583	08/26/21 12:00	08/26/21 16:0	5 1551	EPA 524.2	
Surrogate: Dibromofluoromethane	94.5 %	70-130	AH14583	08/26/21 12:00	08/26/21 16:0	5 1551	EPA 524.2	
Surrogate: Toluene-d8	100 %	70-130	AH14583	08/26/21 12:00	08/26/21 16:0	5 1551	EPA 524.2	

Reported:

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215 Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501 09/24/21 14:03 Project Number: Round 3 ASR Water Quality Baseline

Metals by EPA 200 Series Methods - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AH14395 - General Prep										
Blank (AH14395-BLK1)				Prepared &	Analyzed:	08/23/21				
Chromium, hexavalent	ND	1.0	ug/L							
LCS (AH14395-BS1)				Prepared &	Analyzed:	08/23/21				
Chromium, hexavalent	9.27	1.0	ug/L	10.0		92.7	90-110			
Duplicate (AH14395-DUP1)	Sour	ce: 21H260	4-01	Prepared &	z Analyzed:	08/23/21				
Chromium, hexavalent	1.96	1.0	ug/L		2.00			2.07	20	
Matrix Spike (AH14395-MS1)	Sour	ce: 21H260	4-01	Prepared &	Analyzed:	08/23/21				
Chromium, hexavalent	10.9	1.0	ug/L	10.0	2.00	88.6	90-110			QM-07
Matrix Spike Dup (AH14395-MSD1)	Sour	ce: 21H260	4-01	Prepared &	Analyzed:	08/23/21				
Chromium, hexavalent	10.8	1.0	ug/L	10.0	2.00	87.7	90-110	0.804	20	QM-07
Batch AH14695 - Metals Digest										
Blank (AH14695-BLK1)				Prepared: (08/31/21 A	nalyzed: 09	/03/21			
Calcium	ND	1.0	mg/L							
Magnesium	ND	1.0	mg/L							
LCS (AH14695-BS1)				Prepared: (08/31/21 A	nalyzed: 09	/03/21			
Calcium	8.45	1.0	mg/L	8.00		106	85-115			
Magnesium	8.88	1.0	mg/L	8.00		111	85-115			
Duplicate (AH14695-DUP1)	Sour	ce: 21H264	0-04	Prepared: (08/31/21 A	nalyzed: 09	/03/21			
Calcium	5.03	1.0	mg/L		5.06			0.681	20	
Magnesium	1.08	1.0	mg/L		1.09			0.428	20	

Reported:

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215 Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501 09/24/21 14:03 Project Number: Round 3 ASR Water Quality Baseline

Metals by EPA 200 Series Methods - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AH14695 - Metals Digest										
Matrix Spike (AH14695-MS1)	Sour	ce: 21H264	0-04	Prepared: (08/31/21 Aı	nalyzed: 09	/03/21			
Calcium	13.5	1.0	mg/L	8.00	5.06	106	70-130			
Magnesium	9.94	1.0	mg/L	8.00	1.09	111	70-130			
Matrix Spike (AH14695-MS2)	Sour	ce: 21H267	5-03	Prepared: (08/31/21 Aı	nalyzed: 09	/03/21			
Calcium	14.9	1.0	mg/L	8.00	5.89	112	70-130			
Magnesium	11.6	1.0	mg/L	8.00	2.41	115	70-130			
Matrix Spike Dup (AH14695-MSD1)	Sour	ce: 21H264	0-04	Prepared: (08/31/21 Aı	nalyzed: 09	/03/21			
Calcium	13.8	1.0	mg/L	8.00	5.06	109	70-130	1.84	20	
Magnesium	9.83	1.0	mg/L	8.00	1.09	109	70-130	1.10	20	
Batch AI13078 - NB EPA 200 series										
Blank (AI13078-BLK1)				Prepared: (09/01/21 Aı	nalyzed: 09	/03/21			
Silica (SiO2)	ND	1.0	mg/L							
LCS (AI13078-BS1)				Prepared: (09/01/21 Aı	nalyzed: 09	/03/21			
Silica (SiO2)	5.13	1.0	mg/L	5.35		95.9	0-200			
LCS Dup (AI13078-BSD1)				Prepared: (09/01/21 Aı	nalyzed: 09	/03/21			
Silica (SiO2)	5.03	1.0	mg/L	5.35		94.0	0-200	1.90	200	
Matrix Spike (AI13078-MS1)	Sour	ce: 21H281	7-01	Prepared: ()9/01/21 Aı	nalyzed: 09	/03/21			
Silica (SiO2)	67.2	1.0	mg/L	5.35	73.9	NR	0-200			QM-

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501 Project Number: Round 3 ASR Water Quality Baseline

Reported: 09/24/21 14:03

Metals by EPA Method 200.8 ICP/MS - Quality Control

-		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AH14675 - EPA 200.8		·								
Blank (AH14675-BLK1)				Prepared: ()8/27/21 A	nalvzed: 08	3/30/21			
Cobalt	ND	0.10	ug/L							
Uranium	ND	1.0	pCi/l							
LCS (AH14675-BS1)				Prepared: (08/27/21 A	nalyzed: 08	3/30/21			
Cobalt	21.4	0.10	ug/L	20.0		107	85-115			
Uranium	13.3	1.0	pCi/l	13.4		99.1	85-115			
Duplicate (AH14675-DUP1)	Sou	rce: 21H226	1-01	Prepared: (08/27/21 A	nalyzed: 08	3/30/21			
Cobalt	ND	0.40	ug/L		ND			16.9	20	R-01
Uranium	ND	1.0	pCi/l		ND				20	
Matrix Spike (AH14675-MS1)	Sou	rce: 21H226	1-01	Prepared: (08/27/21 A	nalyzed: 08	3/30/21			
Cobalt	21.0	0.40	ug/L	20.0	ND	104	70-130			
Uranium	13.3	1.0	pCi/l	13.4	ND	99.3	70-130			
Matrix Spike (AH14675-MS2)	Sou	rce: 21H266	8-02	Prepared: (08/27/21 A	nalyzed: 08	3/30/21			
Cobalt	20.6	0.40	ug/L	20.0	ND	103	70-130			
Uranium	12.9	1.0	pCi/l	13.4	ND	96.1	70-130			
Matrix Spike Dup (AH14675-MSD1)	Sou	rce: 21H226	1-01	Prepared: (08/27/21 A	nalyzed: 08	3/30/21			
Cobalt	20.4	0.40	ug/L	20.0	ND	101	70-130	2.94	20	
Uranium	13.0	1.0	pCi/l	13.4	ND	97.4	70-130	1.94	20	

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215 Project: Round 3 ASR Water Quality Baseline Reported: Alameda, CA 94501 09/24/21 14:03 Project Number: Round 3 ASR Water Quality Baseline

Conventional Chemistry Parameters by APHA/EPA Methods - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Satch AH14594 - General Prep										
Blank (AH14594-BLK1)				Prepared &	Analyzed:	08/31/21				
Total Organic Carbon	ND	1.00	mg/L							
LCS (AH14594-BS1)				Prepared &	Analyzed:	08/31/21				
Total Organic Carbon	9.27	1.00	mg/L	10.0		92.7	85-115			
LCS Dup (AH14594-BSD1)				Prepared &	Analyzed:	08/31/21				
Total Organic Carbon	9.28	1.00	mg/L	10.0		92.8	85-115	0.141	20	
Duplicate (AH14594-DUP1)	Sour	rce: 21H242	8-02	Prepared &	Analyzed:	08/31/21				
Total Organic Carbon	ND	1.00	mg/L		ND			0.838	20	
Matrix Spike (AH14594-MS1)	Sour	rce: 21H242	8-02	Prepared &	Analyzed:	08/31/21				
Total Organic Carbon	10.1	1.00	mg/L	10.0	ND	92.0	70-130			
Matrix Spike Dup (AH14594-MSD1)	Sour	rce: 21H242	8-02	Prepared &	Analyzed:	08/31/21				
Total Organic Carbon	10.2	1.00	mg/L	10.0	ND	93.5	70-130	1.44	20	
Batch AH14650 - General Prep										
Blank (AH14650-BLK1)				Prepared &	Analyzed:	08/27/21				
Phosphorus, total	ND	0.040	mg/L							
LCS (AH14650-BS1)				Prepared &	Analyzed:	08/27/21				
Phosphorus, total	0.195	0.040	mg/L	0.200		97.5	85-115			
Duplicate (AH14650-DUP1)	Sour	rce: 21H232	6-01	Prepared &	Analyzed:	08/27/21				
Phosphorus, total	ND	0.040	mg/L		ND			2.67	20	

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215 Project: Round 3 ASR Water Quality Baseline Reported: Alameda, CA 94501 09/24/21 14:03 Project Number: Round 3 ASR Water Quality Baseline

Conventional Chemistry Parameters by APHA/EPA Methods - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AH14650 - General Prep										
Matrix Spike (AH14650-MS1)	Soui	rce: 21H232	6-01	Prepared &	Analyzed:	08/27/21				
Phosphorus, total	0.234	0.040	mg/L	0.200	ND	98.0	70-130			
Matrix Spike (AH14650-MS2)	Soui	rce: 21H261	7-01	Prepared &	: Analyzed:	08/27/21				
Phosphorus, total	0.268	0.040	mg/L	0.200	0.0790	94.5	70-130			
Matrix Spike Dup (AH14650-MSD1)	Soui	rce: 21H232	6-01	Prepared &	: Analyzed:	08/27/21				
Phosphorus, total	0.232	0.040	mg/L	0.200	ND	97.0	70-130	0.858	20	
Batch AH14695 - Metals Digest										
Blank (AH14695-BLK1)				Prepared: (08/31/21 A	nalyzed: 09	/03/21			
Hardness, Total	ND	5	mg/L							
Batch AI13121 - General Preparation										
LCS (AI13121-BS1)				Prepared &	Analyzed:	09/07/21				
Ammonia as NH3	6.17	0.50	mg/L	6.10		101	90-110			
LCS Dup (AI13121-BSD1)				Prepared &	: Analyzed:	09/07/21				
Ammonia as NH3	5.75	0.50	mg/L	6.10		94.2	90-110	7.13	20	
Matrix Spike (AI13121-MS1)	Soul	rce: 21H337	2-01	Prepared &	: Analyzed:	09/07/21				
Ammonia as NH3	11.5	0.50	mg/L	12.2	ND	94.2	85-115			
Matrix Spike Dup (AI13121-MSD1)	Soui	rce: 21H337	2-01	Prepared &	: Analyzed:	09/07/21				
Ammonia as NH3	11.7	0.50	mg/L	12.2	ND	96.0	85-115	1.84	20	

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501

Project Number: Round 3 ASR Water Quality Baseline

Reported: 09/24/21 14:03

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AH14583 - VOAs in Water GCMS										
Blank (AH14583-BLK1)				Prepared &	Analyzed:	08/26/21				
Acetone	ND	5.0	ug/L							
Acrylonitrile	ND	5.0	ug/L							
Benzene	ND	0.50	ug/L							
Bromobenzene	ND	0.50	ug/L							
Bromochloromethane	ND	0.50	ug/L							
Bromodichloromethane	ND	1.0	ug/L							
Bromoform	ND	1.0	ug/L							
Bromomethane	ND	0.50	ug/L							
n-Butylbenzene	ND	0.50	ug/L							
sec-Butylbenzene	ND	0.50	ug/L							
tert-Butylbenzene	ND	0.50	ug/L							
Carbon disulfide	ND	0.50	ug/L							
Carbon tetrachloride	ND	0.50	ug/L							
Chlorobenzene	ND	0.50	ug/L							
Chloroethane	ND	0.50	ug/L							
Chloroform	ND	1.0	ug/L							
Chloromethane	ND	0.50	ug/L							
2-Chlorotoluene	ND	0.50	ug/L							
4-Chlorotoluene	ND	0.50	ug/L							
Dibromochloromethane	ND	1.0	ug/L							
Dibromomethane	ND	0.50	ug/L							
1,2-Dichlorobenzene	ND	0.50	ug/L							
1,3-Dichlorobenzene	ND	0.50	ug/L							
1,4-Dichlorobenzene	ND	0.50	ug/L							
Dichlorodifluoromethane	ND	0.50	ug/L							
1,1-Dichloroethane	ND	0.50	ug/L							
1,2-Dichloroethane	ND	0.50	ug/L							
1,1-Dichloroethene	ND	0.50	ug/L							
cis-1,2-Dichloroethene	ND	0.50	ug/L							
trans-1,2-Dichloroethene	ND	0.50	ug/L							
1,3-Dichloropropene (total)	ND	0.50	ug/L							
1,2-Dichloropropane	ND	0.50	ug/L							
1,3-Dichloropropane	ND	0.50	ug/L							
2,2-Dichloropropane	ND	0.50	ug/L							
1,1-Dichloropropene	ND	0.50	ug/L							

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501 Project Number: Round 3 ASR Water Quality Baseline

Reported: 09/24/21 14:03

		Reporting		Spike	Source		%REC		RPD	FI
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AH14583 - VOAs in Water GCMS										
Blank (AH14583-BLK1)				Prepared &	Analyzed:	08/26/21				
cis-1,3-Dichloropropene	ND	0.50	ug/L							
trans-1,3-Dichloropropene	ND	0.50	ug/L							
Ethylbenzene	ND	0.50	ug/L							
Hexachlorobutadiene	ND	0.50	ug/L							
Isopropylbenzene	ND	0.50	ug/L							
p-Isopropyltoluene	ND	0.50	ug/L							
Methyl ethyl ketone	ND	5.0	ug/L							
Methyl tert-butyl ether	ND	3.0	ug/L							
Methyl isobutyl ketone	ND	5.0	ug/L							
Methylene chloride	ND	0.50	ug/L							
Naphthalene	ND	0.50	ug/L							
n-Propylbenzene	ND	0.50	ug/L							
Styrene	ND	0.50	ug/L							
1,1,1,2-Tetrachloroethane	ND	0.50	ug/L							
1,1,2,2-Tetrachloroethane	ND	0.50	ug/L							
Tetrachloroethene	ND	0.50	ug/L							
Toluene	ND	0.50	ug/L							
1,2,3-Trichlorobenzene	ND	0.50	ug/L							
1,2,4-Trichlorobenzene	ND	0.50	ug/L							
1,1,1-Trichloroethane	ND	0.50	ug/L							
1,1,2-Trichloroethane	ND	0.50	ug/L							
Trichloroethene	ND	0.50	ug/L							
Trichlorofluoromethane	ND	5.0	ug/L							
Trichlorotrifluoroethane	ND	10	ug/L							
1,2,4-Trimethylbenzene	ND	0.50	ug/L							
1,3,5-Trimethylbenzene	ND	0.50	ug/L							
Vinyl chloride	ND	0.50	ug/L							
m,p-Xylene	ND	0.50	ug/L							
o-Xylene	ND	0.50	ug/L							
Xylenes (total)	ND	0.50	ug/L							
Trihalomethanes (total)	ND	0.50	ug/L							
Surrogate: Bromofluorobenzene	27.6		ug/L	25.0		110	70-130			
Surrogate: Dibromofluoromethane	24.1		ug/L	25.0		96.6	70-130			
Surrogate: Toluene-d8	26.5		ug/L	25.0		106	70-130			

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501

Project Number: Round 3 ASR Water Quality Baseline

Reported: 09/24/21 14:03

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AH14583 - VOAs in Water GCMS										
LCS (AH14583-BS1)				Prepared &	Analyzed:	08/26/21				
Acetone	16.3	5.0	ug/L	20.0		81.4	70-130			
Acrylonitrile	4.31	5.0	ug/L	5.00		86.2	70-130			
Benzene	4.24	0.50	ug/L	5.00		84.8	70-130			
Bromobenzene	4.98	0.50	ug/L	5.00		99.6	70-130			
Bromochloromethane	4.71	0.50	ug/L	5.00		94.2	70-130			
Bromodichloromethane	4.33	1.0	ug/L	5.00		86.6	70-130			
Bromoform	4.67	1.0	ug/L	5.00		93.4	70-130			
Bromomethane	3.75	0.50	ug/L	5.00		75.0	70-130			
n-Butylbenzene	4.81	0.50	ug/L	5.00		96.2	70-130			
sec-Butylbenzene	4.77	0.50	ug/L	5.00		95.4	70-130			
tert-Butylbenzene	4.73	0.50	ug/L	5.00		94.6	70-130			
Carbon disulfide	3.77	0.50	ug/L	5.00		75.4	70-130			
Carbon tetrachloride	3.99	0.50	ug/L	5.00		79.8	70-130			
Chlorobenzene	4.53	0.50	ug/L	5.00		90.6	70-130			
Chloroethane	4.05	0.50	ug/L	5.00		81.0	70-130			
Chloroform	4.18	1.0	ug/L	5.00		83.6	70-130			
Chloromethane	5.00	0.50	ug/L	5.00		100	70-130			
2-Chlorotoluene	4.87	0.50	ug/L	5.00		97.4	70-130			
4-Chlorotoluene	4.75	0.50	ug/L	5.00		95.0	70-130			
Dibromochloromethane	4.53	1.0	ug/L	5.00		90.6	70-130			
Dibromomethane	4.41	0.50	ug/L	5.00		88.2	70-130			
1,2-Dichlorobenzene	4.33	0.50	ug/L	5.00		86.6	70-130			
1,3-Dichlorobenzene	4.89	0.50	ug/L	5.00		97.8	70-130			
1,4-Dichlorobenzene	4.30	0.50	ug/L	5.00		86.0	70-130			
Dichlorodifluoromethane	4.16	0.50	ug/L	5.00		83.2	70-130			
1,1-Dichloroethane	4.09	0.50	ug/L	5.00		81.8	70-130			
1,2-Dichloroethane	4.24	0.50	ug/L	5.00		84.8	70-130			
1,1-Dichloroethene	3.88	0.50	ug/L	5.00		77.6	70-130			
trans-1,2-Dichloroethene	4.13	0.50	ug/L	5.00		82.6	70-130			
cis-1,2-Dichloroethene	4.17	0.50	ug/L	5.00		83.4	70-130			
1,2-Dichloropropane	4.20	0.50	ug/L	5.00		84.0	70-130			
1,3-Dichloropropane	4.48	0.50	ug/L	5.00		89.6	70-130			
2,2-Dichloropropane	4.24	0.50	ug/L	5.00		84.8	70-130			
1,1-Dichloropropene	3.91	0.50	ug/L	5.00		78.2	70-130			
cis-1,3-Dichloropropene	3.89	0.50	ug/L	5.00		77.8	70-130			

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501 Project Number: Round 3 ASR Water Quality Baseline

Reported: 09/24/21 14:03

Amalista(a)	Dogult	Reporting	Unita	Spike	Source	0/ DEC	%REC	DDD	RPD	Flag
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	riag
atch AH14583 - VOAs in Water GCMS										
LCS (AH14583-BS1)				Prepared &	Analyzed:	08/26/21				
trans-1,3-Dichloropropene	3.94	0.50	ug/L	5.00		78.8	70-130			
Ethylbenzene	4.36	0.50	ug/L	5.00		87.2	70-130			
Hexachlorobutadiene	4.52	0.50	ug/L	5.00		90.4	70-130			
sopropylbenzene	4.86	0.50	ug/L	5.00		97.2	70-130			
p-Isopropyltoluene	4.83	0.50	ug/L	5.00		96.6	70-130			
Methyl ethyl ketone	8.86	5.0	ug/L	10.0		88.6	70-130			
Methyl tert-butyl ether	4.29	3.0	ug/L	5.00		85.8	70-130			
Methyl isobutyl ketone	8.65	5.0	ug/L	10.0		86.5	70-130			
Methylene chloride	3.62	0.50	ug/L	5.00		72.4	70-130			
Naphthalene	4.23	0.50	ug/L	5.00		84.6	70-130			
n-Propylbenzene	4.70	0.50	ug/L	5.00		94.0	70-130			
Styrene	4.57	0.50	ug/L	5.00		91.4	70-130			
,1,1,2-Tetrachloroethane	3.68	0.50	ug/L	5.00		73.6	70-130			
,1,2,2-Tetrachloroethane	4.31	0.50	ug/L	5.00		86.2	70-130			
Tetrachloroethene	4.63	0.50	ug/L	5.00		92.6	70-130			
Toluene	4.50	0.50	ug/L	5.00		90.0	70-130			
,2,3-Trichlorobenzene	4.73	0.50	ug/L	5.00		94.6	70-130			
,2,4-Trichlorobenzene	4.53	0.50	ug/L	5.00		90.6	70-130			
,1,1-Trichloroethane	3.95	0.50	ug/L	5.00		79.0	70-130			
1,1,2-Trichloroethane	4.43	0.50	ug/L	5.00		88.6	70-130			
Trichloroethene	4.20	0.50	ug/L	5.00		84.0	70-130			
Trichlorofluoromethane	4.02	5.0	ug/L	5.00		80.4	70-130			
Trichlorotrifluoroethane	4.12	10	ug/L	5.00		82.4	70-130			
,2,4-Trimethylbenzene	5.08	0.50	ug/L	5.00		102	70-130			
,3,5-Trimethylbenzene	4.83	0.50	ug/L	5.00		96.6	70-130			
Vinyl chloride	5.56	0.50	ug/L	5.00		111	70-130			
n,p-Xylene	9.18	0.50	ug/L	10.0		91.8	70-130			
o-Xylene	4.74	0.50	ug/L	5.00		94.8	70-130			
Xylenes (total)	13.9	0.50	ug/L	15.0		92.8	70-130			
Surrogate: Bromofluorobenzene	28.4		ug/L	25.0		114	70-130			
Surrogate: Dibromofluoromethane	24.5		ug/L	25.0		98.1	70-130			
Surrogate: Toluene-d8	26.3		ug/L	25.0		105	70-130			

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501 Project Number: Round 3 ASR Water Quality Baseline

Reported: 09/24/21 14:03

Analyte(s)	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag	
Analyte(s)	Kesuit	Lillit	Omis	LCVCI	Kesuit	70KEC	Lillits	KID	Lillit	1 142	
atch AH14583 - VOAs in Water GCMS	6										
LCS Dup (AH14583-BSD1)		Prepared & Analyzed: 08/26/21									
Acetone	15.2	5.0	ug/L	20.0		76.0	70-130	6.92	30		
Acrylonitrile	4.32	5.0	ug/L	5.00		86.4	70-130	0.232	30		
Benzene	4.49	0.50	ug/L	5.00		89.8	70-130	5.73	30		
Bromobenzene	5.14	0.50	ug/L	5.00		103	70-130	3.16	30		
Bromochloromethane	4.71	0.50	ug/L	5.00		94.2	70-130	0.00	30		
Bromodichloromethane	4.67	1.0	ug/L	5.00		93.4	70-130	7.56	30		
romoform	4.71	1.0	ug/L	5.00		94.2	70-130	0.853	30		
romomethane	3.90	0.50	ug/L	5.00		78.0	70-130	3.92	30		
-Butylbenzene	5.02	0.50	ug/L	5.00		100	70-130	4.27	30		
ec-Butylbenzene	4.92	0.50	ug/L	5.00		98.4	70-130	3.10	30		
ert-Butylbenzene	4.95	0.50	ug/L	5.00		99.0	70-130	4.55	30		
Carbon disulfide	3.95	0.50	ug/L	5.00		79.0	70-130	4.66	30		
arbon tetrachloride	4.26	0.50	ug/L	5.00		85.2	70-130	6.55	30		
hlorobenzene	4.72	0.50	ug/L	5.00		94.4	70-130	4.11	30		
hloroethane	4.36	0.50	ug/L	5.00		87.2	70-130	7.37	30		
hloroform	4.36	1.0	ug/L	5.00		87.2	70-130	4.22	30		
hloromethane	4.95	0.50	ug/L	5.00		99.0	70-130	1.01	30		
-Chlorotoluene	4.98	0.50	ug/L	5.00		99.6	70-130	2.23	30		
Chlorotoluene	4.90	0.50	ug/L	5.00		98.0	70-130	3.11	30		
ribromochloromethane	4.53	1.0	ug/L	5.00		90.6	70-130	0.00	30		
Dibromomethane	4.54	0.50	ug/L	5.00		90.8	70-130	2.91	30		
2-Dichlorobenzene	4.46	0.50	ug/L	5.00		89.2	70-130	2.96	30		
3-Dichlorobenzene	4.87	0.50	ug/L	5.00		97.4	70-130	0.410	30		
,4-Dichlorobenzene	4.38	0.50	ug/L	5.00		87.6	70-130	1.84	30		
bichlorodifluoromethane	4.78	0.50	ug/L	5.00		95.6	70-130	13.9	30		
1-Dichloroethane	4.26	0.50	ug/L	5.00		85.2	70-130	4.07	30		
,2-Dichloroethane	4.48	0.50	ug/L	5.00		89.6	70-130	5.50	30		
1-Dichloroethene	4.11	0.50	ug/L	5.00		82.2	70-130	5.76	30		
is-1,2-Dichloroethene	4.31	0.50	ug/L	5.00		86.2	70-130	3.30	30		
ans-1,2-Dichloroethene	4.21	0.50	ug/L	5.00		84.2	70-130	1.92	30		
,2-Dichloropropane	4.47	0.50	ug/L	5.00		89.4	70-130	6.23	30		
,3-Dichloropropane	4.74	0.50	ug/L	5.00		94.8	70-130	5.64	30		
,2-Dichloropropane	4.00	0.50	ug/L	5.00		80.0	70-130	5.83	30		
,1-Dichloropropene	4.24	0.50	ug/L	5.00		84.8	70-130	8.10	30		
is-1,3-Dichloropropene	3.97	0.50	ug/L	5.00		79.4	70-130	2.04	30		

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501

Project Number: Round 3 ASR Water Quality Baseline

Reported: 09/24/21 14:03

A 1.77	D 1	Reporting	TT '4	Spike	Source	0/DEC	%REC	DDD	RPD	Flag
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	riag
Batch AH14583 - VOAs in Water GCMS										
LCS Dup (AH14583-BSD1)				Prepared &	Analyzed:	08/26/21				
trans-1,3-Dichloropropene	4.04	0.50	ug/L	5.00		80.8	70-130	2.51	30	
Ethylbenzene	4.66	0.50	ug/L	5.00		93.2	70-130	6.65	30	
Hexachlorobutadiene	4.85	0.50	ug/L	5.00		97.0	70-130	7.04	30	
Isopropylbenzene	5.12	0.50	ug/L	5.00		102	70-130	5.21	30	
p-Isopropyltoluene	4.91	0.50	ug/L	5.00		98.2	70-130	1.64	30	
Methyl ethyl ketone	8.91	5.0	ug/L	10.0		89.1	70-130	0.563	30	
Methyl isobutyl ketone	8.97	5.0	ug/L	10.0		89.7	70-130	3.63	30	
Methyl tert-butyl ether	4.47	3.0	ug/L	5.00		89.4	70-130	4.11	30	
Methylene chloride	3.81	0.50	ug/L	5.00		76.2	70-130	5.11	30	
Naphthalene	4.33	0.50	ug/L	5.00		86.6	70-130	2.34	30	
n-Propylbenzene	4.96	0.50	ug/L	5.00		99.2	70-130	5.38	30	
Styrene	4.85	0.50	ug/L	5.00		97.0	70-130	5.94	30	
,1,1,2-Tetrachloroethane	3.76	0.50	ug/L	5.00		75.2	70-130	2.15	30	
1,1,2,2-Tetrachloroethane	4.30	0.50	ug/L	5.00		86.0	70-130	0.232	30	
Tetrachloroethene	5.06	0.50	ug/L	5.00		101	70-130	8.88	30	
Toluene	4.76	0.50	ug/L	5.00		95.2	70-130	5.62	30	
1,2,3-Trichlorobenzene	4.89	0.50	ug/L	5.00		97.8	70-130	3.33	30	
1,2,4-Trichlorobenzene	4.69	0.50	ug/L	5.00		93.8	70-130	3.47	30	
,1,1-Trichloroethane	4.27	0.50	ug/L	5.00		85.4	70-130	7.79	30	
1,1,2-Trichloroethane	4.59	0.50	ug/L	5.00		91.8	70-130	3.55	30	
Trichloroethene	4.40	0.50	ug/L	5.00		88.0	70-130	4.65	30	
Trichlorofluoromethane	4.22	5.0	ug/L	5.00		84.4	70-130	4.85	30	
Trichlorotrifluoroethane	4.45	10	ug/L	5.00		89.0	70-130	7.70	30	
1,2,4-Trimethylbenzene	5.15	0.50	ug/L	5.00		103	70-130	1.37	30	
,3,5-Trimethylbenzene	4.95	0.50	ug/L	5.00		99.0	70-130	2.45	30	
Vinyl chloride	5.38	0.50	ug/L	5.00		108	70-130	3.29	30	
n,p-Xylene	9.67	0.50	ug/L	10.0		96.7	70-130	5.20	30	
o-Xylene	4.99	0.50	ug/L	5.00		99.8	70-130	5.14	30	
Xylenes (total)	14.7	0.50	ug/L	15.0		97.7	70-130	5.18	30	
Surrogate: Bromofluorobenzene	28.1		ug/L	25.0		112	70-130			
Surrogate: Dibromofluoromethane	24.0		ug/L	25.0		95.9	70-130			
Surrogate: Toluene-d8	26.3		ug/L	25.0		105	70-130			

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501

Project Number: Round 3 ASR Water Quality Baseline

Reported: 09/24/21 14:03

	5 1.	Reporting	** *.	Spike	Source	A/DEG	%REC	222	RPD	El
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AH14583 - VOAs in Water GCMS										
Matrix Spike (AH14583-MS1)	So	urce: 21H273	4-01	Prepared &	Prepared & Analyzed: 08/26/21					QM-05
Acetone	16.7	5.0	ug/L	20.0	ND	83.5	70-130			
Acrylonitrile	4.54	5.0	ug/L	5.00	ND	90.8	70-130			
Benzene	5.52	0.50	ug/L	5.00	ND	110	70-130			
Bromobenzene	5.93	0.50	ug/L	5.00	ND	119	70-130			
Bromochloromethane	5.47	0.50	ug/L	5.00	ND	109	70-130			
Bromodichloromethane	4.94	1.0	ug/L	5.00	ND	98.8	70-130			
Bromoform	3.59	1.0	ug/L	5.00	ND	71.8	70-130			
Bromomethane	5.42	0.50	ug/L	5.00	ND	108	70-130			
n-Butylbenzene	6.70	0.50	ug/L	5.00	ND	134	70-130			
sec-Butylbenzene	6.89	0.50	ug/L	5.00	ND	138	70-130			
tert-Butylbenzene	6.70	0.50	ug/L	5.00	ND	134	70-130			
Carbon disulfide	5.54	0.50	ug/L	5.00	1.01	90.6	70-130			
Carbon tetrachloride	6.34	0.50	ug/L	5.00	ND	127	70-130			
Chlorobenzene	5.50	0.50	ug/L	5.00	ND	110	70-130			
Chloroethane	5.53	0.50	ug/L	5.00	ND	111	70-130			
Chloroform	5.28	1.0	ug/L	5.00	ND	106	70-130			
Chloromethane	6.01	0.50	ug/L	5.00	ND	120	70-130			
2-Chlorotoluene	6.23	0.50	ug/L	5.00	ND	125	70-130			
4-Chlorotoluene	6.02	0.50	ug/L	5.00	ND	120	70-130			
Dibromochloromethane	4.24	1.0	ug/L	5.00	ND	84.8	70-130			
Dibromomethane	5.56	0.50	ug/L	5.00	ND	111	70-130			
1,2-Dichlorobenzene	5.05	0.50	ug/L	5.00	ND	101	70-130			
1,3-Dichlorobenzene	5.79	0.50	ug/L	5.00	ND	116	70-130			
1,4-Dichlorobenzene	5.02	0.50	ug/L	5.00	ND	100	70-130			
Dichlorodifluoromethane	6.47	0.50	ug/L	5.00	ND	129	70-130			
1,1-Dichloroethane	5.35	0.50	ug/L	5.00	ND	107	70-130			
1,2-Dichloroethane	5.13	0.50	ug/L	5.00	ND	103	70-130			
1,1-Dichloroethene	6.16	0.50	ug/L	5.00	ND	123	70-130			
cis-1,2-Dichloroethene	5.30	0.50	ug/L	5.00	ND	106	70-130			
trans-1,2-Dichloroethene	5.64	0.50	ug/L	5.00	ND	113	70-130			
1,2-Dichloropropane	5.14	0.50	ug/L	5.00	ND	103	70-130			
1,3-Dichloropropane	5.08	0.50	ug/L	5.00	ND	102	70-130			
2,2-Dichloropropane	6.16	0.50	ug/L	5.00	ND	123	70-130			
1,1-Dichloropropene	6.25	0.50	ug/L	5.00	ND	125	70-130			
cis-1,3-Dichloropropene	4.06	0.50	ug/L	5.00	ND	81.2	70-130			

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501

Project Number: Round 3 ASR Water Quality Baseline

Reported: 09/24/21 14:03

Analyte(s)	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AH14583 - VOAs in Water GCMS										
Matrix Spike (AH14583-MS1)	So	urce: 21H273	4-01	Prepared &	k Analyzed:	08/26/21				QM-05
trans-1,3-Dichloropropene	4.28	0.50	ug/L	5.00	ND	85.6	70-130			
Ethylbenzene	5.91	0.50	ug/L	5.00	ND	118	70-130			
Hexachlorobutadiene	6.23	0.50	ug/L	5.00	ND	125	70-130			
Isopropylbenzene	6.83	0.50	ug/L	5.00	ND	137	70-130			
p-Isopropyltoluene	6.68	0.50	ug/L	5.00	ND	134	70-130			
Methyl ethyl ketone	11.0	5.0	ug/L	10.0	ND	110	70-130			
Methyl isobutyl ketone	10.5	5.0	ug/L	10.0	ND	105	70-130			
Methyl tert-butyl ether	4.50	3.0	ug/L	5.00	ND	90.0	70-130			
Methylene chloride	4.63	0.50	ug/L	5.00	ND	92.6	70-130			
Naphthalene	4.50	0.50	ug/L	5.00	ND	90.0	70-130			
n-Propylbenzene	6.74	0.50	ug/L	5.00	ND	135	70-130			
Styrene	5.78	0.50	ug/L	5.00	ND	116	70-130			
1,1,1,2-Tetrachloroethane	4.45	0.50	ug/L	5.00	ND	89.0	70-130			
1,1,2,2-Tetrachloroethane	4.93	0.50	ug/L	5.00	ND	98.6	70-130			
Tetrachloroethene	7.12	0.50	ug/L	5.00	ND	142	70-130			
Toluene	5.95	0.50	ug/L	5.00	ND	119	70-130			
1,2,3-Trichlorobenzene	5.35	0.50	ug/L	5.00	ND	107	70-130			
1,2,4-Trichlorobenzene	5.13	0.50	ug/L	5.00	ND	103	70-130			
1,1,1-Trichloroethane	6.34	0.50	ug/L	5.00	ND	127	70-130			
1,1,2-Trichloroethane	5.05	0.50	ug/L	5.00	ND	101	70-130			
Trichloroethene	5.87	0.50	ug/L	5.00	ND	117	70-130			
Trichlorofluoromethane	6.41	5.0	ug/L	5.00	ND	128	70-130			
Trichlorotrifluoroethane	9.55	10	ug/L	5.00	ND	158	70-130			
1,2,4-Trimethylbenzene	6.42	0.50	ug/L	5.00	ND	128	70-130			
1,3,5-Trimethylbenzene	6.33	0.50	ug/L	5.00	ND	127	70-130			
Vinyl chloride	7.11	0.50	ug/L	5.00	ND	142	70-130			
m,p-Xylene	12.3	0.50	ug/L	10.0	ND	123	70-130			
o-Xylene	5.97	0.50	ug/L	5.00	ND	119	70-130			
Xylenes (total)	18.3	0.50	ug/L	15.0	ND	122	70-130			
Surrogate: Bromofluorobenzene	28.1		ug/L	25.0		112	70-130			
Surrogate: Dibromofluoromethane	24.1		ug/L	25.0		96.4	70-130			
Surrogate: Toluene-d8	25.9		ug/L	25.0		103	70-130			

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501

Project Number: Round 3 ASR Water Quality Baseline

Reported: 09/24/21 14:03

Analyta(s)	D ocult	Reporting	I Inita	Spike	Source	0/.DEC	%REC	מממ	RPD Limit	Flag
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	riag
Batch AH14583 - VOAs in Water GCMS										
Matrix Spike (AH14583-MS2)	Sour	ce: 21H281	3-01	Prepared &	Analyzed:	08/26/21				
Acetone	17.3	5.0	ug/L	20.0	ND	86.3	70-130			
Acrylonitrile	4.76	5.0	ug/L	5.00	ND	95.2	70-130			
Benzene	5.27	0.50	ug/L	5.00	ND	105	70-130			
Bromobenzene	5.85	0.50	ug/L	5.00	ND	117	70-130			
Bromochloromethane	5.12	0.50	ug/L	5.00	ND	102	70-130			
Bromodichloromethane	4.99	1.0	ug/L	5.00	ND	99.8	70-130			
Bromoform	4.22	1.0	ug/L	5.00	ND	84.4	70-130			
Bromomethane	5.03	0.50	ug/L	5.00	ND	101	70-130			
n-Butylbenzene	6.35	0.50	ug/L	5.00	ND	127	70-130			
sec-Butylbenzene	6.37	0.50	ug/L	5.00	ND	127	70-130			
ert-Butylbenzene	6.46	0.50	ug/L	5.00	ND	129	70-130			
Carbon disulfide	5.35	0.50	ug/L	5.00	ND	107	70-130			
Carbon tetrachloride	6.31	0.50	ug/L	5.00	ND	126	70-130			
Chlorobenzene	5.35	0.50	ug/L	5.00	ND	107	70-130			
Chloroethane	5.07	0.50	ug/L	5.00	ND	101	70-130			
Chloroform	5.10	1.0	ug/L	5.00	ND	102	70-130			
Chloromethane	5.76	0.50	ug/L	5.00	ND	115	70-130			
2-Chlorotoluene	5.86	0.50	ug/L	5.00	ND	117	70-130			
I-Chlorotoluene	5.68	0.50	ug/L	5.00	ND	114	70-130			
Dibromochloromethane	4.40	1.0	ug/L	5.00	ND	88.0	70-130			
Dibromomethane	4.96	0.50	ug/L	5.00	ND	99.2	70-130			
1,2-Dichlorobenzene	4.80	0.50	ug/L	5.00	ND	96.0	70-130			
1,3-Dichlorobenzene	5.59	0.50	ug/L	5.00	ND	112	70-130			
1,4-Dichlorobenzene	4.90	0.50	ug/L	5.00	ND	98.0	70-130			
Dichlorodifluoromethane	6.48	0.50	ug/L	5.00	ND	130	70-130			
1,1-Dichloroethane	5.17	0.50	ug/L	5.00	ND	103	70-130			
1,2-Dichloroethane	4.82	0.50	ug/L	5.00	ND	96.4	70-130			
,1-Dichloroethene	5.78	0.50	ug/L	5.00	ND	116	70-130			
rans-1,2-Dichloroethene	5.38	0.50	ug/L	5.00	ND	108	70-130			
is-1,2-Dichloroethene	5.13	0.50	ug/L	5.00	ND	103	70-130			
,2-Dichloropropane	4.84	0.50	ug/L	5.00	ND	96.8	70-130			
,3-Dichloropropane	5.03	0.50	ug/L	5.00	ND	101	70-130			
2,2-Dichloropropane	6.25	0.50	ug/L	5.00	ND	125	70-130			
1,1-Dichloropropene	6.02	0.50	ug/L	5.00	ND	120	70-130			
cis-1,3-Dichloropropene	4.16	0.50	ug/L	5.00	ND	83.2	70-130			

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501

Project Number: Round 3 ASR Water Quality Baseline

Reported: 09/24/21 14:03

Analyte(s)	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AH14583 - VOAs in Water GCMS										
Matrix Spike (AH14583-MS2)	So	urce: 21H281	Prepared &	ኔ Analyzed:	08/26/21					
trans-1,3-Dichloropropene	4.31	0.50	ug/L	5.00	ND	86.2	70-130			
Ethylbenzene	5.79	0.50	ug/L	5.00	ND	116	70-130			
Hexachlorobutadiene	6.07	0.50	ug/L	5.00	ND	121	70-130			
Isopropylbenzene	6.50	0.50	ug/L	5.00	ND	130	70-130			
p-Isopropyltoluene	6.40	0.50	ug/L	5.00	ND	128	70-130			
Methyl ethyl ketone	9.74	5.0	ug/L	10.0	ND	97.4	70-130			
Methyl isobutyl ketone	10.0	5.0	ug/L	10.0	ND	100	70-130			
Methyl tert-butyl ether	4.59	3.0	ug/L	5.00	ND	91.8	70-130			
Methylene chloride	4.32	0.50	ug/L	5.00	ND	86.4	70-130			
Naphthalene	4.52	0.50	ug/L	5.00	ND	90.4	70-130			
n-Propylbenzene	6.47	0.50	ug/L	5.00	ND	129	70-130			
Styrene	5.77	0.50	ug/L	5.00	ND	115	70-130			
1,1,1,2-Tetrachloroethane	4.19	0.50	ug/L	5.00	ND	83.8	70-130			
1,1,2,2-Tetrachloroethane	4.84	0.50	ug/L	5.00	ND	96.8	70-130			
Tetrachloroethene	6.42	0.50	ug/L	5.00	ND	128	70-130			
Toluene	5.69	0.50	ug/L	5.00	ND	114	70-130			
1,2,3-Trichlorobenzene	5.16	0.50	ug/L	5.00	ND	103	70-130			
1,2,4-Trichlorobenzene	5.06	0.50	ug/L	5.00	ND	101	70-130			
1,1,1-Trichloroethane	6.07	0.50	ug/L	5.00	ND	121	70-130			
1,1,2-Trichloroethane	4.94	0.50	ug/L	5.00	ND	98.8	70-130			
Trichloroethene	5.60	0.50	ug/L	5.00	ND	112	70-130			
Trichlorofluoromethane	6.49	5.0	ug/L	5.00	ND	130	70-130			
Trichlorotrifluoroethane	7.01	10	ug/L	5.00	ND	140	70-130			QM-05
1,2,4-Trimethylbenzene	6.26	0.50	ug/L	5.00	ND	125	70-130			
1,3,5-Trimethylbenzene	6.16	0.50	ug/L	5.00	ND	123	70-130			
Vinyl chloride	7.20	0.50	ug/L	5.00	ND	144	70-130			QM-05
m,p-Xylene	12.0	0.50	ug/L	10.0	ND	120	70-130			
o-Xylene	5.84	0.50	ug/L	5.00	ND	117	70-130			
Xylenes (total)	17.9	0.50	ug/L	15.0	ND	119	70-130			
Surrogate: Bromofluorobenzene	28.0		ug/L	25.0		112	70-130			
Surrogate: Dibromofluoromethane	23.9		ug/L	25.0		95.5	70-130			
Surrogate: Toluene-d8	25.4		ug/L	25.0		102	70-130			

Alpha Analytical Laboratories, Inc.

email: clientservices@alpha-labs.com

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501 Project Number: Round 3 ASR Water Quality Baseline

Reported: 09/24/21 14:03

Notes and Definitions

QM-05 The spike recovery was outside acceptance limits for the MS and/or MSD due to matrix interference. The LCS and/or LCSD

were within acceptance limits showing that the laboratory is in control and the data is acceptable.

QM-07 The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS

recovery.

R-01 The Reporting Limit for this analyte has been raised to account for matrix interference.

ND Analyte NOT DETECTED at or above the reporting limit

dry Sample results reported on a dry weight basis

REC Recovery

RPD Relative Percent Difference

September 15, 2021

Vista Work Order No. 2108221

Mr. David S. Pingatore Alpha Analytical Laboratories, Inc 208 Mason Street Ukiah, CA 95482

Dear Mr. Pingatore,

Enclosed are the results for the sample set received at Vista Analytical Laboratory on August 24, 2021 under your Project Name '21H2617'.

Vista Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-673-1520 or by email at jfox@vista-analytical.com.

Thank you for choosing Vista as part of your analytical support team.

Sincerely,

Jamie Fox

Laboratory Director

Martha Maier for

Vista Analytical Laboratory certifies that the report herein meets all the requirements set forth by NELAP for those applicable test methods. Results relate only to the samples as received by the laboratory. This report should not be reproduced except in full without the written approval of Vista.

Vista Analytical Laboratory 1104 Windfield Way El Dorado Hills, CA 95762 ph: 916-673-1520 fx: 916-673-0106 www.vista-analytical.com

Work Order 2108221 Page 1 of 16

Vista Work Order No. 2108221 Case Narrative

Sample Condition on Receipt:

Two drinking water samples were received and stored securely in accordance with Vista standard operating procedures and EPA methodology. The samples were received in good condition and within the method temperature requirements.

Analytical Notes:

EPA Method 537.1

The samples were extracted and analyzed for a selected list of PFAS using EPA Method 537.1.

Holding Times

The samples were extracted and analyzed within the method hold times.

Quality Control

The Initial Calibration and Continuing Calibration Verifications met the method acceptance criteria.

A Laboratory Fortified Blank (LFB) and Laboratory Reagent Blank (LRB) were extracted and analyzed with the preparation batch. No analytes were detected in the LRB above the method specified limits. The LFB recoveries were within the method acceptance criteria.

The surrogate recoveries for all QC and field samples were within the acceptance criteria.

Work Order 2108221 Page 2 of 16

TABLE OF CONTENTS

Case Narrative	1
Table of Contents	3
Sample Inventory	4
Analytical Results	5
Qualifiers	10
Certifications	11
Sample Receipt	14

Work Order 2108221 Page 3 of 16

Sample Inventory Report

Vista Sample ID	Client Sample ID	Sampled	Received	Components/Containers
2108221-01	3121	18-Aug-21 08:38	24-Aug-21 11:19	Polypropylene, 250mL
				Polypropylene, 250mL
2108221-02	3123	18-Aug-21 12:00	24-Aug-21 11:19	Polypropylene, 250mL
				Polypropylene, 250mL

Vista Project: 2108221 Client Project: 21H2617

Work Order 2108221 Page 4 of 16

ANALYTICAL RESULTS

Work Order 2108221 Page 5 of 16

Sample ID: L	RB									EPA Metho	d 537.1
Client Data Name: Project:	Alpha Analytical Laboratories, Inc 21H2617	Matrix:	Aqueous			ratory Data Sample:	B1H0212-	BLK1	Column	BEH C18	
Analyte	CAS Number	Conc. (ng/L)	MDL		RL	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
PFBS	375-73-5	ND	0.704	2	2.00		B1H0212	27-Aug-21	0.250 L	29-Aug-21 05:55	1
PFHxA	307-24-4	ND	0.961	2	2.00		B1H0212		0.250 L	29-Aug-21 05:55	
HFPO-DA	13252-13-6	ND	0.847	2	2.00		B1H0212	27-Aug-21	0.250 L	29-Aug-21 05:55	1
PFHpA	375-85-9	ND	0.790	2	2.00		B1H0212	27-Aug-21	0.250 L	29-Aug-21 05:55	1
ADONA	919005-14-4	ND	0.762	2	2.00		B1H0212	27-Aug-21	0.250 L	29-Aug-21 05:55	1
PFHxS	355-46-4	ND	0.803	2	2.00		B1H0212	27-Aug-21	0.250 L	29-Aug-21 05:55	1
PFOA	335-67-1	ND	0.745	2	2.00		B1H0212	27-Aug-21	0.250 L	29-Aug-21 05:55	1
PFNA	375-95-1	ND	0.878	2	2.00		B1H0212	27-Aug-21	0.250 L	29-Aug-21 05:55	1
PFOS	1763-23-1	ND	1.31	2	2.00		B1H0212	27-Aug-21	0.250 L	29-Aug-21 05:55	1
9C1-PF3ONS	756426-58-1	ND	0.866	2	2.00		B1H0212	. 0	0.250 L	29-Aug-21 05:55	1
PFDA	335-76-2	ND	0.629	2	2.00		B1H0212	27-Aug-21	0.250 L	29-Aug-21 05:55	1
MeFOSAA	2355-31-9	ND	0.483	2	2.00		B1H0212	27-Aug-21	0.250 L	29-Aug-21 05:55	1
EtFOSAA	2991-50-6	ND	0.902	2	2.00		B1H0212	27-Aug-21	0.250 L	29-Aug-21 05:55	1
PFUnA	2058-94-8	ND	0.682	2	2.00		B1H0212	27-Aug-21	0.250 L	29-Aug-21 05:55	1
PFDoA	307-55-1	ND	0.727	2	2.00		B1H0212	27-Aug-21	0.250 L	29-Aug-21 05:55	1
PFTrDA	72629-94-8	ND	0.766	2	2.00				0.250 L	29-Aug-21 05:55	1
11Cl-PF3OUdS	763051-92-9	ND	1.18	2	2.00		B1H0212	27-Aug-21	0.250 L	29-Aug-21 05:55	1
PFTeDA	376-06-7	ND	0.781	2	2.00		B1H0212	27-Aug-21	0.250 L	29-Aug-21 05:55	1
Labeled Standar	ds Type	% Recovery		Limits		Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
13C2-PFHxA	SURR	107		70 - 130			B1H0212	27-Aug-21	0.250 L	29-Aug-21 05:55	1
13C2-PFDA	SURR	101		70 - 130			B1H0212	27-Aug-21	0.250 L	29-Aug-21 05:55	
d5-EtFOSAA	SURR	88.6		70 - 130			B1H0212	27-Aug-21	0.250 L	29-Aug-21 05:55	1
13C3-HFPO-DA	SURR	100		70 - 130			B1H0212	27-Aug-21	0.250 L	29-Aug-21 05:55	1

MDL - Method Detection Limit

RL - Reporting limit

Results reported to MDL.

When reported, PFHxS, PFOA, PFOS, MeFOSAA and EtFOSAA include both linear and branched isomers. Only the linear isomer is reported for all other analytes.

Work Order 2108221 Page 6 of 16

Sample ID: LFB EPA Method 537.1

Client Data Laboratory Data

Alpha Analytical Laboratories, Inc 21H2617 Name: B1H0212-BS1 Column: BEH C18 Matrix: Aqueous Lab Sample:

Project:

Analyte	CAS Number	Amt Found (ng/L)	Spike Amt	% Rec	Limits	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
PFBS	375-73-5	15.4	14.2	109	50 - 150		B1H0212	27-Aug-21	0.250 L	29-Aug-21 06:06	1
PFHxA	307-24-4	16.4	16.0	103	50 - 150		B1H0212	27-Aug-21	0.250 L	29-Aug-21 06:06	1
HFPO-DA	13252-13-6	16.7	16.0	104	50 - 150		B1H0212	27-Aug-21	0.250 L	29-Aug-21 06:06	1
PFHpA	375-85-9	17.5	16.0	109	50 - 150		B1H0212	27-Aug-21	0.250 L	29-Aug-21 06:06	1
ADONA	919005-14-4	15.1	15.1	99.6	50 - 150		B1H0212	27-Aug-21	0.250 L	29-Aug-21 06:06	1
PFHxS	355-46-4	15.2	14.6	105	50 - 150		B1H0212	27-Aug-21	0.250 L	29-Aug-21 06:06	1
PFOA	335-67-1	16.3	16.0	102	50 - 150		B1H0212	27-Aug-21	0.250 L	29-Aug-21 06:06	1
PFNA	375-95-1	15.1	16.0	94.5	50 - 150		B1H0212	27-Aug-21	0.250 L	29-Aug-21 06:06	1
PFOS	1763-23-1	15.3	14.8	103	50 - 150		B1H0212	27-Aug-21	0.250 L	29-Aug-21 06:06	1
9C1-PF3ONS	756426-58-1	14.6	14.9	98.3	50 - 150		B1H0212	27-Aug-21	0.250 L	29-Aug-21 06:06	1
PFDA	335-76-2	17.1	16.0	107	50 - 150		B1H0212	27-Aug-21	0.250 L	29-Aug-21 06:06	1
MeFOSAA	2355-31-9	16.8	16.0	105	50 - 150		B1H0212	27-Aug-21	0.250 L	29-Aug-21 06:06	1
EtFOSAA	2991-50-6	13.9	16.0	86.9	50 - 150		B1H0212	27-Aug-21	0.250 L	29-Aug-21 06:06	1
PFUnA	2058-94-8	15.4	16.0	96.4	50 - 150		B1H0212	27-Aug-21	0.250 L	29-Aug-21 06:06	1
PFDoA	307-55-1	15.4	16.0	96.2	50 - 150		B1H0212	27-Aug-21	0.250 L	29-Aug-21 06:06	1
PFTrDA	72629-94-8	14.2	16.0	88.6	50 - 150		B1H0212	27-Aug-21	0.250 L	29-Aug-21 06:06	1
11Cl-PF3OUdS	763051-92-9	15.2	15.0	101	50 - 150		B1H0212	27-Aug-21	0.250 L	29-Aug-21 06:06	1
PFTeDA	376-06-7	14.3	16.0	89.4	50 - 150		B1H0212	27-Aug-21	0.250 L	29-Aug-21 06:06	1
Labeled Standards		Туре		% Rec	Limits	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
13C2-PFHxA		SURR		105	70 - 130		B1H0212	27-Aug-21	0.250 L	29-Aug-21 06:06	1
13C2-PFDA		SURR		99.7	70 - 130		B1H0212	27-Aug-21	0.250 L	29-Aug-21 06:06	1
d5-EtFOSAA		SURR		87.5	70 - 130		B1H0212	27-Aug-21	0.250 L	29-Aug-21 06:06	1
13C3-HFPO-DA		SURR		94.9	70 - 130		B1H0212	27-Aug-21	0.250 L	29-Aug-21 06:06	1

Page 7 of 16 Work Order 2108221

Sample ID: 31	21									EPA Metho	d 537.1
Client Data Name: Project: Location:	Alpha Analytical Laboratories, In 21H2617 21H2617-01			Orinking Water 18-Aug-21 08:38	Lab	boratory Data o Sample: te Received:	2108221-0 24-Aug-21		Column:	ВЕН С18	
Analyte	CAS Nu	mber Conc. (ng/	L) MDL	1	ŔL	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
PFBS	375-7	3-5 ND	0.703		2.00		B1H0212	27-Aug-21	0.250 L	29-Aug-21 09:58	1
PFHxA	307-2	4-4 ND	0.959		2.00		B1H0212	27-Aug-21	0.250 L	29-Aug-21 09:58	1
HFPO-DA	13252-	13-6 ND	0.846		2.00		B1H0212	27-Aug-21	0.250 L	29-Aug-21 09:58	1
PFHpA	375-8	5-9 ND	0.789		2.00		B1H0212	27-Aug-21	0.250 L	29-Aug-21 09:58	1
ADONA	919005	-14-4 ND	0.761		2.00		B1H0212	27-Aug-21	0.250 L	29-Aug-21 09:58	1
PFHxS	355-4	6-4 ND	0.802		2.00		B1H0212	27-Aug-21	0.250 L	29-Aug-21 09:58	1
PFOA	335-6	7-1 ND	0.744		2.00		B1H0212	27-Aug-21	0.250 L	29-Aug-21 09:58	1
PFNA	375-9	5-1 ND	0.877		2.00		B1H0212	27-Aug-21	0.250 L	29-Aug-21 09:58	1
PFOS	1763-2	23-1 ND	1.31		2.00		B1H0212	27-Aug-21	0.250 L	29-Aug-21 09:58	1
9C1-PF3ONS	756426	-58-1 ND	0.865		2.00		B1H0212	27-Aug-21	0.250 L	29-Aug-21 09:58	1
PFDA	335-7	6-2 ND	0.628		2.00		B1H0212	27-Aug-21	0.250 L	29-Aug-21 09:58	1
MeFOSAA	2355-3	31-9 ND	0.482		2.00		B1H0212	27-Aug-21	0.250 L	29-Aug-21 09:58	1
EtFOSAA	2991-	50-6 ND	0.901		2.00		B1H0212	27-Aug-21	0.250 L	29-Aug-21 09:58	1
PFUnA	2058-9	94-8 ND	0.681		2.00		B1H0212	27-Aug-21	0.250 L	29-Aug-21 09:58	1
PFDoA	307-5	5-1 ND	0.726		2.00		B1H0212	27-Aug-21	0.250 L	29-Aug-21 09:58	1
PFTrDA	72629-	94-8 ND	0.765		2.00		B1H0212	27-Aug-21	0.250 L	29-Aug-21 09:58	1
11Cl-PF3OUdS	763051	-92-9 ND	1.18		2.00			27-Aug-21	0.250 L	29-Aug-21 09:58	1
PFTeDA	376-0	6-7 ND	0.780		2.00		B1H0212	27-Aug-21	0.250 L	29-Aug-21 09:58	1
Labeled Standar	ds Type	% Reco	very	Limits		Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
13C2-PFHxA	SUR	R 107		70 - 130			B1H0212	27-Aug-21	0.250 L	29-Aug-21 09:58	1
13C2-PFDA	SUR	R 97.9		70 - 130			B1H0212	27-Aug-21	0.250 L	29-Aug-21 09:58	1
d5-EtFOSAA	SUR	R 85.8		70 - 130			B1H0212	27-Aug-21	0.250 L	29-Aug-21 09:58	1
13C3-HFPO-DA	SUR	R 97.2		70 - 130			B1H0212	27-Aug-21	0.250 L	29-Aug-21 09:58	1

MDL - Method Detection Limit

RL - Reporting limit

Results reported to MDL.

When reported, PFHxS, PFOA, PFOS, MeFOSAA and EtFOSAA include both linear and branched isomers. Only the linear isomer is reported for all other analytes.

Work Order 2108221 Page 8 of 16

Sample ID: 3	123										EPA Metho	d 537.1
Client Data Name: Project: Location:	Alpha Analytical Lal 21H2617 21H2617-02	poratories, Inc	Matrix: Date Colle	Drinking Vected: 18-Aug-2		Lab	oratory Data Sample: e Received:	2108221-0 24-Aug-21		Column	ВЕН С18	
Analyte		CAS Number	Conc. (ng/L)	MDL		RL	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
PFBS		375-73-5	ND	0.725		2.06		B1H0212	27-Aug-21	0.243 L	29-Aug-21 10:10	1
PFHxA		307-24-4	ND	0.990	2	2.06		B1H0212	27-Aug-21	0.243 L	29-Aug-21 10:10	1
HFPO-DA		13252-13-6	ND	0.873	Ź	2.06		B1H0212	27-Aug-21	0.243 L	29-Aug-21 10:10	1
PFHpA		375-85-9	ND	0.814	2	2.06		B1H0212	27-Aug-21	0.243 L	29-Aug-21 10:10	1
ADONA		919005-14-4	ND	0.785	2	2.06		B1H0212	27-Aug-21	0.243 L	29-Aug-21 10:10	1
PFHxS		355-46-4	ND	0.827	2	2.06		B1H0212	27-Aug-21	0.243 L	29-Aug-21 10:10	1
PFOA		335-67-1	ND	0.767	2	2.06		B1H0212	27-Aug-21	0.243 L	29-Aug-21 10:10	1
PFNA		375-95-1	ND	0.904	2	2.06		B1H0212	27-Aug-21	0.243 L	29-Aug-21 10:10	1
PFOS		1763-23-1	ND	1.35	2	2.06		B1H0212	27-Aug-21	0.243 L	29-Aug-21 10:10	1
9C1-PF3ONS		756426-58-1	ND	0.892	2	2.06		B1H0212	27-Aug-21	0.243 L	29-Aug-21 10:10	1
PFDA		335-76-2	ND	0.648	,	2.06		B1H0212	27-Aug-21	0.243 L	29-Aug-21 10:10	1
MeFOSAA		2355-31-9	ND	0.498	2	2.06		B1H0212	27-Aug-21	0.243 L	29-Aug-21 10:10	1
EtFOSAA		2991-50-6	ND	0.929	2	2.06		B1H0212	27-Aug-21	0.243 L	29-Aug-21 10:10	1
PFUnA		2058-94-8	ND	0.703	2	2.06		B1H0212	27-Aug-21	0.243 L	29-Aug-21 10:10	1
PFDoA		307-55-1	ND	0.749	2	2.06		B1H0212	27-Aug-21	0.243 L	29-Aug-21 10:10	1
PFTrDA		72629-94-8	ND	0.789	2	2.06		B1H0212	27-Aug-21	0.243 L	29-Aug-21 10:10	1
11Cl-PF3OUdS		763051-92-9	ND	1.22	,	2.06		B1H0212	27-Aug-21	0.243 L	29-Aug-21 10:10	1
PFTeDA		376-06-7	ND	0.805		2.06		B1H0212	27-Aug-21	0.243 L	29-Aug-21 10:10	1
Labeled Standa	rds	Type	% Recovery		Limits		Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
13C2-PFHxA		SURR	106		70 - 130			B1H0212	27-Aug-21	0.243 L	29-Aug-21 10:10	1
13C2-PFDA		SURR	97.2		70 - 130			B1H0212	27-Aug-21	0.243 L	29-Aug-21 10:10	1
d5-EtFOSAA		SURR	90.1		70 - 130			B1H0212	27-Aug-21	0.243 L	29-Aug-21 10:10	1
13C3-HFPO-DA		SURR	98.4		70 - 130			B1H0212	27-Aug-21	0.243 L	29-Aug-21 10:10	1

MDL - Method Detection Limit

RL - Reporting limit

Results reported to MDL.

When reported, PFHxS, PFOA, PFOS, MeFOSAA and EtFOSAA include both linear and branched isomers. Only the linear isomer is reported for all other analytes.

Work Order 2108221 Page 9 of 16

B This compound was also detected in the method blank

Conc. Concentration

CRS Cleanup Recovery Standard

D Dilution

DL Detection Limit

E The associated compound concentration exceeded the calibration range of the

instrument

H Recovery and/or RPD was outside laboratory acceptance limits

I Chemical Interference

IS Internal Standard

J The amount detected is below the Reporting Limit/LOQ

LOD Limit of Detection

LOQ Limit of Quantitation

M Estimated Maximum Possible Concentration (CA Region 2 projects only)

MDL Method Detection Limit

NA Not applicable

ND Not Detected

OPR Ongoing Precision and Recovery sample

P The reported concentration may include contribution from chlorinated diphenyl ether(s).

Q The ion transition ratio is outside of the acceptance criteria.

RL Reporting Limit

RL For 537.1, the reported RLs are the MRLs.

TEQ Toxic Equivalency, sum of the toxic equivalency factors (TEF) multiplied by the

sample concentrations.

TEQMax TEQ calculation that uses the detection limit as the concentration for non-detects

TEQMin TEQ calculation that uses zero as the concentration for non-detects

TEQRisk TEQ calculation that uses ½ the detection limit as the concentration for non-

detects

U Not Detected (specific projects only)

* See Cover Letter

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

Work Order 2108221 Page 10 of 16

Vista Analytical Laboratory Certifications

Accrediting Authority	Certificate Number
Alaska Department of Environmental Conservation	17-013
Arkansas Department of Environmental Quality	21-023-0
California Department of Health – ELAP	2892
DoD ELAP - A2LA Accredited - ISO/IEC 17025:2005	3091.01
Florida Department of Health	E87777-26
Hawaii Department of Health	N/A
Louisiana Department of Environmental Quality	01977
Maine Department of Health	2020018
Massachusetts Department of Environmental Protection	M-CA413
Michigan Department of Environmental Quality	9932
Minnesota Department of Health	1980678
New Hampshire Environmental Accreditation Program	207720
New Jersey Department of Environmental Protection	CA003
New York Department of Health	11411
Ohio Environmental Protection Agency	87778
Oregon Laboratory Accreditation Program	4042-016
Pennsylvania Department of Environmental Protection	017
Texas Commission on Environmental Quality	T104704189-21-12
Vermont Department of Health	VT-4042
Virginia Department of General Services	10769
Washington Department of Ecology	C584
Wisconsin Department of Natural Resources	998036160

Current certificates and lists of licensed parameters are located in the Quality Assurance office and are available upon request.

Work Order 2108221 Page 11 of 16

NELAP Accredited Test Methods

MATRIX: Air	
Description of Test	Method
Determination of Polychlorinated p- Dioxins & Polychlorinated	EPA 23
Dibenzofurans	
Polychlorinated Dibenzodioxins in Ambient Air by GC/HRMS	EPA TO-9A

MATRIX: Biological Tissue						
Description of Test	Method					
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution	EPA 1613B					
GC/HRMS						
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A					
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue	EPA 1668A/C					
by GC/HRMS						
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by	EPA 1699					
HRGC/HRMS						
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537					
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans by	EPA 8280A/B					
GC/HRMS						
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated	EPA					
Dibenzofurans (PCDFs) by GC/HRMS	8290/8290A					

MATRIX: Drinking Water						
Description of Test	Method					
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution	EPA					
GC/HRMS	1613/1613B					
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537					
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537.1					
Determination of Per- and Polyfluoroalkyl Substances in Drinking Water by	EPA 533					
Isotope Dilution Anion Exchange Solid Phase Extraction and Liquid						
Chromatography/Tandem Mass Spectrometry						
Perfluorooctanesulonate (PFOS) and Perfluorooctanoate (PFOA) - Method	ISO 25101					
for Unfiltered Samples Using Solid Phase Extraction and Liquid	2009					
Chromatography/Mass Spectrometry						

Work Order 2108221 Page 12 of 16

MATRIX: Non-Potable Water					
Description of Test	Method				
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope	EPA 1613B				
Dilution GC/HRMS					
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A				
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue	EPA 1668A/C				
by GC/HRMS					
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS	EPA 1699				
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537				
Dioxin by GC/HRMS	EPA 613				
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated	EPA 8280A/B				
Dibenzofurans by GC/HRMS					
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated	EPA				
Dibenzofurans (PCDFs) by GC/HRMS	8290/8290A				

MATRIX: Solids	
Description of Test	Method
Tetra-Octa Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS	EPA 1613
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS	EPA 1613B
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue by GC/HRMS	EPA 1668A/C
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS	EPA 1699
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated	EPA 8280A/B
Dibenzofurans by GC/HRMS	
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated	EPA
Dibenzofurans (PCDFs) by GC/HRMS	8290/8290A

Work Order 2108221 Page 13 of 16

SUBCONTRACT ORDER

Alpha Analytical Laboratories, Inc.

21H2617

2106221 3.3°C

SENDING LABORATORY: Alpha Analytical Laboratories, Inc.

208 Mason St. Ukiah, CA 95482 Phone: (707)468-0401 Fax: (707)468-5267

Project Manager:

David S. Pingatore

RECEIVING LABORATORY:

Vista Analytical 1104 Windfield Way El Dorado Hills, CA 95762 Phone: (916) 673-1520

Fax: -

Terms: Net 30

Analysis	Due	Expires	Comments	
21H2617-01 3121 [Water] Sampled 08/	18/21 08:38			
537.1 Perfluorochemicals x 18 w/GenX	09/02/21 15:00	09/01/21 08:38		_
Containers Supplied: 500mL PP Poly (Trizma) (500mL PP Poly	y (Trizma) (
21H2617-02 3123 [Water] Sampled 08/				
537.1 Perfluorochemicals x 18 w/GenX	09/02/21 15:00	09/01/21 12:00		
Containers Supplied: 500mL PP Poly (Trizma) (500mL PP Poly	y (Trizma) (
System Number:	Employed by: Sampler:			
	+QC			

Released By Released By	8-19-21 Date Date	Received By Received By	14:15 Date Date Date Date
Released By	Date	Received By	Date
Released By	Date	Received By	Date
Released By	Date	Received By	Date Page Lof L

Page I of I

Work Order 2108221

Page 14 of 16

Sample Log-In Checklist

Page # of						_				
Vista Work Orde	r#:	21062	.21				TAT	STD		_
Samples	Date/Tim	ne		Initials:		Loc	ation: (NV-2	_	
Arrival:	08/241	21	1/19			She	elf/Rack	: <u>N//</u>	7	
Delivered By:	FedEx	UPS	On Tra	ac GLS	DHI		Hand Delive		Oth	ner
Preservation:	lo	e	Blu	ue lce		chni ce	Dry	Ice	No	ne
Temp °C: 3.4	(uncor	rected)	Probe us	ed: Y N		The	rmome	tor ID:	ID- 6	
Temp °C: 3.	(correc	ted)	Flobe us	ed. 1 / 1V		rne		Lei ID.	<u> </u>	
YES NO NA										
Shipping Contain	er(s) Intac	:t?			A STATE OF THE STA	****		123	INO	IVA
Shipping Custod									/	7
Airbill			1362921	\				~		
Shipping Docume								/		
Shipping Contain	ner		Vista	Client	R	etain	Re	eturn	Dis	pose
Chain of Custody	Chain of Custody / Sample Documentation Present?							~		
Chain of Custody	Chain of Custody / Sample Documentation Complete?						\			
Holding Time Ac	Holding Time Acceptable?									
Logged In:	Date/Tin	ne		Initials:)	Loc	cation:	P-13	WY	-2
Logged III.	08/24/2	11	12:00	B)	She	elf/Rack	A-4	B	- Ц
COC Anomaly/S	amnle Acc	entanc	e Form com	nnleted?					-	

Comments:

ID.: LR – SLC

Rev No.: 6

Rev Date: 07/16/2020

Page: 1 of 1

CoC/Label Reconciliation Report WO# 2108221

LabNumber CoC Sample ID		SampleAlias	Sample Date/Time	Container	BaseMatrix Sample Comments
2108221-01 A 3121	ď	21H2617-01	18-Aug-21 08:38	Polypropylene, 250mL	Aqueous
2108221-01 B 3121	₫	21H2617=01	18-Aug-21 08:38	Polypropylene, 250mL	Aqueous
2108221-02 A 3123		21H2617-02	18-Aug-21 12:00 🕎	Polypropylene, 250mL	Aqueous
2108221-02 B 3123		21H2617-02	18-Aug-21 12:00	Polypropylene, 250mL	Aqueous

Checkmarks indicate that information on the COC reconciled with the sample label. Any discrepancies are noted in the following columns.

	Yes	No	NA	Comments:
Sample Container Intact?	J			
Sample Custody Seals Intact?		V	V	
Adequate Sample Volume?	J			
Container Type Appropriate for Analysis(es)	7			

Preservation Documented: Na2S2O3

O3 (1

NH4CH3CO2

None Other

Verifed by/Date: World 18

Printed: 8/24/2021 12:06:47PM

September 17, 2021

Alpha Analytical Laboratories, Inc. Lab ID : SP 2111724 Attn: Leslie Quinn Customer : 2-20626

208 Mason St. Ukiah, CA 95482

Laboratory Report

Introduction: This report package contains total of 4 pages divided into 3 sections:

Case Narrative (1 pages): An overview of the work performed at FGL.

Sample Results (2 pages): Results for each sample submitted.

Quality Control (1 page): Supporting Quality Control (QC) results.

Case Narrative

This Case Narrative pertains to the following samples:

Sample Description	Date Sampled	Date Received	FGL Lab ID#	Matrix
21H2617-01	08/18/2021	08/24/2021	SP 2111724-001	W
21H2617-02	08/18/2021	08/24/2021	SP 2111724-002	W

Sampling and Receipt Information: All samples were received in acceptable condition and within temperature requirements, unless noted on the Condition Upon Receipt (CUR) form. All samples arrived at 19 °C. All samples were prepared and analyzed within the method specified hold time. All samples were checked for pH if acid or base preservation is required (except for VOAs). For details of sample receipt information, please see the attached Chain of Custody and Condition Upon Receipt Form.

Quality Control: All samples were prepared and analyzed according to the following tables:

Radio QC

900.0	09/15/2021:214382 All analysis quality controls are within established criteria
	08/27/2021:209898 All preparation quality controls are within established criteria (performed at FGL-SP ELAP# 1573)

Certification:: I certify that this data package is in compliance with ELAP standards, both technically and for completeness, except for any conditions listed above. Release of the data contained in this data package is authorized by the Laboratory Director or his designee, as verified by the following electronic signature.

KD:MKH

Reviewed and Kelly A. Dunnahoo, B.S. This: Laboratory Director Date: 2021-09-17 Digitally signed by Kelly A. Dunnahoo, B.S.

Page 1 of 4

Analytical Chemists

September 17, 2021 Lab ID : SP 2111724-001

Customer ID : 2-20626

Alpha Analytical Laboratories, Inc.

Attn: Leslie Quinn Sampled On : August 18, 2021-08:38 Sampled By : Not Available 208 Mason St.

Received On : August 24, 2021-10:15 Ukiah, CA 95482

> : Water Matrix

Description : 21H2617-01 **Project** : 21H2617

Sample Result - Radio

Constituent	Result ± Error	MDA	Units MCL/AL		Sample	Preparation	Sampl	e Analysis
Constituent	Result ± Effor	WIDA	Omts	WICL/AL	Method	Date/ID	Method	Date/ID
Radio Chemistry								
Gross Alpha	3.20 ± 1.88	2.50	pCi/L	15/5	900.0	08/27/21-07:30 2P2109898	900.0	09/15/21-13:11 2A2114382
Gross Beta	2.38 ± 1.23	1.44	pCi/L	50	900.0	08/27/21-07:30 2P2109898	900.0	09/15/21-13:11 2A2114382

ND=Non-Detected. PQL=Practical Quantitation Limit. * PQL adjusted for dilution.

MDA = Minimum Detectable Activity (Calculated at the 95% confidence level) = Data utilized by DHS to determine matrix interference. MCL / AL = Maximum Contamination Level / Action Level. Alpha's Action Level of 5 pCi/L is based on the Assigned Value (AV). AV = Assigned Value(Gross Alpha Result + (0.84 x Error)). CCR Section 64442: Drinking Water Compliance Note: Do the following If Gross Alpha's (AV) exceeds 5 pCi/L run Uranium. If Gross Alpha's (AV) minus Uranium exceeds 5 pCi/L run Radium 226.

Drinking Water Compliance:

Gross Alpha (AV) minus Uranium is less than or equal to 15 pCi/L Uranium is less than or equal to 20 pCi/L Radium 226 + Radium 228 is less than or equal to 5 pCi/L

Note: Samples are held for 3-6 months prior to disposal.

Analytical Chemists

September 17, 2021 Lab ID : SP 2111724-002

Customer ID: 2-20626

Alpha Analytical Laboratories, Inc.

Attn: Leslie Quinn Sampled On : August 18, 2021-12:00 Sampled By : Not Available 208 Mason St.

Received On : August 24, 2021-10:15 Ukiah, CA 95482

> : Water Matrix

Description : 21H2617-02 **Project** : 21H2617

Sample Result - Radio

Constituent	Result ± Error	MDA	Units	MCL/AL	Sample Preparation		Sample Analysis	
Constituent	Result ± EIIOI WIDA Ollits WI		WICL/AL	Method	Date/ID	Method	Date/ID	
Radio Chemistry								
Gross Alpha	2.10 ± 1.81	2.59	pCi/L	15/5	900.0	08/27/21-07:30 2P2109898	900.0	09/15/21-13:11 2A2114382
Gross Beta	1.97 ± 1.17	1.44	pCi/L	50	900.0	08/27/21-07:30 2P2109898	900.0	09/15/21-13:11 2A2114382

ND=Non-Detected. PQL=Practical Quantitation Limit. * PQL adjusted for dilution.

MDA = Minimum Detectable Activity (Calculated at the 95% confidence level) = Data utilized by DHS to determine matrix interference. MCL / AL = Maximum Contamination Level / Action Level. Alpha's Action Level of 5 pCi/L is based on the Assigned Value (AV). AV = Assigned Value(Gross Alpha Result + (0.84 x Error)). CCR Section 64442: Drinking Water Compliance Note: Do the following If Gross Alpha's (AV) exceeds 5 pCi/L run Uranium. If Gross Alpha's (AV) minus Uranium exceeds 5 pCi/L run Radium 226.

Drinking Water Compliance:

Gross Alpha (AV) minus Uranium is less than or equal to 15 pCi/L Uranium is less than or equal to 20 pCi/L Radium 226 + Radium 228 is less than or equal to 5 pCi/L

Note: Samples are held for 3-6 months prior to disposal.

September 17, 2021 Lab ID : SP 2111724 Alpha Analytical Laboratories, Inc. Customer : 2-20626

Quality Control - Radio

Constituent		Method	Date/ID	Type	Units	Conc.	QC Data	DQO	Note
Radio									
Alpha		900.0	09/15/21:214382JCA	CCV	cpm	7347	41.9 %	35-47	
				CCB	cpm		0.1200	0.15	
Beta		900.0	09/15/21:214382JCA	CCV	cpm	7347	94.4 %	83-94	
				CCB	cpm		0.460	0.5	
Gross Alpha		900.0	08/27/21:209898jca	Blank	pCi/L		0.26	3	
_				LCS	pCi/L	201.1	78.6 %	75-125	
				MS	pCi/L	201.1	114 %	60-140	
			(SP 2111724-001)	MSD	pCi/L	201.1	115 %	60-140	
				MSRPD	pCi/L	201.1	0.7%	≤30	
Gross Beta		900.0	08/27/21:209898jca	Blank	pCi/L		0.63	4	
				LCS	pCi/L	35.25	110 %	84-160	
				MS	pCi/L	35.25	93.6 %	80-130	
			(SP 2111724-001)	MSD	pCi/L	35.25	90.2 %	80-130	
				MSRPD	pCi/L	201.1	3.4%	≤30	
Definition									
CCV	: Continuing Calib	oration Verifica	ation - Analyzed to verif	fy the instrur	nent calibrati	on is within	criteria.		
CCB			Analyzed to verify the						
Blank			rify that the preparation						
LCS			ample - Prepared to veri						
MS	: Matrix Spikes - A matrix affects ana		ple is spiked with a know	wn amount o	f analyte. Th	e recoveries	are an indication	on of how tha	at sample
	· Matrix Spike Duplicate of MS/MSD pair - A random sample duplicate is spiked with a known amount of analyte. The recoveries								

: Matrix Spike Duplicate of MS/MSD pair - A random sample duplicate is spiked with a known amount of analyte. The recoveries MSD

are an indication of how that sample matrix affects analyte recovery.

: MS/MSD Relative Percent Difference (RPD) - The MS relative percent difference is an indication of precision for the preparation MSRPD

DQO : Data Quality Objective - This is the criteria against which the quality control data is compared. September 17, 2021

Alpha Analytical Laboratories, Inc. Attn: Leslie Quinn 208 Mason St. Ukiah, CA 95482

Subject: Subcontract Analysis for FGL Lab No. SP 2111724

Enclosed please find results for the following sample(s) which were received by FGL.

• Sub Contracted-Strontium 90

Please note that this analysis was performed by Pace Analytical (ELAP Certified Laboratory)

Thank you for using FGL Environmental.

Sincerely,

Digitally signed by Tracy Proefrock Tracy Proefrock Title: Customer Service Rep

Enclosure

September 15, 2021

Cindy Aguirre FGL Environmental, Inc. 853 Corporation St. Santa Paula, CA 930603005

RE: Project: SP 2111724

Pace Project No.: 30437814

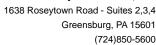
Dear Cindy Aguirre:

Enclosed are the analytical results for sample(s) received by the laboratory on August 26, 2021. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Greensburg

If you have any questions concerning this report, please feel free to contact me.


Sincerely,

Karen L. Smetanka karen.smetanka@pacelabs.com (724)850-5600 Project Manager

Jour Drutos

Enclosures

CERTIFICATIONS

Project: SP 2111724 Pace Project No.: 30437814

Pace Analytical Services Pennsylvania

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601

ANAB DOD-ELAP Rad Accreditation #: L2417

Alabama Certification #: 41590 Arizona Certification #: AZ0734

Arkansas Certification

California Certification #: 04222CA Colorado Certification #: PA01547 Connecticut Certification #: PH-0694

Delaware Certification EPA Region 4 DW Rad

Florida/TNI Certification #: E87683 Georgia Certification #: C040 Florida: Cert E871149 SEKS WET

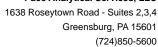
Guam Certification Hawaii Certification Idaho Certification Illinois Certification Indiana Certification Iowa Certification #: 391

Kansas/TNI Certification #: E-10358 Kentucky Certification #: KY90133 KY WW Permit #: KY0098221 KY WW Permit #: KY0000221

Louisiana DHH/TNI Certification #: LA180012 Louisiana DEQ/TNI Certification #: 4086

Maine Certification #: 2017020 Maryland Certification #: 308

Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991 Missouri Certification #: 235
Montana Certification #: Cert0082
Nebraska Certification #: NE-OS-29-14
Nevada Certification #: PA014572018-1
New Hampshire/TNI Certification #: 297617
New Jersey/TNI Certification #: PA051
New Mexico Certification #: PA01457
New York/TNI Certification #: 10888
North Carolina Certification #: 42706
North Dakota Certification #: R-190

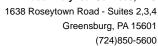

Oregon/TNI Certification #: PA200002-010 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282

South Dakota Certification
Tennessee Certification #: 02867

Ohio EPA Rad Approval: #41249

Texas/TNI Certification #: T104704188-17-3 Utah/TNI Certification #: PA014572017-9 USDA Soil Permit #: P330-17-00091 Vermont Dept. of Health: ID# VT-0282 Virgin Island/PADEP Certification Virginia/VELAP Certification #: 9526 Washington Certification #: C868 West Virginia DEP Certification #: 143 West Virginia DHHR Certification #: 9964C

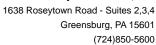
Wisconsin Approve List for Rad Wyoming Certification #: 8TMS-L



SAMPLE SUMMARY

Project: SP 2111724
Pace Project No.: 30437814

Lab ID	Sample ID	Matrix	Date Collected	Date Received
30437814001	21H2617-01	Water	08/18/21 08:38	08/26/21 10:30
30437814002	21H2617-02	Water	08/18/21 12:00	08/26/21 10:30



SAMPLE ANALYTE COUNT

Project: SP 2111724
Pace Project No.: 30437814

Sample ID	Method	Analysts	Analytes Reported
21H2617-01	EPA 905.0	JJY	1
21H2617-02	EPA 905.0	JJY	1
	21H2617-01	21H2617-01 EPA 905.0	21H2617-01 EPA 905.0 JJY

PASI-PA = Pace Analytical Services - Greensburg

ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: SP 2111724
Pace Project No.: 30437814

Sample: 21H2617-01 Lab ID: 30437814001 Collected: 08/18/21 08:38 Received: 08/26/21 10:30 Matrix: Water

PWS: Site ID: Sample Type:

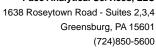
Parameters Method Act ± Unc (MDC) Carr Trac Units Analyzed CAS No. Qual

Pace Analytical Services - Greensburg

Strontium-90 EPA 905.0 **-0.183 ± 0.353 (0.700)** pCi/L 09/14/21 17:14 10098-97-2

C:101% T:NA

Sample: 21H2617-02 Lab ID: 30437814002 Collected: 08/18/21 12:00 Received: 08/26/21 10:30 Matrix: Water


PWS: Site ID: Sample Type:

Parameters Method Act ± Unc (MDC) Carr Trac Units Analyzed CAS No. Qual

Pace Analytical Services - Greensburg

Strontium-90 EPA 905.0 **-0.0380 ± 0.404 (0.784)** pCi/L 09/14/21 17:14 10098-97-2

C:98% T:NA

QUALITY CONTROL - RADIOCHEMISTRY

Project: SP 2111724
Pace Project No.: 30437814

QC Batch: 462847 Analysis Method: EPA 905.0

QC Batch Method: EPA 905.0 Analysis Description: 905.0 Strontium 89/90

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 30437814001, 30437814002

METHOD BLANK: 2234496 Matrix: Water

Associated Lab Samples: 30437814001, 30437814002

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Strontium-90
 -0.0231 ± 0.0704 (0.139) C:94% T:NA
 pCi/L
 09/14/21 17:15

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

1638 Roseytown Road - Suites 2,3,4 Greensburg, PA 15601 (724)850-5600

QUALIFIERS

Project: SP 2111724
Pace Project No.: 30437814

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Act - Activity

Date: 09/15/2021 03:27 PM

Unc - Uncertainty: For Safe Drinking Water Act (SDWA) analyses, the reported Unc. Is the calculated Count Uncertainty (95% confidence interval) using a coverage factor of 1.96. For all other matrices (non-SDWA), the reported Unc. is the calculated Expanded Uncertainty (aka Combined Standard Uncertainty, CSU), reported at the 95% confidence interval using a coverage factor of 1.96.

Gamma Spec: The Unc. reported for all gamma-spectroscopy analyses (EPA 901.1), is the calculated Expanded Uncertainty (CSU) at the 95.4% confidence interval, using a coverage factor of 2.0.

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

Subcontract to Pace Analytical

CHAIN OF CUSTODY

AND ANALYSES REQUEST FORM

Pittsburgh Lab Sample Cond	ILIOII	opo	11,175	celhi	
Pace Analytical Client Name:		f	G	<u> </u>	Project #
Courier: Fed Ex TUPS USPS Clier Tracking #: 17 92 03 613 6				Pace Other	Label ME LIMS Login WE
Custody Seal on Cooler/Box Present: yes		•		intact: yes {	no
Thermometer Used	Туре	of ice:	We	Blue (None)	
Cooler Temperature Observed Temp		. C	Corr	ection Factor:	°C Final Temp: C
Temp should be above freezing to 6°C		_			
				pH paper Lot#	Date and Initials of person examining contents:
Comments:	Yes	No	N/A	lovani	JA 8-27-21
Chain of Custody Present:	, pan	<u> </u>	ļ	1.	
Chain of Custody Filled Out:		<u> </u>	<u> </u>	2.	
Chain of Custody Relinquished:			<u> </u>	3.	
Sampler Name & Signature on COC:				4.	
Sample Labels match COC:] 5.	
-Includes date/time/ID Matrix:	W	<u> </u>	T		
Samples Arrived within Hold Time:				6.	
Short Hold Time Analysis (<72hr remaining):		_		7.	
Rush Turn Around Time Requested:		-	L	8.	
Sufficient Volume:				9.	
Correct Containers Used:	_			10,	
-Pace Containers Used:					
Containers Intact:	_			11.	
Orthophosphate field filtered			_	12.	
Hex Cr Aqueous sample field filtered				13.	
Organic Samples checked for dechlorination:				14.	
Filtered volume received for Dissolved tests			-	15.	
ill containers have been checked for preservation.				16.	
exceptions: VOA, coliform, TOC, O&G, Phenolics, Non-aqueous matrix	Radon	,		PHLA	
All containers meet method preservation	_			Initial when	Date/time of
equirements.				completed // Completed	preservation
			r		
feadspace in VOA Vials (>6mm):			-	17.	
rip Blank Present:			-	18.	
rip Blank Custody Seals Present			_		
Rad Samples Screened < 0.5 mrem/hr	_			Initial when completed:	Date: (~27~) Survey Meter
	<u></u>				1,79.3
lient Notification/ Resolution:					
Client Notification/ Resolution: Person Contacted:			Date/	Time:	Contacted By:

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

 $\ \square$ A check in this box indicates that additional information has been stored in ereports.

*PM review is documented electronically in LIMS. When the Project Manager closes the SRF Review schedule in LIMS. The review is in the Status section of the Workorder Edit Screen.

	ᆵ
	ပိ
	Container Cour
	nta
	-
	sample
~-	ف
	Lab
	urg
	0
	ens
	ē
	<u>ن</u>
	Pace
	ር

Profile Number

Notes

BP2S UMB

BP3U BP35 ВРЗИ **Bb3C** USAB

SPLC

MCKN

WGFU

NOAK

U69V

T65V

H69A

CCUB

DG92

BP1N

BGSN

Bein

T&DA

USDA **NEDA**

SEDY

NZSA

TrəA

SIDA

HIDA

Sample

Line Item 圣

 $^{\circ}$

Ω ဖ

HELINE US

Client

Pace Analytical ®

Plastic / Misc.

익홍 S 120mL Coliform Na Thiosulfate 500mL plastic unpreserved 250mL plastic unpreserved 1/2 Gallon Cubitainer 1L plastic unpreserved 250mL plastic H2SO4 500mL plastic H2SO4 250ml plastic NAOH 250mL plastic HNO3 GCUB 1 Gallon Cubitainer 1L plastic HNO3 12GN BP1N 3P1U P3N SP5T 3P3S SP3C 323 3P2S

500mL amber glass unpreserved

8oz wide jar unpreserved

WGKU

250mL amber glass unpreserved

250mL amber glass H2SO4 L clear glass unpreserved

AG2U

500mL clear glass unpreserved

4oz wide jar unpreserved

WGFU

BG2U

L amber glass Na Thiosulfate

40mL clear VOA vial Na Thiosul

40mL clear VOA vial HCI

VG9H

VG9T

00mL amber glass Na Thiosulfate

100mL amber glass unprserved

AGSU AGST

Gallon Jug with HNO3

4oz amber wide jar

JGFU

L amber glass H2SO4

Gallon Jug

S

L amber glass HCI

AG1H

AG1T BG1U AG3S AG3U

AG1S

40mL amber VOA vial H2SO4

40mL clear VOA vial

VG9U

DG9S

Glass

Container Codes

9 7

ω တ

Non-aqueous liquid

Solid

FNV-FRM-GRIIR-0079 00 290-0000

FINAL REPORT

Page 1 of 7

Work Orders: 1H24035 **Report Date:** 9/15/2021

Received Date: 8/24/2021

Turnaround Time: Normal

Phones: (925) 872-9637

Fax: (707) 468-5267

P.O. #:

Billing Code:

Project: 21H2617

Attn: David Pingatore

Client: Alpha Analytical Laboratories - Ukiah CA

208 Mason St Ukiah, CA 95482

Dear David Pingatore,

1H24035

Enclosed are the results of analyses for samples received 8/24/21 with the Chain-of-Custody document. The samples were received in good condition, at 2.9 °C and on ice. All analyses met the method criteria except as noted in the case narrative or in the report with data qualifiers.

Sample Results

Sample: 21H2617-01					Sa	mpled: 08/18/21	8:38 by Client
1H24035-01 (Water)							
Analyte		Result	MRL	Units	Dil	Analyzed	Qualifier
Method: EPA 525.2			Instr: GCMS16				
Batch ID: W1I0028	Preparation: EPA 525.2/SPE		Prepared: 09/	01/21 09:56			Analyst: rmr
Alachlor		ND	0.10	ug/l	1	09/10/21	
Atrazine		ND	0.10	ug/l	1	09/10/21	A-01
Benzo (a) pyrene		ND	0.10	ug/l	1	09/10/21	
Bis(2-ethylhexyl)adipate		ND	5.0	ug/l	1	09/10/21	
Bis(2-ethylhexyl)phthalate		ND	3.0	ug/l	1	09/10/21	
Bromacil		ND	0.50	ug/l	1	09/10/21	
Butachlor		ND	0.10	ug/l	1	09/10/21	
Captan		ND	1.0	ug/l	1	09/10/21	
Chlorpropham		· ND	0.10	ug/l	1	09/10/21	A-01
Cyanazine		ND	0.10	ug/l	1	09/10/21	
Diazinon		ND	0.10	ug/l	1	09/10/21	
Dimethoate		ND	0.20	ug/l	1	09/10/21	A-01
Diphenamid		ND	0.10	ug/l	1	09/10/21	
Disulfoton		· ND	0.10	ug/l	1	09/10/21	
EPTC		ND	0.10	ug/l	1	09/10/21	A-01
Metolachlor		ND	0.10	ug/l	1	09/10/21	
Metribuzin		ND	0.10	ug/l	1	09/10/21	
Molinate		· ND	0.10	ug/l	1	09/10/21	A-01
Prometon		ND	0.10	ug/l	1	09/10/21	
Prometryn		ND	0.10	ug/l	1	09/10/21	

FINAL REPORT

Sample Results

(Continued)

Sample:	21H2617-01				Sa	ampled: 08/18/21	8:38 by Client
	1H24035-01 (Water)					(Continued)
Analyte		Result	MRL	Units	Dil	Analyzed	Qualifier
Method: EPA	A 525.2		Instr: GCMS16				
Batch ID: \	W1I0028	Preparation: EPA 525.2/SPE	Prepared: 09/0	1/21 09:56			Analyst: rmr
Simazine		ND	0.10	ug/l	1	09/10/21	
Terbacil		ND	2.0	ug/l	1	09/10/21	
Thiobenca	arb	ND	0.10	ug/l	1	09/10/21	
Trithion		ND	0.10	ug/l	1	09/10/21	
Surrogate(s)							
1,3-Dimeti	hyl-2-nitrobenzene	77%	70-130	Conc:	3.97	09/10/21	
Perylene-c	d12	100%	50-120	Conc:	5.12	09/10/21	
Triphenyl μ	phosphate	270%	70-130	Conc:	13.9	09/10/21	S-11

FINAL REPORT

Sample Results

(Continued)

Sample: 21H2617-02

Sampled: 08/18/21 12:00 by Client

1H24035-02 (Water)						
Analyte	Result	MRL	Units	Dil	Analyzed	Qualifier
Method: EPA 525.2		Instr: GCMS16				
Batch ID: W110028	Preparation: EPA 525.2/SPE	Prepared: 09/0				Analyst: rmr
Alachlor	(ID	0.10	ug/l	1	09/10/21	
, mazino	ND	0.10	ug/l	1	09/10/21	
Benzo (a) pyrene	ND	0.10	ug/l	1	09/10/21	
Bis(2-ethylhexyl)adipate	ND	5.0	ug/l	1	09/10/21	
Bis(2-ethylhexyl)phthalate	ND ND	3.0	ug/l	1	09/10/21	
Bromacil	ND	0.50	ug/l	1	09/10/21	
Butachlor	ND	0.10	ug/l	1	09/10/21	
Captan	ND	1.0	ug/l	1	09/10/21	
Chlorpropham	ND	0.10	ug/l	1	09/10/21	
Cyanazine	ND	0.10	ug/l	1	09/10/21	
Diazinon	ND	0.10	ug/l	1	09/10/21	
Dimethoate	ND	0.20	ug/l	1	09/10/21	
Diphenamid	ND	0.10	ug/l	1	09/10/21	
Disulfoton	ND	0.10	ug/l	1	09/10/21	
EPTC	ND	0.10	ug/l	1	09/10/21	
Metolachlor	ND	0.10	ug/l	1	09/10/21	
Metribuzin	ND	0.10	ug/l	1	09/10/21	
Molinate	ND	0.10	ug/l	1	09/10/21	
Prometon	ND	0.10	ug/l	1	09/10/21	
Prometryn	ND	0.10	ug/l	1	09/10/21	
Simazine	ND	0.10	ug/l	1	09/10/21	
Terbacil	ND	2.0	ug/l	1	09/10/21	
Thiobencarb	ND	0.10	ug/l	1	09/10/21	
Trithion	ND	0.10	ug/l	1	09/10/21	
Surrogate(s) 1,3-Dimethyl-2-nitrobenzene	61%	70-130	Conc:	3.18	09/10/21	S-GC
•	105%	50-120	Conc:		09/10/21	2 00
Triphenyl phosphate		70-130	Conc:		09/10/21	S-11
inplicity prospilate	170/0	70 700	00/10.	7.00	03/10/21	G-11

FINAL REPORT

Quality Control Results

Analyte tch: W110028 - EPA 525.2/SPE Blank (W110028-BLK1) Alachlor	Result	MRL		Spike	Source		%REC		RPD	
tch: W110028 - EPA 525.2/SPE Blank (W110028-BLK1)	Result	MKL				O/ DEC				
Blank (W110028-BLK1)			Units	Level	Result	%REC	Limits	RPD	Limit	Qualifie
				D	24 4	0 (10 (21				
7 Hadring.	ND	0.10	ug/l	Prepared: 09/01/	21 Analyzed: C	19/10/21				
Atrazine		0.10	ug/l							A-0
Benzo (a) pyrene		0.10	ug/l							7.0
Bis(2-ethylhexyl)adipate		2.0	ug/l							
Bis(2-ethylhexyl)phthalate		2.0	ug/l							
Bromacil		0.50	ug/l							
Butachlor		0.10	ug/l							
Captan		1.0	_							
•			ug/l							Λ.0
Chlorpropham		0.10	ug/l							A-0
Cyanazine		0.10	ug/l							
Diazinon		0.10	ug/l							
Dimethoate		0.20	ug/l							A-0
Diphenamid		0.10	ug/l							
Disulfoton		0.10	ug/l							
EPTC	ND	0.10	ug/l							A-0
Metolachlor	ND	0.10	ug/l							
Metribuzin	ND	0.10	ug/l							
Molinate	· ND	0.10	ug/l							A-0
Prometon	ND	0.10	ug/l							
Prometryn	ND	0.10	ug/l							
Propachlor	0.00		ug/l							
Simazine	ND	0.10	ug/l							
Terbacil	ND	2.0	ug/l							
Thiobencarb	ND	0.10	ug/l							
Trithion	ND	0.10	ug/l							
Surrogate(s) 1,3-Dimethyl-2-nitrobenzene	3.60			5.00		72	70-130			
•			ug/l			97				
· oryrono u · =			ug/l	5.00			50-120			0.4
Triphenyl phosphate	10.9		ug/l	5.00		217	70-130			S-1
.CS (W110028-BS1)				Prepared: 09/01/	21 Analyzed: 0					
Alachlor		0.10	ug/l	5.00		120	70-130			
Atrazine		0.10	ug/l	5.00		209	70-130			Q-0
Benzo (a) pyrene		0.10	ug/l	5.00		108	60-130			
Bis(2-ethylhexyl)adipate	8.09	2.0	ug/l	5.00		162	70-130			Q-0
Bis(2-ethylhexyl)phthalate	8.02	2.0	ug/l	5.00		160	70-130			Q-0
Bromacil	5.10	0.50	ug/l	5.00		102	70-130			
Butachlor	5.49	0.10	ug/l	5.00		110	70-130			
Captan	7.04	1.0	ug/l	5.00		141	70-130			Q-0
Chlorpropham	9.59	0.10	ug/l	5.00		192	70-130			Q-0
Cyanazine	6.05	0.10	ug/l	5.00		121	70-130			
Diazinon	3.65	0.10	ug/l	5.00		73	50-120			
Dimethoate	7.37	0.20	ug/l	5.00		147	50-120			Q-0
Diphenamid	7.11	0.10	ug/l	5.00		142	70-130			Q-0

1H24035

Certificate of Analysis

FINAL REPORT

(Continued)

Page 5 of 7

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level		%REC	Limits	RPD	Limit	Qualifie
atch: W1I0028 - EPA 525.2/SPE (Continued)										
LCS (W110028-BS1)			P	repared: 09/01/2	21 Analyzed: 09/1	10/21				
Disulfoton	4.73	0.10	ug/l	5.00		95	50-120			
EPTC	5.44	0.10	ug/l	5.00		109	70-130			
Metolachlor	5.58	0.10	ug/l	5.00		112	60-130			
Metribuzin	4.20	0.10	ug/l	5.00		84	50-120			
Molinate	7.47	0.10	ug/l	5.00		149	70-130			Q-0
Prometon	1.00	0.10	ug/l	5.00		20	15-120			
Prometryn	4.26	0.10	ug/l	5.00		85	30-120			
Simazine	4.99	0.10	ug/l	5.00		100	60-130			
Terbacil	6.44	2.0	ug/l	5.00		129	70-130			
Thiobencarb	4.32	0.10	ug/l	5.00		86	70-130			
Trithion	4.82	0.10	ug/l	5.00		96	70-130			
Surrogate(s)										
,	4.32		ug/l	5.00		86	70-130			
Perylene-d12			ug/l	5.00		105	50-120			
Triphenyl phosphate	7.68		ug/l	5.00		154	70-130			S-1
LCS Dup (W110028-BSD1)			P	repared: 09/01/2	21 Analyzed: 09/0	09/21				
Alachlor	6.15	0.10	ug/l	5.00		123	70-130	3	30	
Atrazine	7.62	0.10	ug/l	5.00		152	70-130	31	30	Q-0
Benzo (a) pyrene	5.45	0.10	ug/l	5.00		109	60-130	1	30	
Bis(2-ethylhexyl)adipate	7.03	2.0	ug/l	5.00		141	70-130	14	30	Q-0
Bis(2-ethylhexyl)phthalate	7.27	2.0	ug/l	5.00		145	70-130	10	30	Q-0
Bromacil	5.31	0.50	ug/l	5.00		106	70-130	4	30	
Butachlor	5.56	0.10	ug/l	5.00		111	70-130	1	30	
Captan	7.02	1.0	ug/l	5.00		140	70-130	0.2	30	Q-0
Chlorpropham	7.33	0.10	ug/l	5.00		147	70-130	27	30	Q-0
Cyanazine	5.56	0.10	ug/l	5.00		111	70-130	8	30	
Diazinon	4.18	0.10	ug/l	5.00		84	50-120	14	30	
Dimethoate		0.20	ug/l	5.00		125	50-120	17	30	Q-0
Diphenamid	6.53	0.10	ug/l	5.00		131	70-130	8	30	Q-0
Disulfoton	4.89	0.10	ug/l	5.00		98	50-120	3	30	
EPTC	5.64	0.10	ug/l	5.00		113	70-130	4	30	
Metolachlor	5.77	0.10	ug/l	5.00		115	60-130	3	30	
Metribuzin	4.75	0.10	ug/l	5.00		95	50-120	12	30	
Molinate	7.07	0.10	ug/l	5.00		141	70-130	6	30	Q-0
Prometon	1.33	0.10	ug/l	5.00		27	15-120	28	30	
Prometryn	4.65	0.10	ug/l	5.00		93	30-120	9	30	
Simazine	5.69	0.10	ug/l	5.00		114	60-130	13	30	
Terbacil	6.71	2.0	ug/l	5.00		134	70-130	4	30	Q-0
Thiobencarb	4.59	0.10	ug/l	5.00		92	70-130	6	30	
Trithion	4.82	0.10	ug/l	5.00		96	70-130	0.004	30	
Surrogate(s) 1,3-Dimethyl-2-nitrobenzene	<i>4.</i> 52		ug/l	5.00		90	70-130			
•	5.32		ug/l	5.00		106	50-120			

FINAL REPORT

Quality Control Results

(Continued)

Semivolatile Organic Compounds by GC	/MS (Continued)									
				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
Batch: W110028 - EPA 525.2/SPE (Continued)										
LCS Dup (W1I0028-BSD1)			P	repared: 09/01/2	21 Analyzed: (09/09/21				
Surrogate(s) Triphenyl phosphate	6.77		ug/l	5.00		135	70-130			S-11

1H24035 Page 6 of 7

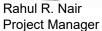
Definition

Certificate of Analysis

FINAL REPORT

Notes and Definitions

A-01	Low recovery of associated IS. Analyte was judged ND based on standard below reporting limit.
Q-08	High bias in the QC sample does not affect sample result since analyte was not detected or below the reporting limit.
S-11	Surrogate recovery outside of control limits. The data was accepted based on valid recovery of the remaining surrogate.
S-GC	Surrogate recovery outside of control limits due to a possible matrix effect . The data was accepted based on valid recovery of the remaining surrogate.
%REC	Percent Recovery
Dil	Dilution
MRL	The minimum levels, concentrations, or quantities of a target variable (e.g., target analyte) that can be reported with a specified degree of confidence. The MRL is also known as Limit of Quantitation (LOQ)
ND	NOT DETECTED at or above the Method Reporting Limit (MRL). If Method Detection Limit (MDL) is reported, then ND means not detected at or above the MDL.
RPD	Relative Percent Difference


Any remaining sample(s) will be disposed of one month from the final report date unless other arrangements are made in advance.

All results are expressed on wet weight basis unless otherwise specified.

All samples collected by Weck Laboratories have been sampled in accordance to laboratory SOP Number MIS002.

Reviewed by:

Rahul R. Nair

DoD-ELAP ANAB #ADE-2882 • DoD-ISO ANAB # • ELAP-CA #1132 • EPA-UCMR #CA00211 • Guam-EPA #17-008R • HW-DOH #4047 • ISO17025 ANAB #L2457.01 • LACSD #10143 • NELAP-OR #4047 • NJ-DEP #CA015 • SCAQMD #93LA1006

This is a complete final report. The information in this report applies to the samples analyzed in accordance with the chain-of-custody document. Weck Laboratories certifies that the test results meet all requirements of TNI unless noted by qualifiers or written in the Case Narrative. This analytical report must be reproduced in its entirety.

Corporate Laboratory (1551) 707-468-0401 208 Mason Street, Ukiah CA 95482

Los Angeles (Service Center) 310-743-5711 1230 E 233rd St #205, Carson CA 90745

San Diego Laboratory (3055) 760-930-2555 2722 Loker Ave West, Ste A, Carlsbad CA 92010 North Bay Laboratory (2303) 707-769-3128 110 Liberty Street, Petaluma CA 94952

Bay Area Laboratory (2728) 925-828-6226 262 Rickenbacker Circle, Livermore CA 94551

Central Valley Laboratory (2922) 916-686-5190 9090 Union Park Way #113, Elk Grove CA 95624

Chain of Custody Record

Reports and Invoices delivered by email as PDF files

clientservices@alpha-labs.com

Lab No.	2142617	Pg	[. of	2
_				

Report to	involc	e to (if different)		Pro	ject In	0	ra, ĒA		LX ?	, 45 ,55	AF 7	(e 3 d	Ana	sis	Requ	uest						L		ŢAŢ	<u>г</u>	٠	Temp °C
Company:	Contact:		Project					7.2	Ì	- -	7		-	П		- 1								and			Ukiah
Todd Groundwater			Roun		SR Wate		ality	erta Seta					ì		Ì							1	1	0	ay		38
Attn:	Email Address:		Project	Numb	er:		_	3		- 1		1 1									l	ŀ		US	u .	-	Livermore
Nicole Grimm	1								SSS	- }-	1	1 1								sub Weck	H			iay :		L	
Phone:	Phone:		PO Nui	nber:				C,	ξ		1	IJΙ	- 1							qn.				0		1	Elk Grove
510-747-6920			٠					Sample (D	멸	-	 	\		١					_			ŀ	ا بن	•	75%	1_	
Physical Address:		-	Freque	1су:				S	۴l	1)	Ιi							/ista	gu	1			0		L	Petaluma
2490 Mariner Square Loop, Suite 215, Ala	meda CA 94501			•	/log s		•	ers per	8.00.8			'							anp)	OC IC		ŀ		Othe	er	L	
Email address:			Container:	Preser	vation:	- Ma	trix-v	i Est	\$ \$	3 2		i	List	_ ا		ļ			18-	ો જે				0			Carisbad
ngrimm@toddgroundwater.com								Number of Containers	Co Total 200.8 / U DW 200.8 / Total Hardness	NB Suica as SiOz zuc./	\cdot] \mid	'	524.2 Votatiles Full List	& Beta	228		1		537.1 PFAS List of 18 - sub Vista	525.2 Nonregulated SVOC long list				-	lays	L	
Field Sampler - Printed Name and Signature:] , → 1	11	\	흵닏		i i	g	2 E	.[≧.	Ιİ	tiles	ē	8	8	- {		SL	regi		ŀ	_			1	Los Angeles
Micale Grimm			pottle fall			ewate		Nume	otal 2	ing or	Cr6 218.6 DW		2 Vola	Gross Alpha	Radium 226 & 228	Strantium 90	Ē	E	1 PFA	2 Non		ŀ		oly s		┧	
Sample Identification	Sam	oled on Date	40ml. vial Glass bottle Poly bottle Glass Jar Other	고 일	Other	Waste	Soil	Total I	8	8 A	ဗို	일	524.	Gros	Radi	Strar	Tritium	Radon	537.	525.			2504	Ę.	Half G	3	Source Code
	8:38	8/18/21	×	×	1 1 1	\top		2	×	x _				. ,]	_								×				
	0.50	0/10/2	x	П	x		П	1		×						_					Ì	Ī		x		Ī	
			×	11	×		-	1		_	×	П	1		, (} (╗	×	T	\top	T	
			×	11	x	T		2		丁		×	_									┪	Ť	Ħ	T	t	
			×	x	$\dagger \dagger$	\dagger	$\dag \uparrow$	4	十	Ť	\top	П	×	7	┪	_	-			Н		┪	\dagger	t	\top	╁	 ,
3121			 	十十	×	H	\Box	1		\top	╅	\Box		×						H	1	寸	\dagger	x		十	
3121			┞┼┼╬┼╂	╁	++	╫	\vdash	4	$\vdash \uparrow$	+	+	\top	\dashv	_	×	$\mathbf{x}_{\mathbf{i}}^{\prime}$		-	<u> </u>	Н		1	+	x	┤	╁	
	\		├┼┼ ┼ ╂	++	`\\.	${\sf H}$	╁┼	2	$\vdash \uparrow$	+	╁	\vdash			-		×		_	-	\dashv	\dashv		Ĥ	+	╁	
			- 	+	 ^	∺	╁┼	╂─	$\vdash \vdash$	-	┾		\exists	_	`		\dashv	_			⊣'	4	+	\vdash	\dashv	╂-	
			×	44	 ×	$oxed{\sqcup}$	#	2	$\vdash \vdash$	+	+	+		\dashv	\dashv		_	X	-	_	\dashv	-	1		\downarrow	_	
			×	11	_ ×	\coprod	11	2	\vdash	_	Џ_	╁			_		\dashv		x		\dashv	-1	×L		1	┸	_
			× <u> </u>	x			. 55. ~	2	<u> </u>		1	2 65 35	Y 1 - 460		š. '7.	. 48.0	و الله الله	70.0	GAR	X	Pon	ultor	l' nont	اي			
Relinquished by		Received	by the state of th		Thurst.	Ime.	. ે ફિલ્હ	144	70.50	ate ;	ا الآي د ما	110 1740	S of Life	\$13. [4]	* 1,2,4 1	ilfr)selv	1,0 6,7	35.7	ı,	ıvılaı	ived	ujiei	1611	E. Popl	_		
ng				\downarrow	160			<u>لــــــــــــــــــــــــــــــــــــ</u>	8/1	8/7	<u>ч</u>	4		CA Wri			DΤ		S	tate S	Syste	m No	: <u> </u>				
0 47		\(\(\)			19	<u> 10</u>		18	<u>//8</u>		<u> </u>	╧		<u> </u>					-1114								:
JB		93			22	18		8	1/1	<u>8/7</u>	<u> </u>		0	CA Geo					•		al ID I	_	0-				 . ,
								[]	•	•				EDI	F Re	por	t	Sam	pling	J Con	npany	/ Log	Cod	e:	_		

Corporate Laboratory (1551) 707-468-0401 208 Mason Street, Ukiah CA 95482

Los Angeles (Service Center) 310-743-5711 1230 E 233rd St #205, Carson CA 90745

North Bay Laboratory (2303) 707-769-3128 110 Liberty Street, Petaluma CA 94952

Bay Area Laboratory (2728) 925-828-6226 262 Rickenbacker Circle, Livermore CA 94551

Chain of Custody Record

Reports and Invoices delivered by email as PDF files

clientservices@alpha-labs.com

		ory (3055) 760-930- Vest, Ste A, Carlsb		92010	(916 Ik Gr							Lab .	No		2	11	12	22	:1	2	Pg		2
Report to	Involce	e to (if different)	'.	<u> </u>		Pro	ect ¹	nfo		1		-				. /	maly	/sis	Requ	iest		•			· · ·	- 1		TAT		Temp °C	_
Company:	Contact:		-		ect N										Ţ				T		Ţ					一		anda		Ukiah	
Todd Groundwater				80	ound :		R Wa Iselir		uuali	ry																		io-da ∙∩	y	3.0	
Attn:	Email Address:		_	Proj	ect N	umb	er:				,										-					ļ	-	O RUSI		Livermore	
Nicole Grimm												ess						-		,				/eck		ı	•	lay 2		9.8	
Phone:	Phone:			PO	Numt	er:					ejp	ardn						-				-		Λqn			•	Ò		Elk Grove	
510-747-6920											Sample ID	fafH					1			1				st-s	ŀ	ŀ	2-0	lay 7	5%		
Physical Address:				1	quenc	-					Ser S	3/T₀											Vista	il Buc				0		Petaluma	
2490 Mariner Square Loop, Suite 215, Alar	meda CA 94501			A	dd-c	ns /	log	sep	oarat	e	ecs be	200.8											537.1 PFAS List of 18 - sub Vista	525.2 Nonregulated SVOC long list - sub Weck		ł		Othe	_		
Email address:	•	-	Conf	tainer	Pr	eser	vation	n ,	Matri	X.	ntain	ΜO	200.7	orus		1	List	<u>n</u>					18-	AS F		İ		0		Carlsbad	
ngrimm@toddgroundwater.com			,			1					of Con	3/0	102	osbh			<u>F</u>	S Bei	228				istof	ılate		ļ		_	ays f		
Field Sampler - Printed Name and Signature:			ِ اِقِ ا	$\frac{1}{2}$				Vater	[iper c	200.8	as S	Ammonia / Phosphorus	Cr6 218.6 DW		524.2 Volatiles Full List	Gross Alpha & Beta	Radium 226 & 228	8	ĺ		ASL	nreg.		ŀ	<u> </u>	oly si		Los Angele	S
Nicole Grimn 7	<u></u>		bott		Š	_		y Gri	ewat ewat		Num	otal	iica	onia	218.6		8	S Alp	틸	Strontium 90	<u>ڍ</u> ا	등	F.	2 Noi		ŀ	$\overline{}$	Ť	$\overline{}$		
Sample Identification	Time	oled on	40ml. vial Glass bottle	Glass	Na2S	걸	di G	Drink	Wast	gle	Total Number	ი 1	NB Silica as SiO2 200.7	Amn	g	5	524.	Gros	Radi	Sto	Tritium	Radon	537.	525.			2504	1 1	Half (Source Co	de
	12 00			x X		×	#	T	ŤΪ	Ť	2		-		1	1	寸	1	-1	_	_				7	寸	x	П	T		
	12.00		\vdash	+	╂┤	+	┧╢	╂-	╁┼	+	\vdash		Н	┧	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	一		\dashv	ı	\dashv	+	 x	+		
			\square	<u>* </u>	44	4.	 *	4-	╀	+	1		Н	x	_	_	\dashv	\dashv	-	\dashv	4	_			\dashv		+	┼┤	+		
			Ш	×	Ш	\perp	×		Ш	\perp	1		Ш		×				_	_							×	Ц	\perp		
			x				x				2					x															
			x	\top	$\dagger \dagger$	x	$\dagger \dagger$	1	П	+	4		П		\neg		×	┪	寸	一	┪					目	Ť	\prod	\top		
2422			┝┼┼	+	╫	+	╁	\dagger	╫	+	1	\vdash	\vdash		\dashv	\dashv	ᅥ	×	┪	\dashv	\dashv	\dashv			\dashv		+	╢	+		_
3123			$\sqcup \sqcup$	~ -	- -	4-	++	4	┼┼	+	\vdash	<u> </u>	\vdash		\dashv	4	\dashv	-1	\dashv	\dashv		_			4	\dashv	+	×	+		_
				×		,	Ш	\perp	Ш		4								×	×							\perp	×	\perp		
			x				\prod	x			2										x										
			$ \downarrow \uparrow $	$\dagger\dagger$	T		$\dagger \dagger$	x	$\dagger \dagger$	T	2				\dashv		\dashv	寸	寸	一		x				一	十	$\dagger \dagger$	\top		
			┝╫┽	+	+	\dashv	╁┼	+	╁	╀	┢	├	\vdash	$\vdash \vdash$	\dashv	\dashv	\dashv	-		┥	\dashv	\dashv			\dashv	\dashv	+	H	+		_
			\coprod	<u> </u>	44	igdash	<u>*</u>	\downarrow	\coprod	\perp	2	<u> </u>	\vdash	\sqcup	_		_		_		_	-	×	Щ	_	_	<u> </u>	\coprod	\bot		
			×			x	\prod				2	L												х					\perp		
Relinquished by	3 2 2			* ;	٠.,	Α,	1.9	Tin	10		11.		Date	, -		- 7 J - 2					7, 1	, A	ddii	iona	Rec	quire	men	ts		T.	
mind		そて					1	601	9			8	118	121	<u>. </u>	()	CA Writ	DDV	۷ ام ات	DΤ		s	tate :	Syste	m No	o: _				
4-7						T	19	70	0		Ç		8/	5/				AALI	.e-U				_				_				
(3)	_	- (à			_	+	2			_		$\overline{}$		7	爿		^	CA				Fac	cility	Glob	al ID	No:					
<u> </u>		حاد				+	_		ro		-~	/	18	10	1	')	Ged		ckei port		Sam	pling	g Cor	npan	y Log	Co	de:			

WORK ORDER

Printed: 8/19/2021 9:58:39AM

21H2617

	Alpha Analytical	l Laboratories Ukia	ah to North Bay Cha	ain of Custo	dy
Client: Todd Groundwa Project: Round 3 ASR V	~~~	Client Code: I Project Number: F	OP_TODENG Round 3 ASR Water	Bio Qualit PO	
Received By: Jame	2/21 15:00 (10 day TAT) s Bixler Foley		ived: 08/18/21 22:15 ed 08/19/21 08:32		
Samples Received at:	deg C	All containers	received and intact:	YES	NO
Analysis	Department	Expires	Comments		
21H2617-01 3121 [Water] NB Silica as SiO2 ICP 200.7		8 02/14/22 08:	:38		
21H2617-02 3123 [Water] NB Silica as SiO2 ICP 200.7		0 02/14/22 12:	:00		
Containers Supplied: 250mL Poly HNO3 (J) 250mL Poly HNO3 (J)					

Alpha Analytical Laboratories, Inc.

email: clientservices@alpha-labs.com

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

24 September 2021

Todd Groundwater

Attn: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Alameda, CA 94501

RE: Round 3 ASR Water Quality Baseline

Work Order: 21H2633

Enclosed are the results of analyses for samples received by the laboratory on 08/18/21 22:15. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Alisabeth J. Wilcox For David S. Pingatore

Project Manager

Alpha Analytical Laboratories, Inc.

email: clientservices@alpha-labs.com

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501 Project Number: Round 3 ASR Water Quality Baseline

Reported: 09/24/21 16:57

Bay Area: 262 Rickenbacker Circle | Livermore, CA 94551 | T: 925-828-6226 | F: 925-828-6309 | ELAP# 2728 Central Valley: 9090 Union Park Way Suite 113 | Elk Grove, CA 95624 | T: 916-686-5190 | F: 916-686-5192 | ELAP# 2922

North Bay: 110 Liberty Street | Petaluma, CA 94952 | T: 707-769-3128 | F: 707-769-8093 | ELAP# 2303 San Diego: 2722 Loker Avenue West Suite A | Carlsbad, CA 92010 | T: 760-930-2555 | F: 760-930-2510 | ELAP# 3055

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
3121	21H2633-01	Water	08/18/21 09:10	08/18/21 22:15
12-5-23A20	21H2633-02	Water	08/18/21 09:55	08/18/21 22:15
3357	21H2633-03	Water	08/18/21 10:30	08/18/21 22:15
3123	21H2633-04	Water	08/18/21 11:50	08/18/21 22:15
3127	21H2633-05	Water	08/18/21 12:25	08/18/21 22:15
Hollister #2	21H2633-06	Water	08/18/21 13:15	08/18/21 22:15

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501

Project Number: Round 3 ASR Water Quality Baseline

	Result	Reporting Limit	Dilution	Batch	Prepared	Analyzed	ELAP#	Method	Note
3121 (21H2633-01)		Sample Type:	Water		Sampled	l: 08/18/21 09:1	.0		
Metals (Dissolved) by EPA 200 Series Methods									FILT
Mercury, dissolved	ND ug/L	0.20	1	AI13118	09/02/21 08:47	09/03/21 09:03	2 1551 E	EPA 245.1	
Calcium, dissolved	54 mg/L	1.0	1	AH14872	09/01/21 13:35	09/03/21 17:04	4 1551 E	EPA 200.7	
Iron, dissolved	ND mg/L	0.10	1	AH14872	09/01/21 13:35	09/03/21 17:04	4 1551 E	EPA 200.7	
Magnesium, dissolved	61 mg/L	1.0	1	AH14872	09/01/21 13:35	09/03/21 17:0	4 1551 E	EPA 200.7	
Potassium, dissolved	3.2 mg/L	1.0	1	AH14872	09/01/21 13:35	09/03/21 17:0	4 1551 E	EPA 200.7	
Sodium, dissolved	180 mg/L	1.0	1	AH14872	09/01/21 13:35	09/03/21 17:04	4 1551 E	EPA 200.7	
Metals (Dissolved) by EPA Method 200.8 ICP/MS									FILT
Aluminum, dissolved	ND ug/L	100	10	AH14197	08/24/21 17:10	08/27/21 14:03	3 1551 E	EPA 200.8	R-01
Antimony, dissolved	ND ug/L	0.50	1	AH14197	08/24/21 17:10	08/26/21 02:03	3 1551 E	EPA 200.8	
Arsenic, dissolved	4.9 ug/L	0.50	1	AH14197	08/24/21 17:10	08/26/21 02:03	3 1551 E	EPA 200.8	
Barium, dissolved	41 ug/L	0.50	1	AH14197	08/24/21 17:10	08/26/21 02:03	3 1551 E	EPA 200.8	
Beryllium, dissolved	ND ug/L	0.10	1	AH14197	08/24/21 17:10	08/26/21 02:03	3 1551 E	EPA 200.8	
Boron, dissolved	1900 ug/L	500	10	AH14197	08/24/21 17:10	08/27/21 14:03	3 1551 E	EPA 200.8	
Cadmium, dissolved	ND ug/L	0.10	1	AH14197	08/24/21 17:10	08/26/21 02:03	3 1551 E	EPA 200.8	
Chromium, dissolved	12 ug/L	0.50	1	AH14197	08/24/21 17:10	08/26/21 02:03	3 1551 E	EPA 200.8	
Copper, dissolved	24 ug/L	0.50	1	AH14197	08/24/21 17:10	08/26/21 02:03	3 1551 E	EPA 200.8	
Lead, dissolved	0.30 ug/L	0.25	1	AH14197	08/24/21 17:10	08/26/21 02:03	3 1551 E	EPA 200.8	
Manganese, dissolved	ND ug/L	5.0	1	AH14197	08/24/21 17:10	08/26/21 02:03	3 1551 E	EPA 200.8	
Molybdenum, dissolved	5.4 ug/L	0.25	1	AH14197	08/24/21 17:10	08/26/21 02:03	3 1551 E	EPA 200.8	
Nickel, dissolved	1.2 ug/L	0.50	1	AH14197	08/24/21 17:10	08/26/21 02:03	3 1551 E	EPA 200.8	
Selenium, dissolved	5.4 ug/L	2.0	1	AH14197	08/24/21 17:10	08/26/21 02:03	3 1551 E	EPA 200.8	
Silver, dissolved	ND ug/L	1.0	10	AH14197	08/24/21 17:10	08/27/21 14:03	3 1551 E	EPA 200.8	R-01
Thallium, dissolved	ND ug/L	0.10	1	AH14197	08/24/21 17:10	08/26/21 02:03	3 1551 E	EPA 200.8	
Vanadium, dissolved	6.5 ug/L	1.0	1	AH14197	08/24/21 17:10	08/26/21 02:0	3 1551 E	EPA 200.8	
Zinc, dissolved	13 ug/L	5.0	1	AH14197	08/24/21 17:10	08/26/21 02:03	3 1551 E	EPA 200.8	

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501

Reported: Project Number: Round 3 ASR Water Quality Baseline 09/24/21 16:57

	Result	Reporting Limit	Dilution	Batch	Prepared	Analyzed	ELAP#	Method	Note
3121 (21H2633-01)		Sample Type:	Water		Sampled	l: 08/18/21 09:1	0		
Conventional Chemistry Parameters by APHA/EP	A Methods								
Color	ND CU	5.0	1	AH14313	08/18/21 16:48	08/18/21 16:48	3 2728	SM2120B	
MBAS, calculated as LAS, mw 340	ND mg/L	0.050	1	AH14260	08/20/21 08:15	08/20/21 16:30	1551	SM5540C	
Perchlorate	ND ug/L	2.0	1	AH14310	08/20/21 08:00	08/20/21 19:05	2303	EPA 314.0	
Sulfide	ND mg/L	0.10	1	AH14407	08/24/21 06:00	08/24/21 06:00	1551	SM4500-S2 D	
Total Dissolved Solids	940 mg/L	10	1	AH14424	08/24/21 10:40	09/03/21 14:57	1551	SM2540C	
Turbidity	0.10 NTU	0.10	1	AH14314	08/18/21 16:57	08/18/21 16:57	7 2728	SM2130B	
Bicarbonate Alkalinity as CaCO3	310 mg/L	5.0	1	AH14703	08/30/21 08:00	08/30/21 12:21	1551	SM2320B	
Carbonate Alkalinity as CaCO3	ND mg/L	5.0	1	AH14703	08/30/21 08:00	08/30/21 12:21	1551	SM2320B	
Hydroxide Alkalinity as CaCO3	ND mg/L	5.0	1	AH14703	08/30/21 08:00	08/30/21 12:21	1551	SM2320B	
Total Alkalinity as CaCO3	310 mg/L	5.0	1	AH14703	08/30/21 08:00	08/30/21 12:21	1551	SM2320B	
Hardness, Total	384 mg/L	5	1	AH14872	09/01/21 13:35	09/03/21 17:04	1551	SM2340B	
Anions by EPA Method 300.0									
Chloride	130 mg/L	5.0	10	AH14195	08/19/21 15:30	08/19/21 15:30	1551	EPA 300.0	
Fluoride	0.32 mg/L	0.10	1	AH14195	08/19/21 14:23	08/19/21 14:23	3 1551	EPA 300.0	
Nitrate as N	3.7 mg/L	0.20	1	AH14195	08/19/21 14:23	08/19/21 14:23	1551	EPA 300.0	
Sulfate as SO4	220 mg/L	5.0	10	AH14195	08/19/21 15:30	08/19/21 15:30	1551	EPA 300.0	
Microbiological Parameters by APHA Standard M	ethods								
Total Coliforms	ND MPN/100mL	1.0	1	AH14327	08/18/21 16:35	08/19/21 16:35	2728	SM9223B	
E. Coli	ND MPN/100mL	1.0	1	AH14327	08/18/21 16:35	08/19/21 16:35	2728	SM9223B	
Volatile Organic Compounds by EPA Method 524.2	2								
Bromodichloromethane	ND ug/L	1.00	1	AH14496	08/25/21 15:00	08/25/21 23:29	1551	EPA 524.2	
Bromoform	ND ug/L	1.00	1	AH14496	08/25/21 15:00	08/25/21 23:29	1551	EPA 524.2	
Chloroform	ND ug/L	1.00	1	AH14496	08/25/21 15:00	08/25/21 23:29	1551	EPA 524.2	
Dibromochloromethane	ND ug/L	1.00	1	AH14496	08/25/21 15:00	08/25/21 23:29	1551	EPA 524.2	
Trihalomethanes (total)	ND ug/L	1.00	1	AH14496	08/25/21 15:00	08/25/21 23:29	1551	EPA 524.2	
Surrogate: Bromofluorobenzene	99.0 %	70-130		AH14496	08/25/21 15:00	08/25/21 23:29	1551	EPA 524.2	
Surrogate: Dibromofluoromethane	94.2 %	70-130		AH14496	08/25/21 15:00	08/25/21 23:29	1551	EPA 524.2	
Surrogate: Toluene-d8	96.6 %	70-130		AH14496	08/25/21 15:00	08/25/21 23:29	1551	EPA 524.2	

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215 Alameda, CA 94501

Project: Round 3 ASR Water Quality Baseline

Project Number: Round 3 ASR Water Quality Baseline

Mercury, dissolved ND ug/L 0.20 1 Al13118 09/02/21 08:47 09/03/21 08:52 1551 EPA 245.1 Calcium, dissolved 38 mg/L 1.0 1 AH14872 09/01/21 13:35 09/03/21 17:17 1551 EPA 200.7 Iron, dissolved ND mg/L 0.10 1 AH14872 09/01/21 13:35 09/03/21 17:17 1551 EPA 200.7 Magnesium, dissolved 51 mg/L 1.0 1 AH14872 09/01/21 13:35 09/03/21 17:17 1551 EPA 200.7 Potassium, dissolved 2.4 mg/L 1.0 1 AH14872 09/01/21 13:35 09/03/21 17:17 1551 EPA 200.7 Metals (Dissolved) by EPA Method 200.8 ICP/MS ND ug/L 10 1 AH14197 08/24/21 17:10 09/03/21 13:38 1551 EPA 200.7 Metals (Dissolved) by EPA Method 200.8 ICP/MS ND ug/L 10 1 AH14197 08/24/21 17:10 09/03/21 13:38 1551 EPA 200.7 Arenic, dissolved ND ug/L 0.50 1 AH14197 08/24/21 17:10 08/		Result	Reporting Limit	Dilution	Batch	Prepared	Analyzed	ELAP#	Method	Note
Monobromoacetic Acid ND ug/L 1.0 1.0 AH1476 08/31/2 07.00 09/02/2 03-03 55 EPA 552.2	3121 (21H2633-01)		Sample Type: \	Water		Sample	d: 08/18/21 09:1	.0		
Monochloroacetic Acid ND ug/L 10 11 AH1476 8/31/21 (07.00 09/02/21 (03.00) 151 EPA 552.2	Haloacetic Acids by EPA Method 552.2									
Dibromacectic Acid ND ug/L 1.0 1, Al11476 (8/31/21 07:00 09/02/21 03:03 151 PA 552.2 PA 552.2 Dichloracectic Acid ND ug/L 1.0 1, Al11476 (8/31/21 07:00 09/02/21 03:03 151 PA 552.2 Trichloracectic Acid (HAAS) ND ug/L 1.0 1, Al11476 (8/31/21 07:00 09/02/21 03:03 151 PA 552.2 Trichloracectic Acid (HAAS) ND ug/L 1.0 1, Al11476 (8/31/21 07:00 09/02/21 03:03 151 PA 552.2 Surrogate: 2.3-Dibromopropionic Acid 123 % 70-130	Monobromoacetic Acid	ND ug/L	1.0	1	AH14766	08/31/21 07:00	09/02/21 03:0	3 1551 EI	PA 552.2	
Dichloroacetic Acid ND ug/L 1.0 1.0 1.1 Al11476 (8/31/21 07.00 90/02/11 03.01 151 PA 55.2 154 PA 55.2	Monochloroacetic Acid	ND ug/L	2.0	1	AH14766	08/31/21 07:00	09/02/21 03:0	3 1551 EI	PA 552.2	
Trichloroacetic Acid (ACI)	Dibromoacetic Acid	ND ug/L	1.0	1	AH14766	08/31/21 07:00	09/02/21 03:0	3 1551 EF	PA 552.2	
Total Haloacetic Acids (HAA5)	Dichloroacetic Acid	ND ug/L	1.0	1	AH14766	08/31/21 07:00	09/02/21 03:0	3 1551 EF	PA 552.2	
Surrogate: 2,3-Dibromopropionic Acid 106 % 70-130	Trichloroacetic Acid	ND ug/L	1.0	1	AH14766	08/31/21 07:00	09/02/21 03:0	3 1551 EI	PA 552.2	
Surrogate: 2-Bromopropinic Acid 123 % 70-130	Total Haloacetic Acids (HAA5)	ND ug/L	1.0	1	AH14766	08/31/21 07:00	09/02/21 03:0	3 1551 EI	PA 552.2	
	Surrogate: 2,3-Dibromopropionic Acid	106 %	70-130		AH14766	08/31/21 07:00	09/02/21 03:0	3 1551 <i>EI</i>	PA 552.2	
Metals (Dissolved) by EPA 200 Series Methods FII Mercury, dissolved ND ug/L 0.20 1 Al13118 09/02/21 08:47 09/03/21 08:52 155 EPA 245.1 Calcium, dissolved 38 mg/L 1.0 1 AH14872 09/01/21 13:35 09/03/21 17:17 155 EPA 200.7 Ino, dissolved 51 mg/L 1.0 1 AH14872 09/01/21 13:35 09/03/21 17:17 155 EPA 200.7 Potassium, dissolved 2.4 mg/L 1.0 1 AH14872 09/01/21 13:35 09/03/21 17:17 155 EPA 200.7 Potassium, dissolved 2.4 mg/L 1.0 1 AH14872 09/01/21 13:35 09/03/21 17:17 155 EPA 200.7 Metals (Dissolved) by EPA Method 200.8 ICP/Ms Aluminum, dissolved ND ug/L 10 1 AH14197 08/24/21 17:10 09/03/21 13:38 155 EPA 200.8 Artimony, dissolved ND ug/L 0.50 1 AH14197 08/24/21 17:10 08/26/21 04:08 155 EPA 200.8 </td <td>Surrogate: 2-Bromopropionic Acid</td> <td>123 %</td> <td>70-130</td> <td></td> <td>AH14766</td> <td>08/31/21 07:00</td> <td>09/02/21 03:0</td> <td>3 1551 <i>EI</i></td> <td>PA 552.2</td> <td></td>	Surrogate: 2-Bromopropionic Acid	123 %	70-130		AH14766	08/31/21 07:00	09/02/21 03:0	3 1551 <i>EI</i>	PA 552.2	
Mercury, dissolved ND ug/L 0.20 1 Al13118 09/02/21 08:47 09/03/21 08:52 155 EPA 245.1 Calcium, dissolved 38 mg/L 1.0 1 AH14872 09/01/21 13:35 09/03/21 17:17 155 EPA 200.7 Iron, dissolved ND mg/L 0.10 1 AH14872 09/01/21 13:35 09/03/21 17:17 155 EPA 200.7 Magnesium, dissolved 51 mg/L 1.0 1 AH14872 09/01/21 13:35 09/03/21 17:17 155 EPA 200.7 Potassium, dissolved 2.4 mg/L 1.0 1 AH14872 09/01/21 13:35 09/03/21 17:17 155 EPA 200.7 Metals (Dissolved) by EPA Method 200.8 ICP/MS 1 AH14872 09/01/21 13:35 09/03/21 13:38 155 EPA 200.7 Metals (Dissolved) by EPA Method 200.8 ICP/MS ND ug/L 10 1 AH14872 09/01/21 13:35 09/03/21 13:38 155 EPA 200.7 Metals (Dissolved) by EPA Method 200.8 ICP/MS ND ug/L 0.50 1 AH14872 08/04/21 17:10 09/03/21 13:38	12-5-23A20 (21H2633-02)		Sample Type: '	Water		Sample	d: 08/18/21 09:5	55		
Calcium, dissolved 38 mg/L 1.0 1 AH14872 09/01/21 13:35 09/03/21 17:17 1551 EPA 200.7 Iron, dissolved ND mg/L 0.10 1 AH14872 09/01/21 13:35 09/03/21 17:17 1551 EPA 200.7 Magnesium, dissolved 51 mg/L 1.0 1 AH14872 09/01/21 13:35 09/03/21 17:17 1551 EPA 200.7 Potassium, dissolved 2.4 mg/L 1.0 1 AH14872 09/01/21 13:35 09/03/21 17:17 1551 EPA 200.7 Sodium, dissolved 2.10 mg/L 1.0 1 AH14872 09/01/21 13:35 09/03/21 17:17 1551 EPA 200.7 Metals (Dissolved) by EPA Method 200.8 ICP/MS 5 5 EPA 200.7 4 AH14197 08/24/21 17:10 09/03/21 13:38 1551 EPA 200.7 Malmium, dissolved ND ug/L 0.50 1 AH14197 08/24/21 17:10 08/26/21 04:08 1551 EPA 200.8 Barium, dissolved 62 ug/L 0.50 1 AH14197 08/24/21 17:10 08/26/21	Metals (Dissolved) by EPA 200 Series Methods	S								FILT
Iron, dissolved	Mercury, dissolved	ND ug/L	0.20	1	AI13118	09/02/21 08:47	09/03/21 08:5	2 1551 EI	PA 245.1	
Magnesium, dissolved 51 mg/L 1.0 1 AH14872 09/01/21 13:35 09/03/21 17:17 1551 EPA 200.7 Potassium, dissolved 2.4 mg/L 1.0 1 AH14872 09/01/21 13:35 09/03/21 17:17 1551 EPA 200.7 Sodium, dissolved 210 mg/L 1.0 1 AH14872 09/01/21 13:35 09/03/21 17:17 1551 EPA 200.7 Metals (Dissolved) by EPA Method 200.8 ICP/MS FILE Aluminum, dissolved ND ug/L 10 1 AH14197 08/24/21 17:10 09/03/21 13:38 1551 EPA 200.8 Antimony, dissolved ND ug/L 0.50 1 AH14197 08/24/21 17:10 08/26/21 04:08 1551 EPA 200.8 Barium, dissolved 7.2 ug/L 0.50 1 AH14197 08/24/21 17:10 08/26/21 04:08 1551 EPA 200.8 Beryllium, dissolved ND ug/L 0.50 1 AH14197 08/24/21 17:10 08/26/21 04:08 1551 EPA 200.8 Boron, dissolved 4100 ug/L 0.50 1	Calcium, dissolved	38 mg/L	1.0	1	AH14872	09/01/21 13:35	09/03/21 17:1	7 1551 EF	PA 200.7	
Potassium, dissolved 2.4 mg/L 1.0 1 AH14872 09/01/21 13:35 09/03/21 17:17 15:51 EPA 200.7 Sodium, dissolved 210 mg/L 1.0 1 AH14872 09/01/21 13:35 09/03/21 17:17 15:51 EPA 200.7 Metals (Dissolved) by EPA Method 200.8 ICP/MS FILE Aluminum, dissolved ND ug/L 10 1 AH14197 08/24/21 17:10 09/03/21 13:38 15:51 EPA 200.8 Antimony, dissolved ND ug/L 0.50 1 AH14197 08/24/21 17:10 08/26/21 04:08 15:51 EPA 200.8 Barium, dissolved 62 ug/L 0.50 1 AH14197 08/24/21 17:10 08/26/21 04:08 15:51 EPA 200.8 Beryllium, dissolved ND ug/L 0.50 1 AH14197 08/24/21 17:10 08/26/21 04:08 15:51 EPA 200.8 Boron, dissolved MD ug/L 0.10 1 AH14197 08/24/21 17:10 08/26/21 04:08 15:51 EPA 200.8 Chromium, dissolved ND ug/L 0.50 1 </td <td>Iron, dissolved</td> <td>ND mg/L</td> <td>0.10</td> <td>1</td> <td>AH14872</td> <td>09/01/21 13:35</td> <td>09/03/21 17:1</td> <td>7 1551 EI</td> <td>PA 200.7</td> <td></td>	Iron, dissolved	ND mg/L	0.10	1	AH14872	09/01/21 13:35	09/03/21 17:1	7 1551 EI	PA 200.7	
Sodium, dissolved 210 mg/L 1.0 1 AH14872 09/01/21 13:35 09/03/21 17:17 155 EPA 200.7 Metals (Dissolved) by EPA Method 200.8 ICP/MS FILA Aluminum, dissolved ND ug/L 10 1 AH14197 08/24/21 17:10 09/03/21 13:38 155 EPA 200.8 Antimony, dissolved ND ug/L 0.50 1 AH14197 08/24/21 17:10 08/26/21 04:08 155 EPA 200.8 Barium, dissolved 62 ug/L 0.50 1 AH14197 08/24/21 17:10 08/26/21 04:08 155 EPA 200.8 Beryllium, dissolved 62 ug/L 0.50 1 AH14197 08/24/21 17:10 08/26/21 04:08 155 EPA 200.8 Boron, dissolved ND ug/L 0.10 1 AH14197 08/24/21 17:10 08/26/21 04:08 155 EPA 200.8 Cadmium, dissolved ND ug/L 0.10 1 AH14197 08/24/21 17:10 08/26/21 04:08 155 EPA 200.8 Chromium, dissolved 6.8 ug/L 0.50 1 <th< td=""><td>Magnesium, dissolved</td><td>51 mg/L</td><td>1.0</td><td>1</td><td>AH14872</td><td>09/01/21 13:35</td><td>09/03/21 17:1</td><td>7 1551 EF</td><td>PA 200.7</td><td></td></th<>	Magnesium, dissolved	51 mg/L	1.0	1	AH14872	09/01/21 13:35	09/03/21 17:1	7 1551 EF	PA 200.7	
Metals (Dissolved) by EPA Method 200.8 ICP/MS Aluminum, dissolved ND ug/L 10 1 AH14197 08/24/21 17:10 09/03/21 13:38 1551 EPA 200.8 Antimony, dissolved ND ug/L 0.50 1 AH14197 08/24/21 17:10 08/26/21 04:08 1551 EPA 200.8 Arsenic, dissolved 7.2 ug/L 0.50 1 AH14197 08/24/21 17:10 08/26/21 04:08 1551 EPA 200.8 Barium, dissolved 62 ug/L 0.50 1 AH14197 08/24/21 17:10 08/26/21 04:08 1551 EPA 200.8 Beryllium, dissolved ND ug/L 0.10 1 AH14197 08/24/21 17:10 08/26/21 04:08 1551 EPA 200.8 Boron, dissolved 4100 ug/L 500 10 AH14197 08/24/21 17:10 08/26/21 04:08 1551 EPA 200.8 Cadmium, dissolved ND ug/L 0.50 1 AH14197 08/24/21 17:10 08/26/21 04:08 1551 EPA 200.8 Chromium, dissolved 6.8 ug/L 0.50 1	Potassium, dissolved	2.4 mg/L	1.0	1	AH14872	09/01/21 13:35	09/03/21 17:1	7 1551 EF	PA 200.7	
Aluminum, dissolved ND ug/L 10 1 AH14197 08/24/21 17:10 09/03/21 13:38 1551 EPA 200.8 Antimony, dissolved ND ug/L 0.50 1 AH14197 08/24/21 17:10 08/26/21 04:08 1551 EPA 200.8 Arsenic, dissolved 7.2 ug/L 0.50 1 AH14197 08/24/21 17:10 08/26/21 04:08 1551 EPA 200.8 Barium, dissolved 62 ug/L 0.50 1 AH14197 08/24/21 17:10 08/26/21 04:08 1551 EPA 200.8 Beryllium, dissolved ND ug/L 0.10 1 AH14197 08/24/21 17:10 08/26/21 04:08 1551 EPA 200.8 Boron, dissolved 4100 ug/L 500 10 AH14197 08/24/21 17:10 08/26/21 04:08 1551 EPA 200.8 Cadmium, dissolved ND ug/L 0.10 1 AH14197 08/24/21 17:10 08/26/21 04:08 1551 EPA 200.8 Chromium, dissolved 6.8 ug/L 0.50 1 AH14197 08/24/21 17:10 08/26/21 04:08 1551 EPA 200.8 Copper, dissolved 0.8 ug/L 0.50 1 AH14197 08/24/21 17:10 08/26/21 04:08 1551 EPA 200.8 Copper, dissolved 0.9 ug/L 0.50 1 AH14197 08/24/21 17:10 08/26/21 04:08 1551 EPA 200.8 Manganese, dissolved ND ug/L 0.25 1 AH14197 08/24/21 17:10 08/26/21 04:08 1551 EPA 200.8 Molybdenum, dissolved 9.4 ug/L 0.25 1 AH14197 08/24/21 17:10 08/26/21 04:08 1551 EPA 200.8 Molybdenum, dissolved 9.4 ug/L 0.25 1 AH14197 08/24/21 17:10 08/26/21 04:08 1551 EPA 200.8 Mickel, dissolved 0.77 ug/L 0.50 1 AH14197 08/24/21 17:10 08/26/21 04:08 1551 EPA 200.8 Nickel, dissolved 0.77 ug/L 0.50 1 AH14197 08/24/21 17:10 08/26/21 04:08 1551 EPA 200.8	Sodium, dissolved	210 mg/L	1.0	1	AH14872	09/01/21 13:35	09/03/21 17:1	7 1551 EF	PA 200.7	
Antimony, dissolved ND ug/L O.50 1 AH14197 08/24/21 17:10 08/26/21 04:08 1551 EPA 200.8 Arsenic, dissolved 7.2 ug/L O.50 1 AH14197 08/24/21 17:10 08/26/21 04:08 1551 EPA 200.8 Barium, dissolved 62 ug/L O.50 1 AH14197 08/24/21 17:10 08/26/21 04:08 1551 EPA 200.8 Beryllium, dissolved ND ug/L O.10 1 AH14197 08/24/21 17:10 08/26/21 04:08 1551 EPA 200.8 Boron, dissolved 4100 ug/L 500 10 AH14197 08/24/21 17:10 08/26/21 04:08 1551 EPA 200.8 Cadmium, dissolved ND ug/L O.10 1 AH14197 08/24/21 17:10 08/26/21 04:08 1551 EPA 200.8 Chromium, dissolved ND ug/L O.10 1 AH14197 08/24/21 17:10 08/26/21 04:08 1551 EPA 200.8 Chromium, dissolved 6.8 ug/L O.50 1 AH14197 08/24/21 17:10 08/26/21 04:08 1551 EPA 200.8 Copper, dissolved O.50 1 AH14197 08/24/21 17:10 08/26/21 04:08 1551 EPA 200.8 Copper, dissolved ND ug/L O.50 1 AH14197 08/24/21 17:10 08/26/21 04:08 1551 EPA 200.8 Manganese, dissolved ND ug/L O.25 1 AH14197 08/24/21 17:10 08/26/21 04:08 1551 EPA 200.8 Molybdenum, dissolved 9.4 ug/L O.25 1 AH14197 08/24/21 17:10 08/26/21 04:08 1551 EPA 200.8 Nolybdenum, dissolved O.77 ug/L O.80 1 AH14197 08/24/21 17:10 08/26/21 04:08 1551 EPA 200.8 Nolybdenum, dissolved O.77 ug/L O.80 O.80 1 AH14197 08/24/21 17:10 08/26/21 04:08 1551 EPA 200.8 Nolybdenum, dissolved O.77 ug/L O.80 O.80 1 AH14197 08/24/21 17:10 08/26/21 04:08 1551 EPA 200.8 Nolybdenum, dissolved O.77 ug/L O.80 O.80 1 AH14197 08/24/21 17:10 08/26/21 04:08 1551 EPA 200.8 Nolybdenum, dissolved O.77 ug/L O.80 O.80 1 AH14197 08/24/21 17:10 08/26/21 04:08 1551 EPA 200.8 Nolybdenum, dissolved O.77 ug/L O.80 O.80 1 AH14197 08/24/21 17:10 08/26/21 04:08 1551 EPA 200.8	Metals (Dissolved) by EPA Method 200.8 ICP/	MS								FILT
Arsenic, dissolved 7.2 ug/L 0.50 1 AH14197 08/24/21 17:10 08/26/21 04:08 1551 EPA 200.8 Barium, dissolved 62 ug/L 0.50 1 AH14197 08/24/21 17:10 08/26/21 04:08 1551 EPA 200.8 Beryllium, dissolved ND ug/L 0.10 1 AH14197 08/24/21 17:10 08/26/21 04:08 1551 EPA 200.8 Boron, dissolved 4100 ug/L 500 10 AH14197 08/24/21 17:10 08/26/21 04:08 1551 EPA 200.8 Cadmium, dissolved ND ug/L 0.10 1 AH14197 08/24/21 17:10 08/26/21 04:08 1551 EPA 200.8 Chromium, dissolved 6.8 ug/L 0.50 1 AH14197 08/24/21 17:10 08/26/21 04:08 1551 EPA 200.8 Copper, dissolved 2.0 ug/L 0.50 1 AH14197 08/24/21 17:10 08/26/21 04:08 1551 EPA 200.8 Lead, dissolved ND ug/L 0.25 1 AH14197 08/24/21 17:10 08/26/21 04:08 1551	Aluminum, dissolved	ND ug/L	10	1	AH14197	08/24/21 17:10	09/03/21 13:3	8 1551 EI	PA 200.8	
Barium, dissolved 62 ug/L 0.50 1 AH14197 08/24/21 17:10 08/26/21 04:08 1551 EPA 200.8 Beryllium, dissolved ND ug/L 0.10 1 AH14197 08/24/21 17:10 08/26/21 04:08 1551 EPA 200.8 Boron, dissolved 4100 ug/L 500 10 AH14197 08/24/21 17:10 08/26/21 04:08 1551 EPA 200.8 Cadmium, dissolved ND ug/L 0.10 1 AH14197 08/24/21 17:10 08/26/21 04:08 1551 EPA 200.8 Chromium, dissolved 6.8 ug/L 0.50 1 AH14197 08/24/21 17:10 08/26/21 04:08 1551 EPA 200.8 Copper, dissolved 2.0 ug/L 0.50 1 AH14197 08/24/21 17:10 08/26/21 04:08 1551 EPA 200.8 Lead, dissolved ND ug/L 0.25 1 AH14197 08/24/21 17:10 08/26/21 04:08 1551 EPA 200.8 Molybdenum, dissolved 9.4 ug/L 0.25 1 AH14197 08/24/21 17:10 08/26/21 04:08 1551	Antimony, dissolved	ND ug/L	0.50	1	AH14197	08/24/21 17:10	08/26/21 04:0	8 1551 EF	PA 200.8	
Beryllium, dissolved ND ug/L 0.10 1 AH14197 08/24/21 17:10 08/26/21 04:08 1551 EPA 200.8 Boron, dissolved 4100 ug/L 500 10 AH14197 08/24/21 17:10 08/27/21 15:46 1551 EPA 200.8 Cadmium, dissolved ND ug/L 0.10 1 AH14197 08/24/21 17:10 08/26/21 04:08 1551 EPA 200.8 Chromium, dissolved 6.8 ug/L 0.50 1 AH14197 08/24/21 17:10 08/26/21 04:08 1551 EPA 200.8 Copper, dissolved 2.0 ug/L 0.50 1 AH14197 08/24/21 17:10 08/26/21 04:08 1551 EPA 200.8 Lead, dissolved ND ug/L 0.25 1 AH14197 08/24/21 17:10 08/26/21 04:08 1551 EPA 200.8 Molybdenum, dissolved P.4 ug/L 0.25 1 AH14197 08/24/21 17:10 08/26/21 04:08 1551 EPA 200.8 Nickel, dissolved 0.77 ug/L 0.50 1 AH14197 08/24/21 17:10 08/26/21 04:08 1551	Arsenic, dissolved	7.2 ug/L	0.50	1	AH14197	08/24/21 17:10	08/26/21 04:0	8 1551 EI	PA 200.8	
Boron, dissolved 4100 ug/L 500 10 AH14197 08/24/21 17:10 08/27/21 15:46 1551 EPA 200.8 Cadmium, dissolved ND ug/L 0.10 1 AH14197 08/24/21 17:10 08/26/21 04:08 1551 EPA 200.8 Chromium, dissolved 6.8 ug/L 0.50 1 AH14197 08/24/21 17:10 08/26/21 04:08 1551 EPA 200.8 Copper, dissolved 2.0 ug/L 0.50 1 AH14197 08/24/21 17:10 08/26/21 04:08 1551 EPA 200.8 Lead, dissolved ND ug/L 0.25 1 AH14197 08/24/21 17:10 08/26/21 04:08 1551 EPA 200.8 Manganese, dissolved ND ug/L 5.0 1 AH14197 08/24/21 17:10 08/26/21 04:08 1551 EPA 200.8 Molybdenum, dissolved 9.4 ug/L 0.25 1 AH14197 08/24/21 17:10 08/26/21 04:08 1551 EPA 200.8 Nickel, dissolved 0.77 ug/L 0.50 1 AH14197 08/24/21 17:10 08/26/21 04:08 1551	Barium, dissolved	62 ug/L	0.50	1	AH14197	08/24/21 17:10	08/26/21 04:0	8 1551 EI	PA 200.8	
Cadmium, dissolved ND ug/L 0.10 1 AH14197 08/24/21 17:10 08/26/21 04:08 1551 EPA 200.8 Chromium, dissolved 6.8 ug/L 0.50 1 AH14197 08/24/21 17:10 08/26/21 04:08 1551 EPA 200.8 Copper, dissolved 2.0 ug/L 0.50 1 AH14197 08/24/21 17:10 08/26/21 04:08 1551 EPA 200.8 Lead, dissolved ND ug/L 0.25 1 AH14197 08/24/21 17:10 08/26/21 04:08 1551 EPA 200.8 Manganese, dissolved ND ug/L 5.0 1 AH14197 08/24/21 17:10 08/26/21 04:08 1551 EPA 200.8 Molybdenum, dissolved 9.4 ug/L 0.25 1 AH14197 08/24/21 17:10 08/26/21 04:08 1551 EPA 200.8 Nickel, dissolved 0.77 ug/L 0.50 1 AH14197 08/24/21 17:10 08/26/21 04:08 1551 EPA 200.8	Beryllium, dissolved	ND ug/L	0.10	1	AH14197	08/24/21 17:10	08/26/21 04:0	8 1551 EF	PA 200.8	
Chromium, dissolved 6.8 ug/L 0.50 1 AH14197 08/24/21 17:10 08/26/21 04:08 1551 EPA 200.8 Copper, dissolved 2.0 ug/L 0.50 1 AH14197 08/24/21 17:10 08/26/21 04:08 1551 EPA 200.8 Lead, dissolved ND ug/L 0.25 1 AH14197 08/24/21 17:10 08/26/21 04:08 1551 EPA 200.8 Manganese, dissolved ND ug/L 5.0 1 AH14197 08/24/21 17:10 08/26/21 04:08 1551 EPA 200.8 Molybdenum, dissolved 9.4 ug/L 0.25 1 AH14197 08/24/21 17:10 08/26/21 04:08 1551 EPA 200.8 Nickel, dissolved 0.77 ug/L 0.50 1 AH14197 08/24/21 17:10 08/26/21 04:08 1551 EPA 200.8	Boron, dissolved	4100 ug/L	500	10	AH14197	08/24/21 17:10	08/27/21 15:4	6 1551 EI	PA 200.8	
Copper, dissolved 2.0 ug/L 0.50 1 AH14197 08/24/21 17:10 08/26/21 04:08 1551 EPA 200.8 Lead, dissolved ND ug/L 0.25 1 AH14197 08/24/21 17:10 08/26/21 04:08 1551 EPA 200.8 Manganese, dissolved ND ug/L 5.0 1 AH14197 08/24/21 17:10 08/26/21 04:08 1551 EPA 200.8 Molybdenum, dissolved 9.4 ug/L 0.25 1 AH14197 08/24/21 17:10 08/26/21 04:08 1551 EPA 200.8 Nickel, dissolved 0.77 ug/L 0.50 1 AH14197 08/24/21 17:10 08/26/21 04:08 1551 EPA 200.8	Cadmium, dissolved	ND ug/L	0.10	1	AH14197	08/24/21 17:10	08/26/21 04:0	8 1551 EF	PA 200.8	
Lead, dissolved ND ug/L 0.25 1 AH14197 08/24/21 17:10 08/26/21 04:08 1551 EPA 200.8 Manganese, dissolved ND ug/L 5.0 1 AH14197 08/24/21 17:10 08/26/21 04:08 1551 EPA 200.8 Molybdenum, dissolved 9.4 ug/L 0.25 1 AH14197 08/24/21 17:10 08/26/21 04:08 1551 EPA 200.8 Nickel, dissolved 0.77 ug/L 0.50 1 AH14197 08/24/21 17:10 08/26/21 04:08 1551 EPA 200.8	Chromium, dissolved	6.8 ug/L	0.50	1	AH14197	08/24/21 17:10	08/26/21 04:0	8 1551 EF	PA 200.8	
Manganese, dissolved ND ug/L 5.0 1 AH14197 08/24/21 17:10 08/26/21 04:08 1551 EPA 200.8 Molybdenum, dissolved 9.4 ug/L 0.25 1 AH14197 08/24/21 17:10 08/26/21 04:08 1551 EPA 200.8 Nickel, dissolved 0.77 ug/L 0.50 1 AH14197 08/24/21 17:10 08/26/21 04:08 1551 EPA 200.8	Copper, dissolved	2.0 ug/L	0.50	1	AH14197	08/24/21 17:10	08/26/21 04:0	8 1551 EF	PA 200.8	
Molybdenum, dissolved 9.4 ug/L 0.25 1 AH14197 08/24/21 17:10 08/26/21 04:08 1551 EPA 200.8 Nickel, dissolved 0.77 ug/L 0.50 1 AH14197 08/24/21 17:10 08/26/21 04:08 1551 EPA 200.8	Lead, dissolved	ND ug/L	0.25	1	AH14197	08/24/21 17:10	08/26/21 04:0	8 1551 EI	PA 200.8	
Nickel, dissolved 0.77 ug/L 0.50 1 AH14197 08/24/21 17:10 08/26/21 04:08 1551 EPA 200.8	Manganese, dissolved	ND ug/L	5.0	1	AH14197	08/24/21 17:10	08/26/21 04:0	8 1551 EI	PA 200.8	
	Molybdenum, dissolved	9.4 ug/L	0.25	1	AH14197	08/24/21 17:10	08/26/21 04:0	8 1551 EF	PA 200.8	
C.I., II., II., II., II., II., II., II.,	Nickel, dissolved	0.77 ug/L	0.50	1	AH14197	08/24/21 17:10	08/26/21 04:0	8 1551 EI	PA 200.8	
Selenium, dissolved ND ug/L 2.0 1 AH14197 08/24/21 17:10 08/26/21 04:08 1551 EPA 200.8	Selenium, dissolved	ND ug/L	2.0	1	AH14197	08/24/21 17:10	08/26/21 04:0	8 1551 EI	PA 200.8	
Silver, dissolved ND ug/L 0.10 1 AH14197 08/24/21 17:10 09/03/21 13:38 1551 EPA 200.8	Silver, dissolved	ND ug/L	0.10	1	AH14197	08/24/21 17:10	09/03/21 13:3	8 1551 EF	PA 200.8	
Thallium, dissolved ND ug/L 0.10 1 AH14197 08/24/21 17:10 08/26/21 04:08 1551 EPA 200.8	Thallium, dissolved	ND ug/L	0.10	1	AH14197	08/24/21 17:10	08/26/21 04:0	8 1551 EI	PA 200.8	
Vanadium, dissolved 7.3 ug/L 1.0 1 AH14197 08/24/21 17:10 08/26/21 04:08 1551 EPA 200.8	Vanadium, dissolved	7.3 ug/L	1.0	1	AH14197	08/24/21 17:10	08/26/21 04:0	8 1551 EI	PA 200.8	
Zinc, dissolved ND ug/L 5.0 1 AH14197 08/24/21 17:10 08/26/21 04:08 1551 EPA 200.8	Zinc, dissolved	ND ug/L	5.0	1	AH14197	08/24/21 17:10	08/26/21 04:0	8 1551 EI	PA 200.8	

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501

Reported: Project Number: Round 3 ASR Water Quality Baseline 09/24/21 16:57

	Result	Reporting Limit	Dilution	Batch	Prepared	Analyzed	ELAP#	Method	Note
12-5-23A20 (21H2633-02)		Sample Type:	Water		Sampled	l: 08/18/21 09:5	5		
Conventional Chemistry Parameters by APHA/E	PA Methods								
Color	ND CU	5.0	1	AH14313	08/18/21 16:48	08/18/21 16:48	3 2728	SM2120B	
MBAS, calculated as LAS, mw 340	ND mg/L	0.050	1	AH14260	08/20/21 08:15	08/20/21 16:30	1551	SM5540C	
Perchlorate	ND ug/L	2.0	1	AH14310	08/20/21 08:00	08/20/21 19:21	2303	EPA 314.0	
Sulfide	ND mg/L	0.10	1	AH14407	08/24/21 06:00	08/24/21 06:00	1551	SM4500-S2 D	
Total Dissolved Solids	920 mg/L	10	1	AH14424	08/24/21 10:40	09/03/21 14:57	1551	SM2540C	
Turbidity	0.10 NTU	0.10	1	AH14314	08/18/21 16:57	08/18/21 16:57	2728	SM2130B	
Bicarbonate Alkalinity as CaCO3	340 mg/L	5.0	1	AH14703	08/30/21 08:00	08/30/21 12:21	1551	SM2320B	
Carbonate Alkalinity as CaCO3	ND mg/L	5.0	1	AH14703	08/30/21 08:00	08/30/21 12:21	1551	SM2320B	
Hydroxide Alkalinity as CaCO3	ND mg/L	5.0	1	AH14703	08/30/21 08:00	08/30/21 12:21	1551	SM2320B	
Total Alkalinity as CaCO3	340 mg/L	5.0	1	AH14703	08/30/21 08:00	08/30/21 12:21	1551	SM2320B	
Hardness, Total	306 mg/L	5	1	AH14872	09/01/21 13:35	09/03/21 17:17	1551	SM2340B	
Anions by EPA Method 300.0									
Chloride	180 mg/L	5.0	10	AH14195	08/19/21 16:20	08/19/21 16:20	1551	EPA 300.0	
Fluoride	0.41 mg/L	0.10	1	AH14195	08/19/21 15:47	08/19/21 15:47	1551	EPA 300.0	
Nitrate as N	0.82 mg/L	0.20	1	AH14195	08/19/21 15:47	08/19/21 15:47	1551	EPA 300.0	
Sulfate as SO4	120 mg/L	5.0	10	AH14195	08/19/21 16:20	08/19/21 16:20	1551	EPA 300.0	
Microbiological Parameters by APHA Standard	Methods								
Total Coliforms	ND MPN/100mI	1.0	1	AH14327	08/18/21 16:35	08/19/21 16:35	2728	SM9223B	
E. Coli	ND MPN/100mI	1.0	1	AH14327	08/18/21 16:35	08/19/21 16:35	2728	SM9223B	
Volatile Organic Compounds by EPA Method 524	1.2								
Bromodichloromethane	ND ug/L	1.00	1	AH14496	08/25/21 15:00	08/26/21 00:05	1551	EPA 524.2	
Bromoform	ND ug/L	1.00	1	AH14496	08/25/21 15:00	08/26/21 00:05	1551	EPA 524.2	
Chloroform	ND ug/L	1.00	1	AH14496	08/25/21 15:00	08/26/21 00:05	1551	EPA 524.2	
Dibromochloromethane	ND ug/L	1.00	1	AH14496	08/25/21 15:00	08/26/21 00:05	1551	EPA 524.2	
Trihalomethanes (total)	ND ug/L	1.00	1	AH14496	08/25/21 15:00	08/26/21 00:05	1551	EPA 524.2	
Surrogate: Bromofluorobenzene	95.8 %	70-130		AH14496	08/25/21 15:00	08/26/21 00:03	1551	EPA 524.2	
Surrogate: Dibromofluoromethane	84.8 %	70-130		AH14496	08/25/21 15:00	08/26/21 00:03	1551	EPA 524.2	
Surrogate: Toluene-d8	97.0 %	70-130		AH14496	08/25/21 15:00	08/26/21 00:03	1551	EPA 524.2	

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501

Reported: Project Number: Round 3 ASR Water Quality Baseline 09/24/21 16:57

	Result	Reporting Limit Di	ilution	Batch	Prepared	Analyzed	ELAP#	Method	Note
12-5-23A20 (21H2633-02)		Sample Type: Wa	ater		Sample	1: 08/18/21 09:5	55		
Haloacetic Acids by EPA Method 552.2									
Monobromoacetic Acid	ND ug/L	1.0	1	AH14766	08/31/21 07:00	09/02/21 03:4	5 1551	EPA 552.2	
Monochloroacetic Acid	ND ug/L	2.0	1	AH14766	08/31/21 07:00	09/02/21 03:4	5 1551	EPA 552.2	
Dibromoacetic Acid	ND ug/L	1.0	1	AH14766	08/31/21 07:00	09/02/21 03:4	5 1551	EPA 552.2	
Dichloroacetic Acid	ND ug/L	1.0	1	AH14766	08/31/21 07:00	09/02/21 03:4	5 1551	EPA 552.2	
Trichloroacetic Acid	ND ug/L	1.0	1	AH14766	08/31/21 07:00	09/02/21 03:4	5 1551	EPA 552.2	
Total Haloacetic Acids (HAA5)	ND ug/L	1.0	1	AH14766	08/31/21 07:00	09/02/21 03:4	5 1551	EPA 552.2	
Surrogate: 2,3-Dibromopropionic Acid	102 %	70-130		AH14766	08/31/21 07:00	09/02/21 03:4	5 1551	EPA 552.2	
Surrogate: 2-Bromopropionic Acid	117 %	70-130		AH14766	08/31/21 07:00	09/02/21 03:4	5 1551	EPA 552.2	
3357 (21H2633-03)		Sample Type: Wa	ater		Sample	1: 08/18/21 10:3	0		
Metals (Dissolved) by EPA 200 Series Methods									FILT
Mercury, dissolved	ND ug/L	0.20	1	AI13118	09/02/21 08:47	09/03/21 09:0	5 1551	EPA 245.1	
Calcium, dissolved	45 mg/L	1.0	1	AH14872	09/01/21 13:35	09/03/21 17:2	5 1551	EPA 200.7	
Iron, dissolved	ND mg/L	0.10	1	AH14872	09/01/21 13:35	09/03/21 17:2	5 1551	EPA 200.7	
Magnesium, dissolved	44 mg/L	1.0	1	AH14872	09/01/21 13:35	09/03/21 17:2	5 1551	EPA 200.7	
Potassium, dissolved	2.6 mg/L	1.0	1	AH14872	09/01/21 13:35	09/03/21 17:2	5 1551	EPA 200.7	
Sodium, dissolved	170 mg/L	1.0	1	AH14872	09/01/21 13:35	09/03/21 17:2	5 1551	EPA 200.7	
Metals (Dissolved) by EPA Method 200.8 ICP/	MS								FILT
Aluminum, dissolved	ND ug/L	10	1	AH14197	08/24/21 17:10	09/03/21 13:4	4 1551	EPA 200.8	
Antimony, dissolved	ND ug/L	0.50	1	AH14197	08/24/21 17:10	08/26/21 04:1	5 1551	EPA 200.8	
Arsenic, dissolved	4.4 ug/L	0.50	1	AH14197	08/24/21 17:10	08/26/21 04:1	5 1551	EPA 200.8	
Barium, dissolved	34 ug/L	0.50	1	AH14197	08/24/21 17:10	08/26/21 04:1	5 1551	EPA 200.8	
Beryllium, dissolved	ND ug/L	0.10	1	AH14197	08/24/21 17:10	08/26/21 04:1	5 1551	EPA 200.8	
Boron, dissolved	1500 ug/L	500	10	AH14197	08/24/21 17:10	08/27/21 15:5	4 1551	EPA 200.8	
Cadmium, dissolved	ND ug/L	0.10	1	AH14197	08/24/21 17:10	08/26/21 04:1	5 1551	EPA 200.8	
Chromium, dissolved	3.0 ug/L	0.50	1	AH14197	08/24/21 17:10	08/26/21 04:1	5 1551	EPA 200.8	
Copper, dissolved	5.7 ug/L	0.50	1	AH14197	08/24/21 17:10	08/26/21 04:1	5 1551	EPA 200.8	
Lead, dissolved	ND ug/L	0.25	1	AH14197	08/24/21 17:10	08/26/21 04:1	5 1551	EPA 200.8	
Manganese, dissolved	ND ug/L	5.0	1	AH14197	08/24/21 17:10	08/26/21 04:1	5 1551	EPA 200.8	
Molybdenum, dissolved	5.1 ug/L	0.25	1	AH14197	08/24/21 17:10	08/26/21 04:1	5 1551	EPA 200.8	
Nickel, dissolved	1.5 ug/L	0.50	1	AH14197	08/24/21 17:10	08/26/21 04:1	5 1551	EPA 200.8	
Selenium, dissolved	2.7 ug/L	2.0	1	AH14197	08/24/21 17:10	08/26/21 04:1	5 1551	EPA 200.8	
Silver, dissolved	ND ug/L	0.10	1	AH14197	08/24/21 17:10	09/03/21 13:4	4 1551	EPA 200.8	
Thallium, dissolved	ND ug/L	0.10	1	AH14197	08/24/21 17:10	08/26/21 04:1	5 1551	EPA 200.8	
Vanadium, dissolved	5.9 ug/L	1.0	1	AH14197	08/24/21 17:10	08/26/21 04:1	5 1551	EPA 200.8	
Zinc, dissolved	32 ug/L	5.0	1	AH14197	08/24/21 17:10	08/26/21 04:1	5 1551	EPA 200.8	

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Alameda, CA 94501

Project: Round 3 ASR Water Quality Baseline Reported: Project Number: Round 3 ASR Water Quality Baseline 09/24/21 16:57

	Result	Reporting Limit Dil	lution	Batch	Prepared	Analyzed	ELAP#	# Method	Note
3357 (21H2633-03)		Sample Type: War	ter		Sampled	: 08/18/21 10:3	0		
Conventional Chemistry Parameters by API	HA/EPA Methods								
Color	ND CU	5.0	1	AH14313	08/18/21 16:48	08/18/21 16:48	3 2728	SM2120B	
MBAS, calculated as LAS, mw 340	ND mg/L	0.050	1	AH14260	08/20/21 08:15	08/20/21 16:30	1551	SM5540C	
Perchlorate	ND ug/L	2.0	1	AH14310	08/20/21 08:00	08/20/21 19:38	3 2303	EPA 314.0	
Sulfide	ND mg/L	0.10	1	AH14407	08/24/21 06:00	08/24/21 06:00	1551	SM4500-S2 D	
Total Dissolved Solids	850 mg/L	10	1	AH14424	08/24/21 10:40	09/03/21 14:57	1551	SM2540C	
Turbidity	ND NTU	0.10	1	AH14314	08/18/21 16:57	08/18/21 16:57	2728	SM2130B	
Bicarbonate Alkalinity as CaCO3	250 mg/L	5.0	1	AH14703	08/30/21 08:00	08/30/21 12:21	1551	SM2320B	
Carbonate Alkalinity as CaCO3	ND mg/L	5.0	1	AH14703	08/30/21 08:00	08/30/21 12:21	1551	SM2320B	
Hydroxide Alkalinity as CaCO3	ND mg/L	5.0	1	AH14703	08/30/21 08:00	08/30/21 12:21	1551	SM2320B	
Total Alkalinity as CaCO3	250 mg/L	5.0	1	AH14703	08/30/21 08:00	08/30/21 12:21	1551	SM2320B	
Hardness, Total	294 mg/L	5	1	AH14872	09/01/21 13:35	09/03/21 17:25	1551	SM2340B	
Anions by EPA Method 300.0									
Chloride	130 mg/L	5.0	10	AH14195	08/19/21 16:53	08/19/21 16:53	1551	EPA 300.0	
Fluoride	0.21 mg/L	0.10	1	AH14195	08/19/21 16:37	08/19/21 16:37	1551	EPA 300.0	
Nitrate as N	3.1 mg/L	0.20	1	AH14195	08/19/21 16:37	08/19/21 16:37	1551	EPA 300.0	
Sulfate as SO4	190 mg/L	5.0	10	AH14195	08/19/21 16:53	08/19/21 16:53	1551	EPA 300.0	
Microbiological Parameters by APHA Stand	ard Methods								
Total Coliforms	ND MPN/100mL	1.0	1	AH14327	08/18/21 16:35	08/19/21 16:35	2728	SM9223B	
E. Coli	ND MPN/100mL	1.0	1	AH14327	08/18/21 16:35	08/19/21 16:35	2728	SM9223B	
Volatile Organic Compounds by EPA Metho	d 524.2								
Bromodichloromethane	ND ug/L	1.00	1	AH14496	08/25/21 15:00	08/26/21 00:41	1551	EPA 524.2	
Bromoform	ND ug/L	1.00	1	AH14496	08/25/21 15:00	08/26/21 00:41	1551	EPA 524.2	
Chloroform	ND ug/L	1.00	1	AH14496	08/25/21 15:00	08/26/21 00:41	1551	EPA 524.2	
Dibromochloromethane	ND ug/L	1.00	1	AH14496	08/25/21 15:00	08/26/21 00:41	1551	EPA 524.2	
Trihalomethanes (total)	ND ug/L	1.00	1	AH14496	08/25/21 15:00	08/26/21 00:41	1551	EPA 524.2	
Surrogate: Bromofluorobenzene	102 %	70-130		AH14496	08/25/21 15:00	08/26/21 00:41	1551	EPA 524.2	
Surrogate: Dibromofluoromethane	98.0 %	70-130		AH14496	08/25/21 15:00	08/26/21 00:41	1551	EPA 524.2	
Surrogate: Toluene-d8	94.9 %	70-130		AH14496	08/25/21 15:00	08/26/21 00:41	1551	EPA 524.2	

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501

Project Number: Round 3 ASR Water Quality Baseline

	Result	Reporting Limit D	Dilution	Batch	Prepared	Analyzed	ELAP#	# Method	Note
3357 (21H2633-03)		Sample Type: W	ater		Sampleo	d: 08/18/21 10:3	0		
Haloacetic Acids by EPA Method 552.2					-				
Monobromoacetic Acid	ND ug/L	1.0	1	AH14766	08/31/21 07:00	09/02/21 04:2	7 1551	EPA 552.2	
Monochloroacetic Acid	ND ug/L	2.0	1	AH14766	08/31/21 07:00	09/02/21 04:2	7 1551	EPA 552.2	
Dibromoacetic Acid	ND ug/L	1.0	1	AH14766	08/31/21 07:00	09/02/21 04:2	7 1551	EPA 552.2	
Dichloroacetic Acid	ND ug/L	1.0	1	AH14766	08/31/21 07:00	09/02/21 04:2	7 1551	EPA 552.2	
Trichloroacetic Acid	ND ug/L	1.0	1	AH14766	08/31/21 07:00	09/02/21 04:2	7 1551	EPA 552.2	
Total Haloacetic Acids (HAA5)	ND ug/L	1.0	1	AH14766	08/31/21 07:00	09/02/21 04:2	7 1551	EPA 552.2	
Surrogate: 2,3-Dibromopropionic Acid	106 %	70-130		AH14766	08/31/21 07:00	09/02/21 04:2	7 1551	EPA 552.2	
Surrogate: 2-Bromopropionic Acid	144 %	70-130		AH14766	08/31/21 07:00	09/02/21 04:2	7 1551	EPA 552.2	S-GC
3123 (21H2633-04)		Sample Type: W	ater		Sample	d: 08/18/21 11:5	0		
Metals (Dissolved) by EPA 200 Series Methods					_				FILT
Mercury, dissolved	ND ug/L	0.20	1	AI13118	09/02/21 08:47	09/03/21 09:1	8 1551	EPA 245.1	
Calcium, dissolved	38 mg/L	1.0	1	AH14872	09/01/21 13:35	09/03/21 17:2	9 1551	EPA 200.7	
Iron, dissolved	ND mg/L	0.10	1	AH14872	09/01/21 13:35	09/03/21 17:2	9 1551	EPA 200.7	
Magnesium, dissolved	20 mg/L	1.0	1	AH14872	09/01/21 13:35	09/03/21 17:2	9 1551	EPA 200.7	
Potassium, dissolved	3.3 mg/L	1.0	1	AH14872	09/01/21 13:35	09/03/21 17:2	9 1551	EPA 200.7	
Sodium, dissolved	320 mg/L	1.0	1	AH14872	09/01/21 13:35	09/03/21 17:2	9 1551	EPA 200.7	
Metals (Dissolved) by EPA Method 200.8 ICP/N	MS								FILT
Aluminum, dissolved	ND ug/L	10	1	AH14197	08/24/21 17:10	09/03/21 13:5	0 1551	EPA 200.8	
Antimony, dissolved	0.52 ug/L	0.50	1	AH14197	08/24/21 17:10	08/26/21 04:2	3 1551	EPA 200.8	
Arsenic, dissolved	14 ug/L	0.50	1	AH14197	08/24/21 17:10	08/26/21 04:2	3 1551	EPA 200.8	
Barium, dissolved	180 ug/L	0.50	1	AH14197	08/24/21 17:10	08/26/21 04:2	3 1551	EPA 200.8	
Beryllium, dissolved	ND ug/L	0.10	1	AH14197	08/24/21 17:10	08/26/21 04:2	3 1551	EPA 200.8	
Boron, dissolved	4200 ug/L	500	10	AH14197	08/24/21 17:10	08/27/21 16:0	2 1551	EPA 200.8	
Cadmium, dissolved	ND ug/L	0.10	1	AH14197	08/24/21 17:10	08/26/21 04:2	3 1551	EPA 200.8	
Chromium, dissolved	ND ug/L	0.50	1	AH14197	08/24/21 17:10	08/26/21 04:2	3 1551	EPA 200.8	
Copper, dissolved	3.6 ug/L	0.50	1	AH14197	08/24/21 17:10	08/26/21 04:2	3 1551	EPA 200.8	
Lead, dissolved	ND ug/L	0.25	1	AH14197	08/24/21 17:10	08/26/21 04:2	3 1551	EPA 200.8	
Manganese, dissolved	50 ug/L	5.0	1	AH14197	08/24/21 17:10	08/26/21 04:2	3 1551	EPA 200.8	
Molybdenum, dissolved	29 ug/L	0.25	1	AH14197	08/24/21 17:10	08/26/21 04:2	3 1551	EPA 200.8	
Nickel, dissolved	0.87 ug/L	0.50	1	AH14197	08/24/21 17:10	08/26/21 04:2	3 1551	EPA 200.8	
Selenium, dissolved	ND ug/L	2.0	1	AH14197	08/24/21 17:10	08/26/21 04:2	3 1551	EPA 200.8	
Silver, dissolved	ND ug/L	0.10	1	AH14197	08/24/21 17:10	09/03/21 13:5	0 1551	EPA 200.8	
Thallium, dissolved	ND ug/L	0.10	1	AH14197	08/24/21 17:10	08/26/21 04:2	3 1551	EPA 200.8	
Vanadium, dissolved	3.2 ug/L	1.0	1	AH14197	08/24/21 17:10	08/26/21 04:2	3 1551	EPA 200.8	
Zinc, dissolved	ND ug/L	5.0	1	AH14197	08/24/21 17:10	08/26/21 04:2	3 1551	EPA 200.8	

Reported:

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Alameda, CA 94501 Project Number: Round 3 ASR Water Quality Baseline 09/24/21 16:57

Project: Round 3 ASR Water Quality Baseline

		Reporting Limit D	Jiiutioii	Batch	Prepared	Analyzed	ELAP#	# Method	Note
3123 (21H2633-04)		Sample Type: W	ater		Sampled	: 08/18/21 11:5	0		
Conventional Chemistry Parameters by APHA	EPA Methods								
Color	ND CU	5.0	1	AH14313	08/18/21 16:48	08/18/21 16:48	3 2728	SM2120B	
MBAS, calculated as LAS, mw 340	ND mg/L	0.050	1	AH14260	08/20/21 08:15	08/20/21 16:30	1551	SM5540C	
Perchlorate	ND ug/L	2.0	1	AH14310	08/20/21 08:00	08/20/21 20:27	2303	EPA 314.0	
Sulfide	ND mg/L	0.10	1	AH14407	08/24/21 06:00	08/24/21 06:00	1551	SM4500-S2 D	
Total Dissolved Solids	1100 mg/L	10	1	AH14424	08/24/21 10:40	09/03/21 14:57	1551	SM2540C	
Turbidity	17 NTU	0.10	1	AH14314	08/18/21 16:57	08/18/21 16:57	2728	SM2130B	
Bicarbonate Alkalinity as CaCO3	300 mg/L	5.0	1	AH14703	08/30/21 08:00	08/30/21 12:21	1551	SM2320B	
Carbonate Alkalinity as CaCO3	ND mg/L	5.0	1	AH14703	08/30/21 08:00	08/30/21 12:21	1551	SM2320B	
Hydroxide Alkalinity as CaCO3	ND mg/L	5.0	1	AH14703	08/30/21 08:00	08/30/21 12:21	1551	SM2320B	
Total Alkalinity as CaCO3	300 mg/L	5.0	1	AH14703	08/30/21 08:00	08/30/21 12:21	1551	SM2320B	
Hardness, Total	178 mg/L	5	1	AH14872	09/01/21 13:35	09/03/21 17:29	1551	SM2340B	
Anions by EPA Method 300.0									
Chloride	340 mg/L	25	50	AH14195	08/20/21 10:30	08/20/21 10:30	1551	EPA 300.0	
Fluoride	ND mg/L	0.10	1	AH14195	08/19/21 17:10	08/19/21 17:10	1551	EPA 300.0	
Nitrate as N	1.2 mg/L	0.20	1	AH14195	08/19/21 17:10	08/19/21 17:10	1551	EPA 300.0	
Sulfate as SO4	65 mg/L	5.0	10	AH14195	08/19/21 17:27	08/19/21 17:27	1551	EPA 300.0	
Microbiological Parameters by APHA Standard	l Methods								
Total Coliforms	ND MPN/100mL	1.0	1	AH14327	08/18/21 16:35	08/19/21 16:35	2728	SM9223B	
E. Coli	ND MPN/100mL	1.0	1	AH14327	08/18/21 16:35	08/19/21 16:35	2728	SM9223B	
Volatile Organic Compounds by EPA Method 5	24.2								
Bromodichloromethane	ND ug/L	1.00	1	AH14496	08/25/21 15:00	08/26/21 01:16	1551	EPA 524.2	
Bromoform	ND ug/L	1.00	1	AH14496	08/25/21 15:00	08/26/21 01:16	1551	EPA 524.2	
Chloroform	ND ug/L	1.00	1	AH14496	08/25/21 15:00	08/26/21 01:16	1551	EPA 524.2	
Dibromochloromethane	ND ug/L	1.00	1	AH14496	08/25/21 15:00	08/26/21 01:16	1551	EPA 524.2	
Trihalomethanes (total)	ND ug/L	1.00	1	AH14496	08/25/21 15:00	08/26/21 01:16	1551	EPA 524.2	
Surrogate: Bromofluorobenzene	98.0 %	70-130		AH14496	08/25/21 15:00	08/26/21 01:16	1551	EPA 524.2	
Surrogate: Dibromofluoromethane	95.2 %	70-130		AH14496	08/25/21 15:00	08/26/21 01:16	1551	EPA 524.2	
Surrogate: Toluene-d8	95.4 %	70-130		AH14496	08/25/21 15:00	08/26/21 01:10	1551	EPA 524.2	

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501

Project Number: Round 3 ASR Water Quality Baseline

	Result	Reporting Limit Dilution	Batch	Prepared	Analyzed	ELAP# Method	Note
3123 (21H2633-04)		Sample Type: Water		Sampleo	1: 08/18/21 11:5	0	
Haloacetic Acids by EPA Method 552.2							
Monobromoacetic Acid	ND ug/L	1.0 1	AH14766	08/31/21 07:00	09/02/21 05:10	0 1551 EPA 552.2	
Monochloroacetic Acid	ND ug/L	2.0 1	AH14766	08/31/21 07:00	09/02/21 05:10	0 1551 EPA 552.2	
Dibromoacetic Acid	ND ug/L	1.0 1	AH14766	08/31/21 07:00	09/02/21 05:10	0 1551 EPA 552.2	
Dichloroacetic Acid	ND ug/L	1.0 1	AH14766	08/31/21 07:00	09/02/21 05:10	0 1551 EPA 552.2	
Trichloroacetic Acid	ND ug/L	1.0 1	AH14766	08/31/21 07:00	09/02/21 05:10	0 1551 EPA 552.2	
Total Haloacetic Acids (HAA5)	ND ug/L	1.0 1	AH14766	08/31/21 07:00	09/02/21 05:10	0 1551 EPA 552.2	
Surrogate: 2,3-Dibromopropionic Acid	110 %	70-130	AH14766	08/31/21 07:00	09/02/21 05:10	0 1551 EPA 552.2	
Surrogate: 2-Bromopropionic Acid	110 %	70-130	AH14766	08/31/21 07:00	09/02/21 05:10	0 1551 EPA 552.2	
3127 (21H2633-05)		Sample Type: Water		Sampleo	1: 08/18/21 12:2	5	
Metals (Dissolved) by EPA 200 Series Methods							FILT
Mercury, dissolved	ND ug/L	0.20 1	AI13118	09/02/21 08:47	09/03/21 09:20	0 1551 EPA 245.1	
Calcium, dissolved	47 mg/L	1.0 1	AH14872	09/01/21 13:35	09/03/21 17:37	7 1551 EPA 200.7	
Iron, dissolved	ND mg/L	0.10 1	AH14872	09/01/21 13:35	09/03/21 17:37	7 1551 EPA 200.7	
Magnesium, dissolved	54 mg/L	1.0 1	AH14872	09/01/21 13:35	09/03/21 17:37	7 1551 EPA 200.7	
Potassium, dissolved	2.9 mg/L	1.0 1	AH14872	09/01/21 13:35	09/03/21 17:37	7 1551 EPA 200.7	
Sodium, dissolved	190 mg/L	1.0 1	AH14872	09/01/21 13:35	09/03/21 17:37	7 1551 EPA 200.7	
Metals (Dissolved) by EPA Method 200.8 ICP/M	MS						FILT
Aluminum, dissolved	ND ug/L	10 1	AH14197	08/24/21 17:10	09/03/21 13:57	7 1551 EPA 200.8	
Antimony, dissolved	ND ug/L	0.50 1	AH14197	08/24/21 17:10	08/26/21 04:31	1 1551 EPA 200.8	
Arsenic, dissolved	7.7 ug/L	0.50 1	AH14197	08/24/21 17:10	08/26/21 04:31	1 1551 EPA 200.8	
Barium, dissolved	65 ug/L	0.50 1	AH14197	08/24/21 17:10	08/26/21 04:31	1 1551 EPA 200.8	
Beryllium, dissolved	ND ug/L	0.10 1	AH14197	08/24/21 17:10	08/26/21 04:31	1 1551 EPA 200.8	
Boron, dissolved	2500 ug/L	500 10	AH14197	08/24/21 17:10	08/27/21 16:09	9 1551 EPA 200.8	
Cadmium, dissolved	ND ug/L	0.10 1	AH14197	08/24/21 17:10	08/26/21 04:31	1 1551 EPA 200.8	
Chromium, dissolved	ND ug/L	0.50 1	AH14197	08/24/21 17:10	08/26/21 04:31	1 1551 EPA 200.8	
Copper, dissolved	3.0 ug/L	0.50 1	AH14197	08/24/21 17:10	08/26/21 04:31	1 1551 EPA 200.8	
Lead, dissolved	ND ug/L	0.25 1	AH14197	08/24/21 17:10	08/26/21 04:31	1 1551 EPA 200.8	
Manganese, dissolved	430 ug/L	5.0 1	AH14197	08/24/21 17:10	08/26/21 04:31	1 1551 EPA 200.8	
Molybdenum, dissolved	8.6 ug/L	0.25 1	AH14197	08/24/21 17:10	08/26/21 04:31	1 1551 EPA 200.8	
Nickel, dissolved	7.1 ug/L	0.50 1	AH14197	08/24/21 17:10	08/26/21 04:31	1 1551 EPA 200.8	
Selenium, dissolved	ND ug/L	2.0 1	AH14197	08/24/21 17:10	08/26/21 04:31	1 1551 EPA 200.8	
Silver, dissolved	ND ug/L	0.10 1	AH14197	08/24/21 17:10	09/03/21 13:57	7 1551 EPA 200.8	
Thallium, dissolved	ND ug/L	0.10 1	AH14197	08/24/21 17:10	08/26/21 04:31	1 1551 EPA 200.8	
Vanadium, dissolved	5.3 ug/L	1.0 1	AH14197	08/24/21 17:10	08/26/21 04:31	1 1551 EPA 200.8	
Zinc, dissolved	7.9 ug/L	5.0 1	AH14197	08/24/21 17:10	08/26/21 04:3	1 1551 EPA 200.8	

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501

Project Number: Round 3 ASR Water Quality Baseline

	Result	Reporting Limit I	Dilution	Batch	Prepared	Analyzed	ELAP#	Method	Note
3127 (21H2633-05)		Sample Type: W	Vater		Sampled	: 08/18/21 12:2	5		
Conventional Chemistry Parameters by APHA/	EPA Methods								
Color	ND CU	5.0	1	AH14313	08/18/21 16:48	08/18/21 16:48	3 2728	SM2120B	
MBAS, calculated as LAS, mw 340	ND mg/L	0.050	1	AH14260	08/20/21 08:15	08/20/21 16:30	1551	SM5540C	
Perchlorate	ND ug/L	2.0	1	AH14310	08/20/21 08:00	08/20/21 19:54	2303	EPA 314.0	
Sulfide	ND mg/L	0.10	1	AH14407	08/24/21 06:00	08/24/21 06:00	1551	SM4500-S2 D	
Total Dissolved Solids	880 mg/L	10	1	AH14424	08/24/21 10:40	09/03/21 14:5	7 1551	SM2540C	
Turbidity	0.60 NTU	0.10	1	AH14314	08/18/21 16:57	08/18/21 16:57	7 2728	SM2130B	
Bicarbonate Alkalinity as CaCO3	330 mg/L	5.0	1	AH14703	08/30/21 08:00	08/30/21 12:2	1551	SM2320B	
Carbonate Alkalinity as CaCO3	ND mg/L	5.0	1	AH14703	08/30/21 08:00	08/30/21 12:2	1551	SM2320B	
Hydroxide Alkalinity as CaCO3	ND mg/L	5.0	1	AH14703	08/30/21 08:00	08/30/21 12:2	1551	SM2320B	
Total Alkalinity as CaCO3	330 mg/L	5.0	1	AH14703	08/30/21 08:00	08/30/21 12:2	1551	SM2320B	
Hardness, Total	340 mg/L	5	1	AH14872	09/01/21 13:35	09/03/21 17:3	7 1551	SM2340B	
Anions by EPA Method 300.0									
Chloride	150 mg/L	5.0	10	AH14195	08/19/21 18:00	08/19/21 18:00	1551	EPA 300.0	
Fluoride	0.46 mg/L	0.10	1	AH14195	08/19/21 17:43	08/19/21 17:43	3 1551	EPA 300.0	
Nitrate as N	0.27 mg/L	0.20	1	AH14195	08/19/21 17:43	08/19/21 17:43	3 1551	EPA 300.0	
Sulfate as SO4	150 mg/L	5.0	10	AH14195	08/19/21 18:00	08/19/21 18:00	1551	EPA 300.0	
Microbiological Parameters by APHA Standard	Methods								
Total Coliforms	1.0 MPN/100m	L 1.0	1	AH14327	08/18/21 16:35	08/19/21 16:3:	5 2728	SM9223B	
E. Coli	ND MPN/100ml	L 1.0	1	AH14327	08/18/21 16:35	08/19/21 16:3:	2728	SM9223B	
Volatile Organic Compounds by EPA Method 5.	24.2								
Bromodichloromethane	ND ug/L	1.00	1	AH14496	08/25/21 15:00	08/26/21 05:57	7 1551	EPA 524.2	
Bromoform	ND ug/L	1.00	1	AH14496	08/25/21 15:00	08/26/21 05:57	7 1551	EPA 524.2	
Chloroform	ND ug/L	1.00	1	AH14496	08/25/21 15:00	08/26/21 05:57	7 1551	EPA 524.2	
Dibromochloromethane	ND ug/L	1.00	1	AH14496	08/25/21 15:00	08/26/21 05:57	1551	EPA 524.2	
Trihalomethanes (total)	ND ug/L	1.00	1	AH14496	08/25/21 15:00	08/26/21 05:5	7 1551	EPA 524.2	
Surrogate: Bromofluorobenzene	94.7 %	70-130		AH14496	08/25/21 15:00	08/26/21 05:5	7 1551	EPA 524.2	
Surrogate: Dibromofluoromethane	89.9 %	70-130		AH14496	08/25/21 15:00	08/26/21 05:5	7 1551	EPA 524.2	
Surrogate: Toluene-d8	99.5 %	70-130		AH14496	08/25/21 15:00	08/26/21 05:5	7 1551	EPA 524.2	

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501

Project Number: Round 3 ASR Water Quality Baseline

	Result	Reporting Limit	Dilution	Batch	Prepared	Analyzed	ELAP#	Method	Note
3127 (21H2633-05)		Sample Type:	Water		Sample	d: 08/18/21 12:2	25		
Haloacetic Acids by EPA Method 552.2									
Monobromoacetic Acid	ND ug/L	1.0	1	AH14766	08/31/21 07:00	09/02/21 05:5	2 1551 EP	PA 552.2	
Monochloroacetic Acid	ND ug/L	2.0	1	AH14766	08/31/21 07:00	09/02/21 05:5	2 1551 EP	PA 552.2	
Dibromoacetic Acid	ND ug/L	1.0	1	AH14766	08/31/21 07:00	09/02/21 05:5	2 1551 EF	PA 552.2	
Dichloroacetic Acid	ND ug/L	1.0	1	AH14766	08/31/21 07:00	09/02/21 05:5	2 1551 EP	PA 552.2	
Trichloroacetic Acid	ND ug/L	1.0	1	AH14766	08/31/21 07:00	09/02/21 05:5	2 1551 EP	PA 552.2	
Total Haloacetic Acids (HAA5)	ND ug/L	1.0	1	AH14766	08/31/21 07:00	09/02/21 05:5	2 1551 EP	PA 552.2	
Surrogate: 2,3-Dibromopropionic Acid	123 %	70-130		AH14766	08/31/21 07:00	09/02/21 05:5	2 1551 EF	PA 552.2	
Surrogate: 2-Bromopropionic Acid	128 %	70-130		AH14766	08/31/21 07:00	09/02/21 05:5	2 1551 EF	PA 552.2	
Hollister #2 (21H2633-06)		Sample Type:	Water		Sample	d: 08/18/21 13:1	15		
Metals (Dissolved) by EPA 200 Series Methods									FILT
Mercury, dissolved	ND ug/L	0.20	1	AI13118	09/02/21 08:47	09/03/21 09:2	3 1551 EP	PA 245.1	
Calcium, dissolved	71 mg/L	1.0	1	AH14872	09/01/21 13:35	09/03/21 17:4	5 1551 EP	PA 200.7	
Iron, dissolved	ND mg/L	0.10	1	AH14872	09/01/21 13:35	09/03/21 17:4	5 1551 EP	PA 200.7	
Magnesium, dissolved	84 mg/L	1.0	1	AH14872	09/01/21 13:35	09/03/21 17:4	5 1551 EP	PA 200.7	
Potassium, dissolved	3.2 mg/L	1.0	1	AH14872	09/01/21 13:35	09/03/21 17:4	5 1551 EP	PA 200.7	
Sodium, dissolved	140 mg/L	1.0	1	AH14872	09/01/21 13:35	09/03/21 17:4	5 1551 EP	PA 200.7	
Metals (Dissolved) by EPA Method 200.8 ICP/MS									FILT
Aluminum, dissolved	ND ug/L	10	1	AH14197	08/24/21 17:10	09/03/21 14:4	1 1551 EP	PA 200.8	
Antimony, dissolved	ND ug/L	0.50	1	AH14197	08/24/21 17:10	08/26/21 04:3	9 1551 EP	PA 200.8	
Arsenic, dissolved	1.9 ug/L	0.50	1	AH14197	08/24/21 17:10	08/26/21 04:3	9 1551 EP	PA 200.8	
Barium, dissolved	31 ug/L	0.50	1	AH14197	08/24/21 17:10	08/26/21 04:3	9 1551 EP	PA 200.8	
Beryllium, dissolved	ND ug/L	0.10	1	AH14197	08/24/21 17:10	08/26/21 04:3	9 1551 EP	PA 200.8	
Boron, dissolved	820 ug/L	50	1	AH14197	08/24/21 17:10	08/26/21 04:3	9 1551 EP	PA 200.8	
Cadmium, dissolved	ND ug/L	0.10	1	AH14197	08/24/21 17:10	08/26/21 04:3	9 1551 EP	PA 200.8	
Chromium, dissolved	12 ug/L	0.50	1	AH14197	08/24/21 17:10	08/26/21 04:3	9 1551 EP	PA 200.8	
Copper, dissolved	23 ug/L	0.50	1	AH14197	08/24/21 17:10	08/26/21 04:3	9 1551 EP	PA 200.8	
Lead, dissolved	ND ug/L	0.25	1	AH14197	08/24/21 17:10	08/26/21 04:3	9 1551 EP	PA 200.8	
Manganese, dissolved	ND ug/L	5.0	1	AH14197	08/24/21 17:10	08/26/21 04:3	9 1551 EP	PA 200.8	
Molybdenum, dissolved	3.4 ug/L	0.25	1	AH14197	08/24/21 17:10	08/26/21 04:3	9 1551 EP	PA 200.8	
Nickel, dissolved	2.4 ug/L	0.50	1	AH14197	08/24/21 17:10	08/26/21 04:3	9 1551 EP	PA 200.8	
Selenium, dissolved	4.1 ug/L	2.0	1	AH14197	08/24/21 17:10	08/26/21 04:3	9 1551 EP	PA 200.8	
Silver, dissolved	ND ug/L	0.10	1	AH14197	08/24/21 17:10	09/03/21 14:4	1 1551 EP	PA 200.8	
Thallium, dissolved	ND ug/L	0.10	1	AH14197	08/24/21 17:10	08/26/21 04:3	9 1551 EP	PA 200.8	
Vanadium, dissolved	2.9 ug/L	1.0	1	AH14197	08/24/21 17:10	08/26/21 04:3	9 1551 EP	PA 200.8	
Zinc, dissolved	8.5 ug/L	5.0	1	AH14197	08/24/21 17:10	08/26/21 04:3	9 1551 EP	PA 200.8	

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Project: Round 3 ASR Water Quality Baseline

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Alameda, CA 94501 Project Number: Round 3 ASR Water Quality Baseline 09/24/21 16:57

Reported:

	Result	Reporting Limit Dilution	on Batch	Prepared	Analyzed	ELAP#	Method	Note
Hollister #2 (21H2633-06)		Sample Type: Water		Sampleo	1: 08/18/21 13:1	5		
Conventional Chemistry Parameters by APH.	A/EPA Methods							
Color	ND CU	5.0 1	AH14313	08/18/21 16:48	08/18/21 16:48	3 2728	SM2120B	
MBAS, calculated as LAS, mw 340	ND mg/L	0.050 1	AH14260	08/20/21 08:15	08/20/21 16:30	1551	SM5540C	
Perchlorate	ND ug/L	2.0 1	AH14310	08/20/21 08:00	08/20/21 20:10	2303	EPA 314.0	
Sulfide	ND mg/L	0.10 1	AH14407	08/24/21 06:00	08/24/21 06:00	1551	SM4500-S2 D	
Total Dissolved Solids	1000 mg/L	10 1	AH14424	08/24/21 10:40	09/03/21 14:57	7 1551	SM2540C	
Turbidity	ND NTU	0.10 1	AH14314	08/18/21 16:57	08/18/21 16:57	7 2728	SM2130B	
Bicarbonate Alkalinity as CaCO3	320 mg/L	5.0 1	AH14703	08/30/21 08:00	08/30/21 12:21	1 1551	SM2320B	
Carbonate Alkalinity as CaCO3	ND mg/L	5.0 1	AH14703	08/30/21 08:00	08/30/21 12:21	1 1551	SM2320B	
Hydroxide Alkalinity as CaCO3	ND mg/L	5.0 1	AH14703	08/30/21 08:00	08/30/21 12:21	1 1551	SM2320B	
Total Alkalinity as CaCO3	320 mg/L	5.0 1	AH14703	08/30/21 08:00	08/30/21 12:21	1 1551	SM2320B	
Hardness, Total	525 mg/L	5 1	AH14872	09/01/21 13:35	09/03/21 17:45	5 1551	SM2340B	
Anions by EPA Method 300.0								
Chloride	120 mg/L	5.0 10	AH14195	08/19/21 19:23	08/19/21 19:23	3 1551	EPA 300.0	
Fluoride	0.33 mg/L	0.10 1	AH14195	08/19/21 19:07	08/19/21 19:07	7 1551	EPA 300.0	
Nitrate as N	3.8 mg/L	0.20 1	AH14195	08/19/21 19:07	08/19/21 19:07	7 1551	EPA 300.0	
Sulfate as SO4	280 mg/L	5.0 10	AH14195	08/19/21 19:23	08/19/21 19:23	3 1551	EPA 300.0	
Microbiological Parameters by APHA Standa	rd Methods							
Total Coliforms	ND MPN/100mL	1.0 1	AH14327	08/18/21 16:35	08/19/21 16:35	5 2728	SM9223B	
E. Coli	ND MPN/100mL	1.0 1	AH14327	08/18/21 16:35	08/19/21 16:35	5 2728	SM9223B	
Volatile Organic Compounds by EPA Method	524.2							
Bromodichloromethane	ND ug/L	1.00 1	AH14496	08/25/21 15:00	08/26/21 06:33	3 1551	EPA 524.2	
Bromoform	ND ug/L	1.00 1	AH14496	08/25/21 15:00	08/26/21 06:33	3 1551	EPA 524.2	
Chloroform	ND ug/L	1.00 1	AH14496	08/25/21 15:00	08/26/21 06:33	3 1551	EPA 524.2	
Dibromochloromethane	ND ug/L	1.00 1	AH14496	08/25/21 15:00	08/26/21 06:33	3 1551	EPA 524.2	
Trihalomethanes (total)	ND ug/L	1.00 1	AH14496	08/25/21 15:00	08/26/21 06:33	3 1551	EPA 524.2	
Surrogate: Bromofluorobenzene	96.7 %	70-130	AH14496	08/25/21 15:00	08/26/21 06:33	3 1551	EPA 524.2	
Surrogate: Dibromofluoromethane	93.2 %	70-130	AH14496	08/25/21 15:00	08/26/21 06:33	3 1551	EPA 524.2	
Surrogate: Toluene-d8	96.4 %	70-130	AH14496	08/25/21 15:00	08/26/21 06:33	3 1551	EPA 524.2	

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215 Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501 Project Number: Round 3 ASR Water Quality Baseline

	Result	Reporting Limit Di	lution	Batch	Prepared	Analyzed	ELAP#	Method	Note
Hollister #2 (21H2633-06)		Sample Type: Wa	iter		Sampled	: 08/18/21 13:	15		
Haloacetic Acids by EPA Method 552.2									
Monobromoacetic Acid	ND ug/L	1.0	1	AH14766	08/31/21 07:00	09/02/21 06:3	4 1551	EPA 552.2	
Monochloroacetic Acid	ND ug/L	2.0	1	AH14766	08/31/21 07:00	09/02/21 06:3	4 1551	EPA 552.2	
Dibromoacetic Acid	ND ug/L	1.0	1	AH14766	08/31/21 07:00	09/02/21 06:3	4 1551	EPA 552.2	
Dichloroacetic Acid	ND ug/L	1.0	1	AH14766	08/31/21 07:00	09/02/21 06:3	4 1551	EPA 552.2	
Trichloroacetic Acid	ND ug/L	1.0	1	AH14766	08/31/21 07:00	09/02/21 06:3	4 1551	EPA 552.2	
Total Haloacetic Acids (HAA5)	ND ug/L	1.0	1	AH14766	08/31/21 07:00	09/02/21 06:3	4 1551	EPA 552.2	
Surrogate: 2,3-Dibromopropionic Acid	113 %	70-130		AH14766	08/31/21 07:00	09/02/21 06:3	4 1551	EPA 552.2	
Surrogate: 2-Bromopropionic Acid	127 %	70-130		AH14766	08/31/21 07:00	09/02/21 06:3	<i>4</i> 1551	EPA 552.2	

Reported:

09/24/21 16:57

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501

Project Number: Round 3 ASR Water Quality Baseline

Reported: 09/24/21 16:57

Metals (Dissolved) by EPA 200 Series Methods - Quality Control

		Reporting		Spike	Source		%REC		RPD	771
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
atch AH14872 - Metals Digest (D)										
Blank (AH14872-BLK1)				Prepared: (09/01/21 Aı	nalyzed: 09	/03/21			
Calcium, dissolved	ND	1.0	mg/L							
Iron, dissolved	ND	0.10	mg/L							
Magnesium, dissolved	ND	1.0	mg/L							
Potassium, dissolved	ND	1.0	mg/L							
Sodium, dissolved	ND	1.0	mg/L							
LCS (AH14872-BS1)				Prepared: (09/01/21 Aı	nalyzed: 09	/03/21			
Calcium, dissolved	8.37	1.0	mg/L	8.00		105	85-115			
fron, dissolved	1.90	0.10	mg/L	2.00		95.1	85-115			
Magnesium, dissolved	8.66	1.0	mg/L	8.00		108	85-115			
Potassium, dissolved	8.06	1.0	mg/L	8.00		101	85-115			
Sodium, dissolved	8.12	1.0	mg/L	8.00		101	85-115			
Duplicate (AH14872-DUP1)	Sour	ce: 21H345	2-01	Prepared: (09/01/21 Aı	nalyzed: 09	/03/21			
Calcium, dissolved	48.0	1.0	mg/L		47.3			1.38	20	
ron, dissolved	ND	0.10	mg/L		ND				20	
Magnesium, dissolved	28.7	1.0	mg/L		28.2			1.74	20	
Potassium, dissolved	4.07	1.0	mg/L		4.04			0.855	20	
Sodium, dissolved	23.1	1.0	mg/L		22.8			1.01	20	
Matrix Spike (AH14872-MS1)	Sour	ce: 21H345	2-01	Prepared: (09/01/21 Aı	nalyzed: 09	/03/21			
Calcium, dissolved	56.4	1.0	mg/L	8.00	47.3	114	70-130			
ron, dissolved	1.91	0.10	mg/L	2.00	ND	95.5	70-130			
Magnesium, dissolved	37.9	1.0	mg/L	8.00	28.2	122	70-130			
Potassium, dissolved	12.6	1.0	mg/L	8.00	4.04	107	70-130			
Sodium, dissolved	30.6	1.0	mg/L	8.00	22.8	96.6	70-130			
Matrix Spike (AH14872-MS2)	Sour	ce: 21H337	4-01	Prepared: (09/01/21 Aı	nalyzed: 09	/03/21			
Calcium, dissolved	21.6	1.0	mg/L	8.00	12.9	108	70-130			
fron, dissolved	1.95	0.10	mg/L	2.00	ND	97.3	70-130			
Magnesium, dissolved	17.3	1.0	mg/L	8.00	8.10	115	70-130			
Potassium, dissolved	9.84	1.0	mg/L	8.00	1.75	101	70-130			
Sodium, dissolved	27.1	1.0	mg/L	8.00	19.7	92.7	70-130			

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215 Project: Round 3 ASR Water Quality Baseline

09/24/21 16:57 Alameda, CA 94501 Project Number: Round 3 ASR Water Quality Baseline

Metals (Dissolved) by EPA 200 Series Methods - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AH14872 - Metals Digest (D)										
Matrix Spike Dup (AH14872-MSD1)	Sou	rce: 21H345	2-01	Prepared: (09/01/21 A	nalyzed: 09	/03/21			
Calcium, dissolved	56.6	1.0	mg/L	8.00	47.3	117	70-130	0.409	20	
Iron, dissolved	1.87	0.10	mg/L	2.00	ND	93.6	70-130	1.95	20	
Magnesium, dissolved	37.4	1.0	mg/L	8.00	28.2	115	70-130	1.46	20	
Potassium, dissolved	12.4	1.0	mg/L	8.00	4.04	105	70-130	1.10	20	
Sodium, dissolved	30.8	1.0	mg/L	8.00	22.8	99.2	70-130	0.666	20	
Batch AI13118 - EPA 245.1 Hg Water										
Blank (AI13118-BLK1)				Prepared: (09/02/21 A	nalyzed: 09	/03/21			
Mercury, dissolved	ND	0.20	ug/L							
LCS (AI13118-BS1)				Prepared: (09/02/21 A	nalyzed: 09	/03/21			
Mercury, dissolved	2.56	0.20	ug/L	2.50		102	85-115			
Duplicate (AI13118-DUP1)	Sou	rce: 21H263	3-02	Prepared: (09/02/21 A	nalyzed: 09	/03/21			
Mercury, dissolved	ND	0.20	ug/L		ND				20	
Matrix Spike (AI13118-MS1)	Sou	rce: 21H263	3-02	Prepared: (09/02/21 A	nalyzed: 09	/03/21			
Mercury, dissolved	2.52	0.20	ug/L	2.50	ND	101	70-130			
Matrix Spike Dup (AI13118-MSD1)	Sou	rce: 21H263	3-02	Prepared: (09/02/21 A	nalyzed: 09	/03/21			
Mercury, dissolved	2.51	0.20	ug/L	2.50	ND	100	70-130	0.437	20	

Reported:

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501 Project Number: Round 3 ASR Water Quality Baseline

Reported: 09/24/21 16:57

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AH14197 - EPA 200.8 (D)										
Blank (AH14197-BLK1)				Prepared: (08/24/21 Aı	nalyzed: 08	/27/21			
Aluminum, dissolved	ND	10	ug/L							
Antimony, dissolved	ND	0.50	ug/L							
Arsenic, dissolved	ND	0.50	ug/L							
Barium, dissolved	ND	0.50	ug/L							
Beryllium, dissolved	ND	0.10	ug/L							
Boron, dissolved	ND	50	ug/L							
Cadmium, dissolved	ND	0.10	ug/L							
Chromium, dissolved	ND	0.50	ug/L							
Copper, dissolved	0.591	0.50	ug/L							
Lead, dissolved	ND	0.25	ug/L							
Manganese, dissolved	ND	5.0	ug/L							
Molybdenum, dissolved	ND	0.25	ug/L							
Nickel, dissolved	ND	0.50	ug/L							
Selenium, dissolved	ND	2.0	ug/L							
Silver, dissolved	ND	0.10	ug/L							
Thallium, dissolved	ND	0.10	ug/L							
Vanadium, dissolved	ND	1.0	ug/L							
Zinc, dissolved	ND	5.0	ug/L							
LCS (AH14197-BS1)				Prepared: (08/24/21 Aı	nalvzed: 08	/27/21			
Aluminum, dissolved	554	10	ug/L	520		107	85-115			
Antimony, dissolved	20.8	0.50	ug/L	20.0		104	85-115			
Arsenic, dissolved	21.1	0.50	ug/L	20.0		105	85-115			
Barium, dissolved	20.3	0.50	ug/L	20.0		102	85-115			
Beryllium, dissolved	20.7	0.10	ug/L	20.0		104	85-115			
Boron, dissolved	106	50	ug/L	100		106	85-115			
Cadmium, dissolved	20.3	0.10	ug/L	20.0		101	85-115			
Chromium, dissolved	20.3	0.50	ug/L	20.0		101	85-115			
Copper, dissolved	22.3	0.50	ug/L	20.0		112	85-115			
Lead, dissolved	20.5	0.25	ug/L	20.0		103	85-115			
Manganese, dissolved	20.5	5.0	ug/L	20.0		102	85-115			
Molybdenum, dissolved	21.3	0.25	ug/L	20.0		106	85-115			
Nickel, dissolved	20.1	0.50	ug/L	20.0		100	85-115			
Selenium, dissolved	21.6	2.0	ug/L	20.0		108	85-115			
Silver, dissolved	18.0	0.10	ug/L	20.0		90.1	85-115			
Sirver, dissorred	10.0	0.10	ug/L	20.0		70.1	05-115			

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501

Project Number: Round 3 ASR Water Quality Baseline

Reported: 09/24/21 16:57

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AH14197 - EPA 200.8 (D)										
LCS (AH14197-BS1)				Prepared: 0	08/24/21 A1	nalyzed: 08	/26/21			
Thallium, dissolved	20.4	0.10	ug/L	20.0		102	85-115			
Vanadium, dissolved	20.6	1.0	ug/L	20.0		103	85-115			
Zinc, dissolved	103	5.0	ug/L	100		103	85-115			
Duplicate (AH14197-DUP1)	Sour	ce: 21H263	3-01	Prepared: 0	08/24/21 Aı	nalyzed: 08	/27/21			
Aluminum, dissolved	ND	100	ug/L		ND				20	
Antimony, dissolved	ND	0.50	ug/L		ND				20	
Arsenic, dissolved	5.05	0.50	ug/L		4.88			3.43	20	
Barium, dissolved	41.3	0.50	ug/L		40.5			2.00	20	
Beryllium, dissolved	ND	0.10	ug/L		ND				20	
Boron, dissolved	1930	50	ug/L		1910			0.965	20	
Cadmium, dissolved	ND	0.10	ug/L		ND				20	
Chromium, dissolved	11.6	0.50	ug/L		11.5			1.13	20	
Copper, dissolved	24.4	0.50	ug/L		24.2			0.967	20	
Lead, dissolved	0.340	0.25	ug/L		0.296			14.0	20	
Manganese, dissolved	ND	5.0	ug/L		ND				20	
Molybdenum, dissolved	5.45	0.25	ug/L		5.36			1.49	20	
Nickel, dissolved	1.19	0.50	ug/L		1.20			0.848	20	
Selenium, dissolved	5.75	2.0	ug/L		5.43			5.61	20	
Silver, dissolved	ND	0.10	ug/L		0.218			200	20	
Thallium, dissolved	ND	0.10	ug/L		ND				20	
Vanadium, dissolved	6.40	1.0	ug/L		6.47			1.08	20	
Zinc, dissolved	13.8	5.0	ug/L		13.4			2.85	20	
MRL Check (AH14197-MRL1)				Prepared: 0	08/24/21 Aı	nalyzed: 08	/27/21			
Aluminum, dissolved	12.2	10	ug/L	8.00		153	0-200			
Silver, dissolved	0.0833	0.10	ug/L	0.0800		104	0-200			
Thallium, dissolved	0.0721	0.10	ug/L	0.0800		90.1	0-200			
Vanadium, dissolved	0.878	1.0	ug/L	0.800		110	0-200			

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501 Project Number: Round 3 ASR Water Quality Baseline

Reported: 09/24/21 16:57

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AH14197 - EPA 200.8 (D)										
Matrix Spike (AH14197-MS1)	Sour	ce: 21H263	3-05	Prepared: (08/24/21 A	nalyzed: 08	/27/21			
Aluminum, dissolved	616	10	ug/L	520	ND	117	70-130			QM-01
Antimony, dissolved	19.8	0.50	ug/L	20.0	ND	99.1	70-130			
Arsenic, dissolved	27.4	0.50	ug/L	20.0	7.71	98.7	70-130			
Barium, dissolved	82.4	0.50	ug/L	20.0	65.2	86.1	70-130			
Beryllium, dissolved	18.3	0.10	ug/L	20.0	ND	91.4	70-130			
Boron, dissolved	2380	50	ug/L	100	2470	NR	70-130			QM-4X
Cadmium, dissolved	18.5	0.10	ug/L	20.0	ND	92.6	70-130			
Chromium, dissolved	19.5	0.50	ug/L	20.0	ND	97.3	70-130			
Copper, dissolved	23.0	0.50	ug/L	20.0	3.01	100	70-130			
Lead, dissolved	16.2	0.25	ug/L	20.0	ND	80.8	70-130			
Manganese, dissolved	441	5.0	ug/L	20.0	429	63.4	70-130			QM-0
Molybdenum, dissolved	29.8	0.25	ug/L	20.0	8.61	106	70-130			
Nickel, dissolved	24.8	0.50	ug/L	20.0	7.15	88.4	70-130			
Selenium, dissolved	19.6	2.0	ug/L	20.0	ND	90.8	70-130			
Silver, dissolved	17.2	0.10	ug/L	20.0	ND	86.1	70-130			QM-0
Γhallium, dissolved	16.0	0.10	ug/L	20.0	ND	80.2	70-130			
Vanadium, dissolved	24.9	1.0	ug/L	20.0	5.33	97.9	70-130			
Zinc, dissolved	98.0	5.0	ug/L	100	7.93	90.0	70-130			
Matrix Spike Dup (AH14197-MSD1)	Sour	ce: 21H263	3-05	Prepared: (08/24/21 A	nalyzed: 08	/27/21			
Aluminum, dissolved	621	10	ug/L	520	ND	118	70-130	0.734	20	QM-0
Antimony, dissolved	19.7	0.50	ug/L	20.0	ND	98.3	70-130	0.783	20	
Arsenic, dissolved	27.3	0.50	ug/L	20.0	7.71	98.0	70-130	0.533	20	
Barium, dissolved	82.5	0.50	ug/L	20.0	65.2	86.3	70-130	0.0474	20	
Beryllium, dissolved	18.3	0.10	ug/L	20.0	ND	91.7	70-130	0.349	20	
Boron, dissolved	2330	50	ug/L	100	2470	NR	70-130	2.06	20	QM-42
Cadmium, dissolved	18.7	0.10	ug/L	20.0	ND	93.3	70-130	0.746	20	
Chromium, dissolved	19.8	0.50	ug/L	20.0	ND	99.0	70-130	1.72	20	
Copper, dissolved	23.1	0.50	ug/L	20.0	3.01	100	70-130	0.257	20	
Lead, dissolved	15.9	0.25	ug/L	20.0	ND	79.6	70-130	1.41	20	
Manganese, dissolved	448	5.0	ug/L	20.0	429	99.2	70-130	1.61	20	
Molybdenum, dissolved	29.8	0.25	ug/L	20.0	8.61	106	70-130	0.125	20	
Nickel, dissolved	25.3	0.50	ug/L	20.0	7.15	90.7	70-130	1.81	20	
Selenium, dissolved	19.8	2.0	ug/L	20.0	ND	91.7	70-130	0.900	20	
Silver, dissolved	17.6	0.10	ug/L	20.0	ND	88.1	70-130	2.40	20	QM-0

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501

Project Number: Round 3 ASR Water Quality Baseline

Reported: 09/24/21 16:57

Analyte(s)	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AH14197 - EPA 200.8 (D)										
Matrix Spike Dup (AH14197-MSD1)	Sour	ce: 21H263	3-05	Prepared: (08/24/21 A	nalyzed: 08	3/26/21			
Thallium, dissolved	15.6	0.10	ug/L	20.0	ND	78.2	70-130	2.57	20	
Vanadium, dissolved	25.3	1.0	ug/L	20.0	5.33	99.8	70-130	1.46	20	
Zinc, dissolved	98.6	5.0	ug/L	100	7.93	90.7	70-130	0.676	20	

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215 Project: Round 3 ASR Water Quality Baseline Reported: Alameda, CA 94501 09/24/21 16:57 Project Number: Round 3 ASR Water Quality Baseline

Conventional Chemistry Parameters by APHA/EPA Methods - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AH14260 - General Preparation										
Blank (AH14260-BLK1)				Prepared &	Analyzed:	08/20/21				
MBAS, calculated as LAS, mw 340	ND	0.050	mg/L							
LCS (AH14260-BS1)				Prepared &	Analyzed:	08/20/21				
MBAS, calculated as LAS, mw 340	0.201	0.050	mg/L	0.200		101	80-120			
Matrix Spike (AH14260-MS1)	Soui	ce: 21H263	3-01	Prepared &	z Analyzed:	08/20/21				
MBAS, calculated as LAS, mw 340	0.188	0.050	mg/L	0.200	ND	94.0	80-120			
Matrix Spike Dup (AH14260-MSD1)	Soui	ce: 21H263	3-01	Prepared &	Analyzed:	08/20/21				
MBAS, calculated as LAS, mw 340	0.201	0.050	mg/L	0.200	ND	101	80-120	6.84	20	
atch AH14310 - NB General Prep										
Blank (AH14310-BLK1)				Prepared &	Analyzed:	08/20/21				
Perchlorate	ND	2.0	ug/L							
LCS (AH14310-BS1)				Prepared &	Analyzed:	08/20/21				
Perchlorate	9.58	2.0	ug/L	10.0		95.8	85-115			
Duplicate (AH14310-DUP1)	Soui	ce: 21H246	8-01	Prepared &	Analyzed:	08/20/21				
Perchlorate	ND	2.0	ug/L		ND				15	
Matrix Spike (AH14310-MS1)	Soui	ce: 21H241	4-13	Prepared &	Analyzed:	08/20/21				
Perchlorate	9.36	2.0	ug/L	10.0	ND	93.6	70-130			
Matrix Spike Dup (AH14310-MSD1)	Soui	ce: 21H241	4-13	Prepared &	Analyzed:	08/20/21				
Perchlorate	9.72	2.0	ug/L	10.0	ND	97.2	70-130	3.77	15	

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215 Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501 09/24/21 16:57 Project Number: Round 3 ASR Water Quality Baseline

Conventional Chemistry Parameters by APHA/EPA Methods - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AH14314 - General Prep (BAL)										
Duplicate (AH14314-DUP1)	Sou	rce: 21H263	3-03	Prepared &	Analyzed:	08/18/21				
Turbidity	ND	0.10	NTU		ND				15	
Batch AH14407 - General Preparation										
Blank (AH14407-BLK1)				Prepared &	Analyzed:	08/24/21				
Sulfide	ND	0.10	mg/L							
LCS (AH14407-BS1)				Prepared &	. Analyzed:	08/24/21				
Sulfide	0.230	0.10	mg/L	0.222		104	85-115			
Duplicate (AH14407-DUP1)	Sou	rce: 21H263	3-01	Prepared &	z Analyzed:	08/24/21				
Sulfide	ND	0.10	mg/L		ND				15	
Matrix Spike (AH14407-MS1)	Sou	rce: 21H263	3-01	Prepared &	z Analyzed:	08/24/21				
Sulfide	0.0910	0.10	mg/L	0.222	ND	41.0	80-120			QM-05
Matrix Spike Dup (AH14407-MSD1)	Sou	rce: 21H263:	3-01	Prepared &	. Analyzed:	08/24/21				
Sulfide	0.0900	0.10	mg/L	0.222	ND	40.5	80-120	1.10	15	QM-05
Batch AH14424 - General Preparation										
Blank (AH14424-BLK1)				Prepared: (08/24/21 A	nalyzed: 09	/03/21			
Total Dissolved Solids	ND	10	mg/L							
Duplicate (AH14424-DUP1)	Sou	rce: 21H232	6-01	Prepared: ()8/24/21 A	nalyzed: 09	/03/21			
Total Dissolved Solids	188	10	mg/L		172			8.89	15	

Reported:

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215 Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501 09/24/21 16:57 Project Number: Round 3 ASR Water Quality Baseline

Conventional Chemistry Parameters by APHA/EPA Methods - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AH14424 - General Preparation										
Duplicate (AH14424-DUP2)	Sou	rce: 21H232	6-02	Prepared: (08/24/21 Aı	nalyzed: 09	/03/21			
Total Dissolved Solids	156	10	mg/L		154			1.29	15	
Batch AH14703 - General Preparation										
Blank (AH14703-BLK1)				Prepared &	Analyzed:	08/30/21				
Total Alkalinity as CaCO3	ND	5.0	mg/L							
Carbonate Alkalinity as CaCO3	ND	5.0	mg/L							
Hydroxide Alkalinity as CaCO3	ND	5.0	mg/L							
Bicarbonate Alkalinity as CaCO3	ND	5.0	mg/L							
LCS (AH14703-BS1)				Prepared &	z Analyzed:	08/30/21				
Total Alkalinity as CaCO3	90.0	5.0	mg/L	80.0		112	70-130			
Duplicate (AH14703-DUP1)	Sou	rce: 21H263:	3-01	Prepared &	Analyzed:	08/30/21				
Total Alkalinity as CaCO3	310	5.0	mg/L		310			0.00	20	
Carbonate Alkalinity as CaCO3	ND	5.0	mg/L		ND				20	
Hydroxide Alkalinity as CaCO3	ND	5.0	mg/L		ND				20	
Bicarbonate Alkalinity as CaCO3	310	5.0	mg/L		310			0.00	20	
Batch AH14872 - Metals Digest (D)										
Blank (AH14872-BLK1)				Prepared: (09/01/21 Aı	nalyzed: 09	/03/21			
Hardness, Total	ND	5	mg/L							
Duplicate (AH14872-DUP1)	Sou	rce: 21H345	2-01	Prepared: (09/01/21 Aı	nalyzed: 09	/03/21			
Hardness, Total	238	5	mg/L		234			1.56	20	

Reported:

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501

Project Number: Round 3 ASR Water Quality Baseline

Reported: 09/24/21 16:57

Anions by EPA Method 300.0 - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AH14195 - EPA 300.0										
Blank (AH14195-BLK1)				Prepared &	Analyzed:	08/19/21				
Nitrate as N	ND	0.20	mg/L							
Fluoride	ND	0.10	mg/L							
Sulfate as SO4	ND	0.50	mg/L							
Chloride	ND	0.50	mg/L							
LCS (AH14195-BS1)				Prepared &	: Analyzed:	08/19/21				
Nitrate as N	5.37	0.20	mg/L	5.56		96.7	90-110			
Fluoride	5.59	0.10	mg/L	5.56		101	90-110			
Chloride	10.9	0.50	mg/L	11.1		97.8	90-110			
Sulfate as SO4	22.2	0.50	mg/L	22.2		100	90-110			
Duplicate (AH14195-DUP1)	Sou	rce: 21H253	0-02	Prepared &	: Analyzed:	08/19/21				
Sulfate as SO4	7.91	0.50	mg/L		7.92			0.0379	20	
Chloride	2.04	0.50	mg/L		2.04			0.0490	20	
Nitrate as N	0.277	0.20	mg/L		0.277			0.244	20	
Fluoride	0.163	0.10	mg/L		0.163			0.00	20	
Matrix Spike (AH14195-MS1)	Sou	rce: 21H253	0-02	Prepared &	: Analyzed:	08/19/21				
Fluoride	5.01	1.0	mg/L	5.56	ND	90.2	80-120			
Nitrate as N	5.57	2.0	mg/L	5.56	ND	100	80-120			
Chloride	11.7	5.0	mg/L	11.1	ND	87.2	80-120			
Sulfate as SO4	26.4	5.0	mg/L	22.2	7.92	83.3	80-120			
Matrix Spike (AH14195-MS2)	Sou	rce: 21H268	2-01	Prepared &	: Analyzed:	08/19/21				
Fluoride	4.71	1.0	mg/L	5.56	ND	84.8	80-120			
Nitrate as N	8.55	2.0	mg/L	5.56	3.70	87.3	80-120			
Sulfate as SO4	31.1	5.0	mg/L	22.2	12.9	82.2	80-120			
Chloride	17.1	5.0	mg/L	11.1	7.80	83.8	80-120			

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project Number: Round 3 ASR Water Quality Baseline

Project: Round 3 ASR Water Quality Baseline

Reported: 09/24/21 16:57

Alameda, CA 94501

Anions by EPA Method 300.0 - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AH14195 - EPA 300.0										
Matrix Spike Dup (AH14195-MSD1)	Sour	ce: 21H253	0-02	Prepared &	Analyzed:	08/19/21				
Sulfate as SO4	26.6	5.0	mg/L	22.2	7.92	84.2	80-120	0.796	20	
Fluoride	5.06	1.0	mg/L	5.56	ND	91.0	80-120	0.883	20	
Nitrate as N	5.61	2.0	mg/L	5.56	ND	101	80-120	0.717	20	
Chloride	11.8	5.0	mg/L	11.1	ND	88.0	80-120	0.755	20	

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501 Project Number: Round 3 ASR Water Quality Baseline

Reported: 09/24/21 16:57

Volatile Organic Compounds by EPA Method 524.2 - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AH14496 - VOAs in Water GCMS										
Blank (AH14496-BLK1)				Prepared &	Analyzed:	08/25/21				
Bromodichloromethane	ND	1.00	ug/L							
Bromoform	ND	1.00	ug/L							
Chloroform	ND	1.00	ug/L							
Dibromochloromethane	ND	1.00	ug/L							
Trihalomethanes (total)	ND	1.00	ug/L							
Surrogate: Bromofluorobenzene	25.4		ug/L	25.0		102	70-130			
Surrogate: Dibromofluoromethane	24.6		ug/L	25.0		98.5	70-130			
Surrogate: Toluene-d8	24.8		ug/L	25.0		99.1	70-130			
LCS (AH14496-BS1)				Prepared &	z Analyzed:	08/25/21				
Bromodichloromethane	4.57	1.00	ug/L	5.00	· ·	91.4	70-130			
Bromoform	4.31	1.00	ug/L	5.00		86.2	70-130			
Chloroform	5.19	1.00	ug/L	5.00		104	70-130			
Dibromochloromethane	4.45	1.00	ug/L	5.00		89.0	70-130			
Surrogate: Bromofluorobenzene	27.8		ug/L	25.0		111	70-130			
Surrogate: Dibromofluoromethane	23.5		ug/L	25.0		94.2	70-130			
Surrogate: Toluene-d8	24.8		ug/L	25.0		99.2	70-130			
LCS Dup (AH14496-BSD1)				Prepared &	z Analyzed:	08/25/21				
Bromodichloromethane	4.59	1.00	ug/L	5.00	•	91.8	70-130	0.437	30	
Bromoform	4.11	1.00	ug/L	5.00		82.2	70-130	4.75	30	
Chloroform	5.14	1.00	ug/L	5.00		103	70-130	0.968	30	
Dibromochloromethane	4.58	1.00	ug/L	5.00		91.6	70-130	2.88	30	
Surrogate: Bromofluorobenzene	28.1		ug/L	25.0		113	70-130			
Surrogate: Dibromofluoromethane	22.4		ug/L	25.0		89.5	70-130			
Surrogate: Toluene-d8	24.9		ug/L	25.0		99.6	70-130			
Matrix Spike (AH14496-MS1)	So	urce: 21H246	9-02	Prepared: ()8/25/21 A:	nalyzed: 08	/26/21			
Bromodichloromethane	20.5	1.00	ug/L	5.00	14.0	130	70-130			
Bromoform	4.73	1.00	ug/L	5.00	ND	94.6	70-130			
Chloroform	79.8	1.00	ug/L	5.00	67.2	253	70-130			QM-
Dibromochloromethane	8.71	1.00	ug/L	5.00	3.65	101	70-130			
Surrogate: Bromofluorobenzene	28.3		ug/L	25.0		113	70-130			
Surrogate: Dibromofluoromethane	23.0		ug/L	25.0		91.8	70-130			

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501

Project Number: Round 3 ASR Water Quality Baseline

Reported: 09/24/21 16:57

Volatile Organic Compounds by EPA Method 524.2 - Quality Control

Analyte(s)	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AH14496 - VOAs in Water GCMS										
Matrix Spike (AH14496-MS1)	Sour	ce: 21H246	9-02	Prepared: (08/25/21 A	nalyzed: 08	/26/21			
Surrogate: Toluene-d8	24.4		ug/L	25.0		97.6	70-130			
Matrix Spike (AH14496-MS2)	Sour	ce: 21H261	1-01	Prepared: (08/25/21 A	nalyzed: 08	/26/21			
Bromodichloromethane	6.50	1.00	ug/L	5.00	1.77	94.6	70-130			
Bromoform	4.42	1.00	ug/L	5.00	ND	88.4	70-130			
Chloroform	60.2	1.00	ug/L	5.00	50.7	190	70-130			QM-05
Dibromochloromethane	4.27	1.00	ug/L	5.00	ND	85.4	70-130			
Surrogate: Bromofluorobenzene	27.8		ug/L	25.0		111	70-130			
Surrogate: Dibromofluoromethane	21.4		ug/L	25.0		85.8	70-130			
Surrogate: Toluene-d8	23.7		ug/L	25.0		94.7	70-130			

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215 Alameda, CA 94501

Project: Round 3 ASR Water Quality Baseline

Project Number: Round 3 ASR Water Quality Baseline

Reported: 09/24/21 16:57

Haloacetic Acids by EPA Method 552.2 - Quality Control

		Reporting		Spike	Source		%REC		RPD	771
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AH14766 - EPA 552.2										
Blank (AH14766-BLK1)				Prepared: (08/31/21 A	nalyzed: 09	/01/21			
Monobromoacetic Acid	ND	1.0	ug/L							
Monochloroacetic Acid	ND	2.0	ug/L							
Dibromoacetic Acid	ND	1.0	ug/L							
Dichloroacetic Acid	ND	1.0	ug/L							
Trichloroacetic Acid	ND	1.0	ug/L							
Total Haloacetic Acids (HAA5)	ND	1.0	ug/L							
Surrogate: 2,3-Dibromopropionic Acid	8.28		ug/L	9.85		84.1	70-130			
Surrogate: 2-Bromopropionic Acid	10.9		ug/L	10.0		109	70-130			
LCS (AH14766-BS1)				Prepared: (08/31/21 A	nalyzed: 09	/01/21			
Monobromoacetic Acid	28.6	1.0	ug/L	25.0		114	70-130			
Monochloroacetic Acid	28.6	2.0	ug/L	25.0		114	70-130			
Dibromoacetic Acid	24.9	1.0	ug/L	25.0		99.7	70-130			
Dichloroacetic Acid	28.5	1.0	ug/L	25.0		114	70-130			
Trichloroacetic Acid	24.5	1.0	ug/L	25.0		98.0	70-130			
Surrogate: 2,3-Dibromopropionic Acid	9.70		ug/L	9.85		98.5	70-130			
Surrogate: 2-Bromopropionic Acid	12.6		ug/L	10.0		126	70-130			
Matrix Spike (AH14766-MS1)	Sou	rce: 21H263	3-01	Prepared: (08/31/21 A	nalyzed: 09	/02/21			
Monobromoacetic Acid	31.8	1.0	ug/L	25.0	ND	127	70-130			
Monochloroacetic Acid	30.4	2.0	ug/L	25.0	ND	121	70-130			
Dibromoacetic Acid	28.2	1.0	ug/L	25.0	ND	113	70-130			
Dichloroacetic Acid	31.0	1.0	ug/L	25.0	ND	124	70-130			
Trichloroacetic Acid	27.6	1.0	ug/L	25.0	ND	110	70-130			
Surrogate: 2,3-Dibromopropionic Acid	11.8		ug/L	9.85		120	70-130			
Surrogate: 2-Bromopropionic Acid	14.3		ug/L	10.0		143	70-130			S-0
Matrix Spike (AH14766-MS2)	Sou	rce: 21H273	8-01	Prepared: (08/31/21 A	nalyzed: 09	/02/21			
Monobromoacetic Acid	25.7	1.0	ug/L	25.0	ND	103	70-130			
Monochloroacetic Acid	51.4	2.0	ug/L	25.0	ND	205	70-130			QM-07
Dibromoacetic Acid	23.8	1.0	ug/L	25.0	ND	95.0	70-130			
Dichloroacetic Acid	26.3	1.0	ug/L	25.0	ND	105	70-130			
Trichloroacetic Acid	24.2	1.0	ug/L	25.0	ND	96.7	70-130			
Surrogate: 2,3-Dibromopropionic Acid	10.5		ug/L	9.85		107	70-130			

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501 Project Number: Round 3 ASR Water Quality Baseline

Reported: 09/24/21 16:57

Haloacetic Acids by EPA Method 552.2 - Quality Control

Reporting Spike Source %REC RPD Flag Analyte(s) Result Limit Units Level Result %REC Limits RPD Limit

Batch AH14766 - EPA 552.2

Matrix Spike (AH14766-MS2) Source: 21H2738-01 Prepared: 08/31/21 Analyzed: 09/02/21

Surrogate: 2-Bromopropionic Acid 11.5 115 ug/L

Alpha Analytical Laboratories, Inc.

email: clientservices@alpha-labs.com

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501 Project Number: Round 3 ASR Water Quality Baseline

Reported: 09/24/21 16:57

Notes and Definitions

FILT The sample was filtered in the lab prior to analysis.

QM-01 The spike recovery for this QC sample is outside of established control limits possibly due to a sample matrix interference.

QM-05 The spike recovery was outside acceptance limits for the MS and/or MSD due to matrix interference. The LCS and/or LCSD

were within acceptance limits showing that the laboratory is in control and the data is acceptable.

QM-07 The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS

recovery.

QM-4X The spike recovery was outside of QC acceptance limits for the MS and/or MSD due to analyte concentration at 4 times or

greater the spike concentration. The QC batch was accepted based on LCS and/or LCSD recoveries within the acceptance

limits.

R-01 The Reporting Limit for this analyte has been raised to account for matrix interference.

S-GC Surrogate recovery outside of control limits. The data was accepted based on valid recovery of the remaining surrogates.

ND Analyte NOT DETECTED at or above the reporting limit

dry Sample results reported on a dry weight basis

REC Recovery

RPD Relative Percent Difference

Alpha Analytical Laboratories Inc. man shekadaha com

Corporate Laboratory (1551) 707-468-0401 208 Mason Street, Ukiah CA 95482

Los Angeles (Service Center) 310-743-5711 1230 E 233rd St #205, Carson CA 90745

North Bay Laboratory (2303) 707-769-3128 110 Liberty Street, Petaluma CA 94952

Bay Area Laboratory (2728) 925-828-6226 262 Rickenbacker Circle, Livermore CA 94551

Chain of Custody Record

Reports and Invoices delivered by email as PDF files

Carbatta annotation property												1														_			_		_			1 /	
www.alpha-labs.com sa	an Diego Labori	atory (3055) 760-930-	2555			C	entra	al Val	lley	Lal	bori	atory	y (2	922)	916-	686-	5190					Lab I	٧o.		71	14	K	24	ر ر	ک	?	P	Q)	l of k	2
Waters, Sediments, Solids	2722 Loker Ave	West, Ste A, Carlsba	id CA	9201	10		909	0 Un	IION	Par	nx V\	VAY F	#173), CIK		46 C	n 85		_							<i>-</i>		_	<u> </u>			_	<u> </u>		
Report to	Invo	ice to (if different)		\Box				ct in	fo			1	_		_			- 4	naly	sis:	Requ	lest T	-,	—,	_		Ι-	_	╁	_	TAT inda	rd	╁	Temp *C Ukiah	
Company:	Contact:				rojeci Rous			LRIA	for	Ous	iite	. 1	ı		ŀ	Į	- [-	- 1	- 1	Ì		ļ			1		1)-day		l	3.0	
Todd Groundwater					<u> </u>	10.3		eline		-cua	y						-				-	-	اچ	2						(0		\vdash	Livermore	
Attn:	Email Address:			P	rojec	Nu	mber	r:				1			Ì			- 1	-	1		ļ	no ro po	nZ V IT				l	H		USH		1	5.8	
Nicole Grimm				┙			_					١,	٦	1		١			ı	γĮ		1	_	က္တ			l	1	١		ay 2∜ ^	5%	⊦	Elk Grove	
Phone:	Phone:			P	O Nu	ımbe	€ Г:						ele	1		-	١	- 1	1	B	-	S B	Ba	Pb S			1		L		0_	-0.	1		
610-747-6920				_								1	Sam	اج		ı]		- 1	jä		Fe K Mg Na	Al As B Ba	ΪQ		tals	l		1		ay 75	5%	┢	Petaluma	
Physical Address:				F	requ	ency	:					- 1	ber	鲁		1	-	- 1		린		품	8	Mu M	ē	Me			L		0_	_	4		
2490 Mariner Square Loop, Suite 215, Ala	ameda CA 9450	1 _		<u> </u>		· D		-4		Ma	trix	_]	iners	ð	<u>₹</u>	l	l			ge	uffat]s-(lls - /	is - l	4	olve	l		1		Other	•	H	Carlsbad	
Email address:		ŀ	Cor	ntain	er	-Pre	serv	ation	╁	IVIA T	Ť	1	Total Number of Containers per Sample ID	BAL - TCEC GW 30hr Quantitray	BAL - Color and Turbidity					Alkalinity, Total / Chloride / Fluoride / MBAS	Nitrate as N / TDS / Suffate	Dissolved 200.7 metals - Ca	Dissolved 200.8 metals - Ag	Dissolved 200.8 metals - Mn Mo Ni Pb Sb	Dissolved 245.1 CVAA - Hg	Lab Filtration for Dissolved Metals	_	.		,	0		I		
ngrimm@toddgroundwater.com						Ì			١	5	1 1	ı I	٥	8	and	age			ı	otal/	2	8.	00.8	90.8	45.1	ğ	Stior		L	_		ays	┢	Los Angeles	
Field Sampler - Printed Name and Signature	9:	ا حنــــــــــــــــــــــــــــــــــــ	40mL vial Glass bottle	→	<u> </u>	اي			Wat	ater		 -	툍	CEC	뒁	NB - Perchlorate				<u>۲</u>	as N	red 2	ved 2	ved 2	ved 2	tratio	Metals Digestion	: -	F		ly st		-		
Nicole brimm		mpled on	il via	ğ	2 P	220	ဦ	 	ع او	stew	_	<u>.</u>	ž	֓֡֞֜֞֞֜֞֞֓֓֓֓֓֓֓֓֡֓֓֓֡֓֓֡֓֡֓֡֓֡֓֡֡֡֜֜֡֡֡֡֡֡֡֡	- I	١٣.	HAA5	₽	Sulfide	kalini	trate	lossi	issoh	isso	issol	ᇣ	etals		<u>a</u>	퉏	=	ပ္ပါ <u>.</u>	<u>,</u> -	Source Cod	
Sample Identification	Time	Date Date	40n Glas	5	9 8	Na.	ŽΞ	[종]		3 8	છ	ਰੋ	ġ,	à	À	Ž	<u> </u>	듸	Ω	₹	Ž.		_	<u> </u>	₽	╀	12	+	- *	118	팀	┋	3		
2121	9:10	8/18/21		×		×			ŀ	۲			1	×	'			Ц							L	L	╀	4	4	╀	Н	- '	4		
3121	1 '	'	×	П	\sqcap	П	Т	Π,	χŢ,	×	П	П	1		x												1_				Ц	┙	Ţ	_	
	-]	+-	 x	$\forall \exists$	H	\dagger	 	╁	*	Ħ	H	1	П		x		П							Γ		T		,	4					
			├┼-	Ĥ	Н	╁	╫	╁┼	+	+	Н	╫	1	Н	_	\vdash		Н			_	-	_	厂	Τ	✝	T	T	7	T	II	1	Ť		
•			- <u>*</u>	H	4	dash	+	*	╬	<u>`</u> -	H	H	$\dot{-}$	\vdash	┝	Н	_	<u> </u>		_		-	┢	┢	╀	╁╴	+	╁	十	╈	$\dagger \dagger$	十	+		
			<u>×</u> _	Н	\perp	×	\bot	\sqcup	1	×	┡	╽	3	_	_			×		_		-	├	╁	╁	╀	╁	╁	+	+	╁┼	╅	╁		
	İ		Ш	×		Ц	\perp	x	<u> </u>	×	\perp	Ц	1		_	_		L	×	_	_	├-	-	╄	╄	╀	╬	╁	+	` -	H	+	╁		
				x		Ш	١	П	×	×	_	$oxed{\mathbb{L}}$	1					L		х	×	×	×	×	×	×	1	×	4	4	\sqcup	×	╀		
	<u> </u>		Π	П	\top	П	Τ	Π	T		Γ	П												L				\perp	\perp	\perp	Ц	\perp	_		
	+		H	$\dagger \dagger$	\top		十	$\dagger \dagger$	†	十	T	Ħ				Γ												1		1					
	-		+	H	+	╂┤	+	\forall	+	+	\dagger	H	-	H	\vdash	Γ	\vdash	T	\vdash	-	Γ	T	Τ	T	T	T	T	\sqcap							
<u> </u>	 	 	H	╀┤	+	╂┼	+	╫	+	+	+	╁┪	-	\vdash	╁╴	+	┝	十	\vdash	-	╁╴	╁	十	\dagger	†	十	T	✝	1	1	П	П	T		
	<u> </u>		Ш	Ш			4	1.	Ţ		L	Ц		<u> </u>	Dat		L_	╁╾	<u></u>	L_	<u></u>	<u> </u>	上		Ado	litio	nal	Req	ulrer	nen	ts	_	_		<u> </u>
Relinquished by		Received	by		_		+		_	ime		{		6/		7		十	_	CA	DD	w				Stat	- C-	vetor	m No	·-					
Ne		57					4			9	_	_	<u> </u>	\rightarrow	7	121		1	0	Wr	ite-	On l	EDI	Γ		oral	.e 3	yaldi	III INC	<u>_</u> _	_				<u>-</u>
y y		$\Delta \mathcal{G}$						1	10	<u> 1</u>	<u> </u>			54	18	/2	1	厂	_	CA					نانمونا	₩ GI	Inha	ı ID	No:				1	<u>'</u>	
78,		TIP .						2	2	10	5		8	1/0	18	·/≥	1		0	Ge	oTr	ack									nte:		\mathcal{T}_{i}		-
<u> </u>							\top							_	_,			1		ED	FR	epo	rt	Sa	iqme	ing C	Com	pan;	y Los		c.	6	Ì		

Corporate Laboratory (1551) 707-468-0401 208 Mason Street, Uklah CA 95482

Los Angeles (Service Center) 310-743-5711 1230 E 233rd St #205, Carson CA 90745

San Diego Laboratory (3055) 760-930-2555 2722 Loker Ave West, Ste A, Carlsbad CA 92010 North Bay Laboratory (2303) 707-769-3128 110 Liberty Street, Petaluma CA 94952

Bay Area Laboratory (2728) 925-828-6226 262 Rickenbacker Circle, Livermore CA 94551

Central Valley Laboratory (2922) 916-686-5190 9090 Union Park Way #113, Elk Grove CA 95624

Chain of Custody Record

Reports and Invoices delivered by email as PDF files

Lab No.	2142633	2 Pg_2	of	6
---------	---------	-----------	----	---

Keport to		to (if different)		Project	Info								inaly	/8ls:	₹equ	iest						L		AT		Temp *C	
Company:	Contact:		Project Na				1			Г	Ī			Π			Ĭ	Ĭ						ndaro		Ukiah	٦
Todd Groundwater			Round 3	ASR W		Quality											_	ا ۽	ļ				_	-day `\		30 Livermore	
Attn:	Email Address:		Project Nu	mber:			7	1	H				ı	ı			ភ្ន	Z				L	C			Livermore	ヿ
Nicole Grimm								Ī	1		ł	ı	ı		1		8	ě				٤ ا		ISH: y 259		5.8	-
Phone:	Phone:		PO Numb	эт.			□		ΙI			ı		ă I	-	<u></u>	8	8				`	C	-	~ }	Elk Grove	┪
510-747-6920			1				Sample ID							∝		S S	88	9	ŀ			Ļ		/ y 759	04		- 1
Physical Address:			Frequency	:			- S	таў						l gi		ا ق	₹ As	ջ		stats		ן '	2-1a,		<i>"</i>	Petaluma	ㅓ.
2490 Mariner Square Loop, Suite 215, Alai	meda CA 94501						Sign Sign	nann			1			<u> </u>	<u>ا</u> ڀو	S	Å	٤	£	휥		┡		her	ᅴ		1
Email address:		Co	ntainer Pre	servatio	n	Matrix	<u>.</u>	Ş	[ľ		ġ	<u> </u>	ė l	ģ	: :	اخ	충		ı	C		· t	Carlsbad	1
ngrlmm@toddgroundwater.com						Ш	S	30 20 20	<u>=</u>	g l				5	8	met	met.	met	ૄ	<u>ē</u>	اء	l	U	,			1
Field Sampler - Printed Name and Signature:	<u> </u>				ğ		20	ő	👸	盲			ı	la E	5	8	ğ	ğ	₹.	윤	캻	-		day	's l	Los Angeles	1
Nicole Grimm	n		ig a te	111	Way	water	quin.	10E	<u>8</u>	erchi			_	<u>-</u>	ask	Ved 2	ved 2	Zed 2	ved 2	Tagi L	. Dig	_		size	_	J	1
Sample Identification	Samp	Date 00 v	Poly bottle ← Glass jar Other Na2S2O3	HN03	None	Waste	Outer Total Number of Containers per	BAL - TCEC GW 30hr Quantitray	BAL - Color and Turbidity	H H	HAAS	MHL	Suffid	Alkalinity, Total / Chloride / Fluoride / MBAS	Nitrate	Dissolved 200.7 metals - Ca Fe K Mg Na	Dissolved 200.8 metals - Ag Al As B Ba Be Cd Cr Cu	Dissolved 200.8 metals - Mn Mo Ni Pb Sb Se TI V Zn	Dissolved 245.1 CVAA - Hg	Lab Filtration for Dissolved Metals	Metals Digestion	250mL	- 500m	HalfG	ag	Source Code	7
12-5-23A20	9:55	9/18	x x		×		1	×															Ť		×	•	1
	•	x		$\ \cdot\ $	х×		1		_x								Т					П	Т	\Box	П		1
			x	††	ŢŢ	† † †	1	t	H	×	┪	\dashv	+	\top	\top	\top		\forall	┪	_	_	H	十	₩	H	<u></u>	┨
i		 	$^{\uparrow \downarrow \downarrow \downarrow \downarrow}$	++	^ ^	+++	+-	+-	$\vdash\vdash$	-	+	-	+	+	+	-	+	+	4	\dashv	_	×	+	┦┤	╁		4
<u> </u>		<u> </u>		×	×		1	_	Ц		×	\perp	\perp		ᆚ		\perp				_ _	Ц	\perp	\perp	Ц		┛
		×	x		×	111	3			ı		×	1				Ì								Н	_	1
			x	×	×		1			П	T	T	x		T		\top	Ţ				×	7	П	П		1
		1	x T	\Box	××	\Box	1	T	H	寸	7	7	7	×	×	×	×	×	x	×	×	H	十	Ţ	\forall		1
	-		+++	╁╂┧	+	H	į		\vdash	\dashv	+	+	-	$\overline{+}$	╫	+	╬	_	<u>^</u>	$\hat{+}$	$\hat{+}$	H	+	┼	╁		+
· · · · · · · · · · · · · · · · · · ·		,		++	+	++	š	┟╌	$\vdash \vdash$	-	-	-+	4	4	4	\bot	4	4	4	4	\perp	\sqcup	4	\bot	Н		4
	·	'			Ŀ	\coprod	i			\perp	\perp	L	r ^a	'	ľ							Ш		\perp	Ш		11
		·	1111	111				l	ŀί	- 1	-											П	\top	П	П	_	1
		1	1111		1	\prod	1		П	丁	7	_	\top	\top	+	†	1	┪	┪	7		H	十	$\dagger \dagger$	П	v	7
Relinquished by		Received by		┼┸┸	Tim	<u> </u>	-		Date		+							L Ad	lditio	onal	Require	⊥L me:	 nts	Ш		·	-
Ne		87		-//	509	,	1	7.	81-	u	┪	_		A D	DW												7
M.		1.0		19	7/1	7	0	//	0/	21	_	0		Vrlte			Т		Sta	ite S	ystem N	o: <u>-</u>		<u> </u>	_		
		900		2:	<u>w</u>		12	יין אני מו	8	12	\dashv	^		A				Faci	lity G	iloba	il ID No:						
<u></u>		- AIS	<u> </u>	2	<u> </u>	0_	10	f F	8/		\dashv	С		eol DF							pany Log		ode;				
							1				_Ļ				_		_					_	_				┛

Alpha
Alpha Analytical Laboratories Inc.
www.alpha-labs.com

WATERS, SEDIMENTS, SOLIDS

Corporate Choratory (1551) 707-468-0401 208 Mason Street Ukiah CA 95482

Los Angeles (Service Center) 310-743-5711 1230 E 233rd St #205, Carson CA 90745

San Diego Baboratory (3055) 760-930-2555 2722 Löker Ave West, Ste A, Carlsbad CA 92010 North Bay Laboratory (2303) 707-769-3128 110 Liberty Street, Petaluma CA 94952

Bay Area Laboratory (2728) 925-828-6226 262 Rickenbacker Circle, Livermore CA 94551

Central Valley Laboratory (2922) 916-686-5190 9090 Union Park Way #113, Elk Grove CA 95624 Chain c

Reports and Invoices deliverec-

clientservices@alpha-labs.com

o No. 2142633 Pg 3 of 6

Keport to		e to (if different)				_	ojeci	inn	Ų.	_	_ <u> </u> _							hnal	ysis	Req	Jest								TA	١Ţ	T	Temp °C	
Company: Todd Groundwater	Contact:				oject Roun	d 3 A	SR V		r Qı	uality	,		Ţ				1			7						Π			Stand 10-d	dard day	1	Ukiah	
Attn:	Email Address:	 _			oject		Basel	Jue_			-1	-	- [1	ľ	- 1				ŀ		ᇍ	5		ĺ	ĺ		ĺ	0		L	30	
Nicole Grimm	Zijidii / imaless.				OJECE	i NOITE	JCI.					ı										Cd CrCu	SeTIVZn					•	RUS		1	Livermore 5	
Phone:	Phone:			P	O Nun	nber:	_				۱,	₽	- [ı		1	38 1		۱ "	<u>.</u>	ŝ					"			\vdash	Elk Grove	
510-747-6920											9	Sample ID	1					-	e/ME	- [Ñg⊠	B Ba	i Pb S					-	0	75%	1	EIK GIOVE	
Physical Address:	•			Fr	equer	icy:	-					2	<u>e</u>		1		- 1	- 1	용		놓	<u>₹</u>	20		tals				·	7370	\vdash	Petaluma	
2490 Mariner Square Loop, Suite 215, Alar	neda CA 94501		_									als be	GVV 30hr Quantitray	اج	l	-			e/된	ge	ន្ទ	¥ B∀	M-M	휸	ed Me				Oth	er	4		J
Email address:			. Co	ntaine	r F	rese	rvatio	DΠ	Ma	atrix		Contaniers	<u> </u>	<u>ğ</u>			ł		S	를	Sig [홅 [왊	\$	Solvi		1 1		0	•.	H	Carlsbad	\dashv
ngrimm@toddgroundwater.com			Ш				П				<u>ب</u> و		ة ا	Ē .				1	ਹ <u>ੋ</u>	SQ.	7 met	8 met	8 met	Ş	r Dis	E		-	_				- 1
Field Sampler - Printed Name and Signature: N Col e Grimm Sample Identification		<u></u>	al offle	∌ _	8	Н	H	18 (2.62	r vvatel	Н		in link	BAL - ICEC	BAL - Color and Turbidity	NB - Perchlorate				Alkalinity, Total / Chloride / Fluoride / MBAS	N SE	Dissolved 200.7 metals - Ca Fe K Mg Na	3d 200	Dissolved 200.8 metals - Mn Mo Ni Pb Sb	Dissolved 245.1 CVAA - Hg	Lab Filtration for Dissolved Metals	Metals Digestion		 P	oly s	lays lize	╀	Los Angeles	;
	Sami	oled on	욽	od / si si	. S		ᇷ	0	ži š		<u>ار</u> دران	֓֞֓֞֓֞֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֡֓֓֓֓֡֓֡֡֡֡֡֡֡֡	<u>:</u> [۱۱	֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	2	≨ ;	Sulfide	<u></u>	afe	<u>8</u>	춣ㅣ	ĕ	춣	計] SIE		ء آج	Ţ	o	L		
Sample Identification	77 LUNG	Date	40mL vial Glass bottle	<u> </u>	Other Na2S2O3	밀		20	§ Š	S	di di di				Ž į	TAA:	E S	3	¥	劃	šš .		ig Sig	Sign	Lab	Met		250mL 500mL	<u> </u>	Half G		Source Cod	ie
3357	10:30	8/18/21	Ш	х	×	Ц	Ц	:	×	Ц	Ŀ	1 :	×	\perp			\perp										П	T	\prod	×			
		,	×	Ш		Ц	Ш	× :	×	Ш	1	١ <u> </u>		×							١							T	П				
	· 1000000000000000000000000000000000000		Ш	×				×	×		1	1			x			Т		T		1	\exists	╗			T	x	П	1	Ī		\neg
			×				x	7	×Γ	П	1	T	T	T	7	×		T	T	T	T		\dashv	7		1	T	†	Н	\top			\neg
<i>f</i>			x	П	×	$\left[\cdot \right]$	П	٦,	ΧĪ	П	3	7	1	T	┪		×	寸	7	7	Ť	T	十	\exists			┪	Ť	H	1	┝		\dashv
£'	· · · · ·		П	x	Т	ΠŤ	×	٦,	,	\sqcap	1		\top	T	1	\dagger		× T	十	7	十	寸	+	┪	-	ᅥ	┪	x -	H	十	-		
¥.			Н	 x	+	H	$\dagger \dagger$	x ,	\downarrow	╁	1,	╁	╁	+	+	╁	+	┿	×	,	×	×	x	×	×	x	\dashv	+	H	+	_		
				\vdash	+	╁┼	╂╂	+	╁	╁		+	╁	╫	╁	+	+	+	╬	+	"		^ +	4	_		4	┯	H	<u>* </u>	L		4
	<u>. </u>		Ц_	Ц.	4	H	11	4	\perp	Щ	<u> /</u>	┸	4	_ -	4	4	4	_	4	4	_	Ŀ	\perp	ightharpoonup	_		ightharpoonup	\perp		1	4		1
	· .		Щ			Ц		4	\perp	Ц	1	1	1	╧		╧	1	\perp		1							. L					1	\exists
		س	Щ	Щ			Ш		L	Ц	L				L	\perp			_	_		J		_:	╻╽	T	-	4	Ī		i,		\exists
	<u> </u>									:							١,	-	T	1		1	1	T	T		丁				·		\exists
Relinquished by		Received t	þу					Tir	ne		I		_	ate		1							Ad	ditio	onal	Req	uiren	nent	s				
20		41					Ü,	<u> 15</u>	40			8/1	8/	21			0	C	A D Vrite	DW -On	ED.	T		Sta	ate S	yster	m No:	 :					7
29	·	<u> </u>				_		_	10		12	<u>Z/</u>	48		1	1						_							_				4
25	· - · ·	<u> 28</u>	ادبب	,/• (0)			2	2/	15		1	<u>8/</u>	18	?/~	<u> </u>	4	0		A eol	rac	ker		Facil				· E -		_				1
0.00			17	<u> </u>	ę							_				\perp		E	DF	Rep	ort	S	ampl	ing (Com	pany	Log !	Code	2:	_		·	
a software server	() () () () () () () ()				A																_		_	_		_		<u>. </u>	—		-		_

Corporate Laboratory (1651) 707-468-0401 208 Mason Street, Ukiah CA 95482

Los Angeles (Service Center) 310-743-5711 1230 E 233rd St #205, Carson CA 90745

North Bay Laboratory (2303) 707-769-3128 110 Liberty Street, Petaluma CA 94952

Bay Area Laboratory (2728) 925-828-6226 262 Rickenbacker Circle, Livermore CA 94551

Chain of Custody Record

Reports and Involces delivered by email as PDF files

www.alpha-labs.com	n Diogo I aborato	ory (3055) 760-930	-2555			-	ante	al 1/a	Harr	l ab	أدر		(2021	N 04	6-686	. 540	٠.								ז כ	1 1	10	,	~	つ	,	11
WATERS, SEDIMENTS, SOLIDS		Vest, Ste A, Carlsb			10	_	909	an va 30 Un	ion	Park	Wa	y #1	13, E	ik G	iove o-ood	CA 9	95624	ŀ			Lab	No.			1	H	2	<u>b</u>	<u>ر</u>	5	PØ_	9 of 6
Report to	Involce	e to (if different)		Т	_	-	Proje	ect in	fo		_	-			_		-	Anai	ysis	Req	uest		_		_				TA	ī	7	Temp °C
Company:	Contact:				rojec								Π		T -															dard		Ukiah
Todd Groundwater					Rou	nd 3		R Wat		Qual	ity											_	_					ĺ	10-d		15	3.0
Attn:	Email Address:	-		P	rojec	t Nu	mbe	r				1				١.	1					ū	٧Ż					L	0		╝	Livermore
Nicole Grimm											. {	,							,,	Ì		Cd Cr Cu	Dissolved 200.8 metals - Mn Mo Ni Pb Sb Se TI V Žn						RUS day	SH: 25%	6	5.8
Phone:	Phone:			F	O N	umb	er:					9			1				Alkatinity, Total / Chloride / Fluoride / MBAS		Na	Dissolved 200.8 metals - Ag Al As B Ba Be	Sp					ĺ	0		ı	Elk Grove
510-747-6920										C -	4	dua			1				de / f		Fe K Mg Na	s B E	N.		_ ا			2.		75%	\dashv	
Physical Address:				F	requ	ency	r:					er.S.	itray						luori		Fe	AI A	δ		etal			ı	0		ſ	Petaluma
2490 Mariner Square Loop, Suite 215, Ala	meda CA 94501										į	ers	Juan	ج ا	l				le/F	fate	-Ca	- Ag	-М	문	g g			\vdash	Oth	er	┪	
Email address:			Col	ntain	er .	Pre	serva	ation		Matri	i×	ntain	喜	Pigi	l				hloric	/Sul	etals	etals	etais	Į.	SSO			ı	0	1		Carlsbad
ngrimm@toddgroundwater.com	_				11						11	ပိုင်	BAL - TCEC GW 30hr Quantitray	BAL - Color and Turbidity	g.				0/E	Nitrate as N / TDS / Sulfate	Dissolved 200.7 metals - Ca	.8 m	8. E	Dissolved 245.1 CVAA - Hg	Lab Filtration for Dissolved Metals	5		١.		days		
Field Sampler - Printed Name and Signature:	_ <		<u>.</u>	÷	П				Vater	ē	П	ber	8	or ar	텵				Tot	./N	3 200	1 200	1 200	1245	fion 1	Metals Digestion		 		size		Los Angeles
Mule Grima			vial bott	ootte	₫	203	إرا	.	y V	ewat		N N	Ę	2	F	L ₂	≥	g	linity,	te as	olvec	olvec	olvec	olvec	瞿	is D		1.	آ ،	П	П	
Sample Identification	Samp Time	led on Date	40mL vial Glass bottle	Poly	Other	Nazs		활동	틝	Wastewater	S G	Total Number of Containers per Sample	BAL	BAL	NB - Perchlorate	₹	THM	Sulfide	Alka	Nitra	Diss	Diss	Diss	Diss	룝	Met	ı	250mL	흵누	Half G	bacti	Source Code
21.0.2	hich			x	П	×	T		×	T	1	1	×															П	Τ	П	×	
3123	11:50	3/13/21	×	\forall	Н		П	×	×	-		1	t	×	╁╴	<u> </u>	<u> </u>								T	T		П	T	П	Ħ	-
		}	+	,	Н	+	╫	┪,	╏	+	ť	1	┢	一	×						-			T	Ť	┢		x	十	Ħ	Ħ	-
		}	+	7	Н	+	╁┤	+	Ĥ	+	- 1	1	┢	╁	۳	×,	-	-	_					├	H	┢		H	十	H	H	
			×	\dashv	Н	+	╂┤	<u> </u>	Ĥ	+	4	Ŀ	╀	╀	╁	Ĥ	-	┝						-	┝	┝	┢	${\sf H}$	十	₩	H	
			<u>*</u>	ot	41	×	44	+	Ľ	4		3	ļ_	╀	╄	_	×		_					_		┝-	╀	${f H}$	+	╁┨	H	
			Ш	х	Ц	\perp	$\perp \downarrow$	×	Ľ	\perp	1 (1	L	L	_	_	↓	х		_				_			-	×.	4	┦	Ц	
				x			Ш	×	×		ţ	1						L	x	×	x	x	×	x	×	×		Ц	╧	Ľ	Ш	
· ·							\prod	Τ	,			ľ							•	is :									ľ			•
			╅	<u>.</u>	Ť	1	\top	٦,	П	T	T			T	厂						,								T	П	П	
	· · · · · · · · · · · · · · · · · · ·		+	H	+	- 1	Н	+	H	+	+	,	╁╴	十	十一	T		Г	┝∸	_	_		Γ	<u> </u>	ï	┢	1	H	†	††	Ħ	
<u> </u>			+	${\mathbb H}$	+-	╁	╫	+	Н	\dashv	+	┢	╁╌	╁╴	-	╁╴	┢	╁	٠-	┢	-		-	┢	┢	┢	+	H	十	H	H	
Relinguished by	<u> </u>	Di - t - d		Ш	Ш	\perp	┦	<u> </u>	Щ	<u> </u>	Ц	_	ــــــــــــــــــــــــــــــــــــــ	Dat			╄╌	ļ		<u></u>		L_	٠_,	<u> </u> Addi	itiona	al Re	gulr	 eme	L, nta	Ш		
		Received t	у <u>.</u>			_	╁╴		Tim		-	+-		<u> </u>	Γ.		╁╌		CΔ	DD'										_	_	
2	<u> </u>	27					╀-	16		_		+-	<u>g</u>]	4	2 (_	┨	0	Wr	ito-C	n E	DT		8	State	Sys	tem h	lo: -		—		
9		كالح			_		\perp	19	0	<i>-</i>	_	بــــــــــــــــــــــــــــــــــــــ	9/4	8	4	<u> </u>	┌		CA					cilii.		L	D 1/-					
		ĨĹ_					7	<u>2</u>	ال	<u>s_</u>			<u>}/</u>	<u>/8</u>	\mathbb{Z}_{S}	1		0	Ge	oTra	acke						D No:		_	_	_	
		C									-	[]	7	•	•		1		ED	FR	epoi	1	San	nplin	ıg Co	mpa	iny Lo	ıg Co	ode:			

Corporate Laboratory (1551) 707-468-0401 208 Mason Street, Ukiah CA 95482

Los Angeles (Service Center) 310-743-5711 1230 E 233rd St #205, Carson CA 90745

San Diego Laboratory (3055) 760-930-2555 2722 Loker Ave West, Ste A, Carlsbad CA 92010 North Bay Laboratory (2303) 707-769-3128 110 Liberty Street, Fletaluma CA 94952

Bay Area Laboratory (2728) 925-828-6226 262 Rickenbacker Circle, Livermore CA 94551

Central Valley Laboratory (2922) 916-686-5190 9090 Union Park Way #113, Elk Grove CA 95624

Chain of Custody Record

Reports and Invoices delivered by email as PDF files

Lab No	2142633	Pg	of	0
test.	TATE	To To	10	_

Report to		e to (ir dinerent)		↓		rojec	er min			 						<u>чпан</u>	/SIS I	tequ	est.						l'	T/	\T	ľ	Temp *(;
Company:	Contact:			Proje Ro	ect Na und 3	Me: ASR	Wate	r Ous	alify	Ì			İ			Ì		ł				Ţ	Г	Т			dard	T	Ukiah	
Todd Groundwater				<u> </u>		Base	oline]				ı	- 1				- 1	.	۔ ا		1		l	10-	-	ı	3Q	Į
Attn:	Email Address:			Proje	ct Nu	mber:					i								-1:	2 5	>	1			_		1/2	┵	Livermor	e
Nicole Grimm									_					1			ړ			5 5	= g					RUS day	3H: 25%		9-8	
· \	Phone:			PON	lumbe	r.				Ξ̈́				-	l		₩ W	- [,	، ا چ	8 B	g S		1			Ó		t	Elk Grove	•
510-747-6920										Sample ID			ı		-	-	- -		g l		<u> </u>				-2.	L	75%	4		
Physical Address:	•			Freq	uency												ig	- 1	<u>:</u> ا ج	Ž :	ğ	100	3		~	0		ŀ	Petaluma	
2490 Mariner Square Loop, Suite 215, Alar	meda ĈA 94501									Total Number of Containers per	BAL - TCEC GW 30hr Quantitray	_					Alkalinity, Total / Chloride / Fluoride / MBAS	age ,	Dissolved 200.7 metals - Ca Fe K Mg Na	Dissulved zou.o metals - Ag Al As B Ba Be Cd Cr Cu	Ē £	l ab Filtration for Dissolved Metals		1	┝	Oth	_	4		
Email address:			Conta	iner	Pre	servat	ion	Ma	trix	ţaj.	٥ تو	bidit					ğ	5	: :		s le	. }				0	•	H	Carlsbad	
ngrimm@toddgroundwater.com					П	Ш	Ш	Н		ဦ	N 30	Į.			ı	- 1	ច្ [3	Ē		[3	1 2	3 2	.		U		L		
Field Sampler - Printed Name and Signature:	_		ر ا ا			П				er of	ပ်	an	lorat				평 년	5 3		3 3	45.1	ļ \$	stio		L-		days	H	Los Angele	es.
M'all Grimm	7		實質量	ā	ខ	Н		wate		Ę,	퓔	용	erch	-			[≥]	as	g j			12	į	' 		oly		7		1
Sample Identification		led on	40mL vial Glass bottle Poly bottle U	Glass jar Other	8252 Cl		le l	Wastewater	Soil	ta N	Ä.	BAL - Color and Turbidity	-B	HAAS	MHL.	Sulfide	Alkalinity, Total / Chloride /	rrate	SSO		Dissolved 200.0 metals - mm	Į Į	Metals Digestion		ᄪ		Half G	<u>-</u>	Source Co	
	Time		4 10 g	_ဖ ြ		티		15	ŏΟ	Y Ĕ	1-1	"	-	井	- 	~ +	<u>₹</u>	Z 1	4	+	15	+=	2	+	25	히는	물	3		- Lucia
2105	15:32	8/18/51	×	Н	×	Щ	Ш,	`	4	41	x	_	4	4	4	4	4.	4	_	4	4	┸	\perp	Щ	Ц	┸	L)	<u> </u>		
3127			×	Ш			x	×		1		×		ı						1	1				П		Ш			ľ
		[×	П	П	П	x ;	П	Т,	1		П	x		T	T	T			T	T	T	T		×	1	П	T		
				H	H	H,	Η,	H	+	1	H	┪	\dashv	×	十	\dagger	+	╁	+	+	╆	$^{+}$	\dagger	+	H	+	┞┼	╁		
		l 1	+	╁	H	╁┼	H	H	┿	3	H	\dashv	\dashv	+	+	╅	+	┿	╬	+	╁	╁	╀	+	+	╀	╀	╀		_
			<u>* </u>	₩	<u>*</u> -	Н	₩,	\mathcal{H}	4	. 3	Н		\dashv	4	×	+	4	+	4	4	4	╀	4	\bot	4	╀	H	Ļ		
			×	Ш	Ц	×	Ш,	Ш		1	Ц		_			×	\perp								x					
			x		Ш		×,	┨╏		1		-					x	x i	x ;	: ا ،	x ،	×	×				×	Γ		
				П		П	П	П				T				2		T	T	1	\top					T	\sqcap	✝	.*	
-	" - ' - "		-		T	H	什	††				┪	_†	寸	十	╁	+	\dagger	+	\dagger	十	十	+	+	+	╁	╁	╁╴		_
	• "		++-	-		Н	╁╂	╁┼	1.7	1	 E	-	+	╬		+	+	╁	+	+	╀	╀	╀	٠.	4	+	╙	╀		<u></u>
	'	<u>.</u> .	$\bot \bot$	Щ	Ш		Ш	Ш			Ш	_	_	4		\perp	\perp		÷	1		1			╧	┖				<u></u>
<u> </u>			*		ŀ		Ш					1	4			, ,	*							Н				Γ		
Relinquished by		Received b	у				Tir	ne				Date		\perp		- 31 -					Add	ition	al Re	quire	men	ts	_ _	-	**	
D /		ET				1.0	ر د	5			8	18	26		0		A D					Stat-	Cyc	tem No						ヿ
W]	_	18					71				7/2	1/	37			V	Vrite	-On	ED.	Γ		- late	- ays	-	<u>" – </u>					
<u> </u>	_	- 130							=-}	1	2/2	/	7	\dashv	_	C	A			F	acilit	y Glo	bal II	No:					 _	
لال		<u> کالہ</u>				4	2	<u>د،</u>		<u> ~~</u>	s file	4	<u> </u>	1	0) G	eoT									4				⁻
									\ 				`				DFI	kep:	ort	SE	unpill	ig Co	ompa	ny Lóg	j Cot	je:	-			-
															_		_	_	_	_	_	_	_	_	_	_		_		

Corporate Laboratory (1551) 707-468-0401 208 Mason Street, Uklah CA 95482

Los Angeles (Service Center) 310-743-5711 1230 E 233rd St #205, Carson CA 90745

North Bay Laboratory (2303) 707-769-3128 110 Liberty Street, Petaluma CA 94952

Bay Area Laboratory (2728) 925-828-6226 262 Rickenbacker Circle, Livermore CA 94551

Chain of Custody Record

Reports and Invoices delivered by email as PDF files

www.alpha-labs.com	an Diago I aborate	ory (3055) 760-930-	2555			Cen	tral \	/alle	av La	abor	ator.	, 170	221 0	16_6	36-51	00						_	~ ,	11		1-	7-	2			6
, WATERS, SEDIMENTS, SOLIDS		ory (3065) 760-930- West, Ste A, Carlsba		9201	D	9	090	Unlo	n Pa	irk V	Vay #	113,	Elk	Grov	CA:	9562	4			Lab	No.	_		H	_	6	<u> </u>	<u>S</u>	_	Pg	6 of 6
Report to	Invoic	e to (if different)		Т	_	Pro	oject	Info	,		İ						Ana	lysis	Rec	uest		_			_	_			ΆΤ		Temp °C
Company:	Contact:				•	Name			_			Т		Т			T								Γ		1		ndaro		Ukiah
Todd Groundwater				5	loun	d 3 A B	SR W Jaseli		r Qu	ality	1			1		l					<u> </u>	_					1	10-	-day ``	ļ	3-0
Attn:	Email Address:			Pn	oject	Numi	er:				7	L		1		1					Į Š	Z		1			\vdash		J JSH:	_	Livermore 5 &
Nîcole Grimm				1							, .							,,		Dissolved 200.7 metals - Ca Fe K Mg Na	ğ	Dissolved 200.8 metals - Mn Mo Ni Pb Sb Se TI V Zn							y 25%		58
Phone:	Phone:			PC) Nur	nber:					_ □	1						MBA		g.	a Be	S						0)	١	Elk Grove
510-747-6920				1							Sample ID							9		₩	888	불		,		1	2	_	y 759	%	
Physical Address:	•			Fre	eupe	ncy:					7		r			ı	1	Į.	ĺ	쭚	¥	율		fetal	1	1		()		Petaluma
2490 Mariner Square Loop, Suite 215, Ala	meda CA 94501										of Containers per	2 2	į <u>.</u>	,				le / F	ate	ပ္မ	٠Ag	Ę	롸	Lab Filtration for Dissolved Metals				0	ther	\dashv	
Email address:	_		Con	taine		Prese	rvatio	ī	Ma	atrix	T :	į	1 1	5				Horic	Sul!	SEE	etals	뜵	[₹	ssol	1			()		Carlsbad
ngrimm@toddgroundwater.com			11		Н	$\ \cdot\ $		ŀ		П	Ş		2 1	2 g	<u>.</u>			ō	ĮŠ.	Ž.	8.	E S	Dissolved 245.1 CVAA - Hg	or O	5				_ day	,	
Field Sampler - Printed Name and Signature	:	_	اها	→		11	Н	, of of		11	ي ق	֡֟֝֟֝֟֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓					ם	ž	200	8	8	245	ţo ţ	Metals Digestion	,	H	Poly	y size		Los Angeles
Micola Grima ~	Y D			jai ja	202		. .	1	wate	Ш	. 2	Ę	<u> </u>	3 4	٦	5	- B	il.	te as	ş	olved	oke	olved	<u>s</u>	S D			ΤŢ	_	$\overline{}$	
Sample Identification	Samp Time	oled on Date	40mL vial Glass bottle	Glass	Other		Other	None	Wast	Soil	Other Total Number	O TOES O COMMISSION OF THE COM	BAL Color and Turbidity	NB - Perchlorate	₩¥	H	Sulfide	Alkalinity, Total / Chloride / Fluoride / MBAS	Nitrate as N / TDS / Sulfate	Diss	Diss	Diss	Diss	멸	Meta		250ml	500rr	1L Half G	bacti	Source Code
Hollister #2	134,15	8/18/21		×	,	,	П	1	×	П	1	. [×				Π								Γ	Ī	\prod		T	×	
[1,		''-',	×	\top	T	\Box	П	x :	×	П	1	1	٦,	,	\top	\top						Γ		Τ	T		П	T	\top	П	
			$\dagger \dagger$	x -	\dagger	$\dagger\dagger$	Н	ij,	╬	H	†	+	$^{+}$	Τ,		╁	+	H	H	一	H	\vdash		T	╁	十	t,	7	+	Ħ	
			╫	+	+	╁╁	+	Ť		Н	+	╁	+	+	╅╸	╁	╁	┝	_		┝	╁╌		+	╁	╁╴	H	+	+	Н	
			<u>`</u>	+	4	╁┼	×	 [<u>*</u> -	Н	+	4	+	+	<u> ×</u>	╁	╂-		┝	┢	┞	╀	┝	╁	╀	+	₩	+	+	H	
			×	\bot	,	11	Щ	4	<u> </u>	Н	3	4	4	+	┿-	×	\bot	┞-	-		┡	1	<u> </u>	╁-	╀	╀	₽	+	+	Н	_
			Щ	×	Ц	Щ	×	LI:	×	Ц		╙	\perp	1	┸	<u> </u>	×	lacksquare	<u> </u>			_	<u> </u>	┖	Ļ	╄	X	4	\bot	Џ	<u>, , , , , , , , , , , , , , , , , , , </u>
				×		Ш	Ш	x	x	Ц		╚						×	x	x	×	x	×	×	×	L	Ц		×	Ш	
-										Ll	ĺ		ł	1_				ľ								L	Ш			Ш	
			П		П	\prod					T												ı:								
		 			П	11		T	T	П	1	T			1	Τ								Π	Τ	Τ	П	Т	1	П	
 -	-	 	$\dashv \dagger$	┿	H	$\dagger\dagger$	\dagger	Ħ	╁	H	1	十	┪	+	†	T	╁	┢	-		T	\dagger	T	忊	t	T	Ħ	寸	\dagger	Ħ	
Relinquished by	<u> </u>	Received b	<u></u>		Ц.	╫		井	me	ш	╉		<u></u>	nte		╁╴		_	<u> </u>	<u> </u>			Add	l ition	al R	egulr	eme	nts		ш	
2		97				寸		60	5		十	<u>ہ</u>	1/2	12		T	$\overline{}$		DD		_			State	. C	tem i		_	_	_	
12		10			_	┰┼	Ta	D'	<u> </u>		+	<u>~</u>	1	Z		L	0	Wr	ite-(On E	DT		`	Juate	oys	leni i	····	_		_	
ļ		<u></u>			_	<u> </u>	7	$\underline{\sim}$			-14	2/	17.	4	7	{	_	CA				Fa	acility	/ Glo	bal I	D No	:				
<u> </u>		حانح					2	<u>ر</u>	13		+	8/	12	?/	<u> </u>	-	0	Ge	oTra	acke Opo						any Lo		ode):	_	
	ı					- 1					- 1					1															

WORK ORDER

Printed: 8/19/2021 10:31:02AM

21H2633

Alpha Analytical Laboratories Ukiah to North Bay Chain of Custody

Client: Todd Groundwater Project: Round 3 ASR Water	r Quality Baseline		DP_TODENG Round 3 ASR Wate	Bid: r Qualit PO #:	Round 3 ASR	Water Quality
Date Due: 09/02/21 Received By: James Bix Logged In By: Sean Fole			ived: 08/18/21 22:15 ged 08/19/21 10:02			
Samples Received at:	deg C	All containers	received and intact:	YES N	0	
Analysis	Department	Expires	Comments			
21H2633-01 3121 [Water] San NB Perchlorate EPA 314.0	npled 08/18/21 09:10 NB Wet Chem	09/15/21 23	:59	_Lab I	Filter -	
21H2633-02 12-5-23A20 [Wate NB Perchlorate EPA 314.0	r] Sampled 08/18/21 NB Wet Chem	09:55 09/15/21 23	:59	Lab-l	Filter	
21H2633-03 3357 [Water] San NB Perchlorate EPA 314.0	npled 08/18/21 10:30 NB Wet Chem	09/15/21 23	:59	<u>Jab I</u>	ilter	
11H2633-04 3123 [Water] San NB Perchlorate EPA 314.0	npled 08/18/21 11:50 NB Wet Chem	09/15/21 23	:59	Lah-I	Hiter	
1 H2633-05 3127 [Water] Sam NB Perchlorate EPA 314.0	npled 08/18/21 12:25 NB Wet Chem	09/15/21 23:	:59	Lab-F	itter	
1H2633-06 Hollister #2 [Wate NB Perchlorate EPA 314.0	r] Sampled 08/18/21 NB Wet Chem	13:15 09/15/21 23:	59	Lab F	ilter	<u></u>
Containers Supplied: 250mL Poly Unpres (C)						
250mL Poly Unpres (C)						
250mL Poly Unpres (C)						
250mL Poly Unpres (C)						
250mL Poly Unpres (C) 250mL Poly Unpres (C)						:
Relinquished By	8/19/2 Date	Z/Time	Received By	\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-	7 20 Date	Time
It Dr.	* 220h1	12:30	Medical by:	< /	8(20)21	Time
Relinquished By	Date	Time	Received By	7	Date	Time

Alpha Analytical Laboratories, Inc.

email: clientservices@alpha-labs.com

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

10 September 2021

Todd Groundwater

Attn: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Alameda, CA 94501

RE: Round 3 ASR Water Quality Baseline

Work Order: 21H2826

Enclosed are the results of analyses for samples received by the laboratory on 08/19/21 22:00. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Alisabeth J. Wilcox For David S. Pingatore

Project Manager

Alpha Analytical Laboratories, Inc.

email: clientservices@alpha-labs.com

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501

Project Number: [none]

Reported: 09/10/21 16:29

Bay Area: 262 Rickenbacker Circle | Livermore, CA 94551 | T: 925-828-6226 | F: 925-828-6309 | ELAP# 2728 Central Valley: 9090 Union Park Way Suite 113 | Elk Grove, CA 95624 | T: 916-686-5190 | F: 916-686-5192 | ELAP# 2922

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
13-5-10L1	21H2826-01	Water	08/19/21 08:30	08/19/21 22:00

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215 Project: Round 3 ASR Water Quality Baseline

Reported: Alameda, CA 94501 09/10/21 16:29 Project Number: [none]

	Result	Reporting Limit	Dilution	Batch	Prepared	Analyzed	ELAP#	Method	Note
13-5-10L1 (21H2826-01)		Sample Type:	Water		Sampleo	l: 08/19/21 08:3	80		
Metals (Dissolved) by EPA 200 Series Methods									FILT
Mercury, dissolved	ND ug/L	0.20	1	AI13118	09/02/21 08:47	09/03/21 09:2	6 1551 E	PA 245.1	
Calcium, dissolved	81 mg/L	1.0	1	AH14872	09/01/21 13:35	09/03/21 17:4	9 1551 E	PA 200.7	
Iron, dissolved	ND mg/L	0.10	1	AH14872	09/01/21 13:35	09/03/21 17:4	9 1551 E	PA 200.7	
Magnesium, dissolved	98 mg/L	1.0	1	AH14872	09/01/21 13:35	09/03/21 17:4	9 1551 E	PA 200.7	
Potassium, dissolved	3.2 mg/L	1.0	1	AH14872	09/01/21 13:35	09/03/21 17:4	9 1551 E	PA 200.7	
Sodium, dissolved	160 mg/L	1.0	1	AH14872	09/01/21 13:35	09/03/21 17:4	9 1551 E	PA 200.7	
Metals (Dissolved) by EPA Method 200.8 ICP/MS									FILT
Aluminum, dissolved	ND ug/L	10	1	AH14197	08/24/21 17:10	09/03/21 14:4	7 1551 E	PA 200.8	
Antimony, dissolved	ND ug/L	0.50	1	AH14197	08/24/21 17:10	08/26/21 04:4	7 1551 E	PA 200.8	
Arsenic, dissolved	1.7 ug/L	0.50	1	AH14197	08/24/21 17:10	08/26/21 04:4	7 1551 E	PA 200.8	
Barium, dissolved	30 ug/L	0.50	1	AH14197	08/24/21 17:10	08/26/21 04:4	7 1551 E	PA 200.8	
Beryllium, dissolved	ND ug/L	0.10	1	AH14197	08/24/21 17:10	08/26/21 04:4	7 1551 E	PA 200.8	
Boron, dissolved	910 ug/L	50	1	AH14197	08/24/21 17:10	08/26/21 04:4	7 1551 E	PA 200.8	
Cadmium, dissolved	ND ug/L	0.10	1	AH14197	08/24/21 17:10	08/26/21 04:4	7 1551 E	PA 200.8	
Chromium, dissolved	20 ug/L	0.50	1	AH14197	08/24/21 17:10	08/26/21 04:4	7 1551 E	PA 200.8	
Copper, dissolved	7.5 ug/L	0.50	1	AH14197	08/24/21 17:10	08/26/21 04:4	7 1551 E	PA 200.8	
Lead, dissolved	ND ug/L	0.25	1	AH14197	08/24/21 17:10	08/26/21 04:4	7 1551 E	PA 200.8	
Manganese, dissolved	ND ug/L	5.0	1	AH14197	08/24/21 17:10	08/26/21 04:4	7 1551 E	PA 200.8	
Molybdenum, dissolved	4.1 ug/L	0.25	1	AH14197	08/24/21 17:10	08/26/21 04:4	7 1551 E	PA 200.8	
Nickel, dissolved	3.0 ug/L	0.50	1	AH14197	08/24/21 17:10	08/26/21 04:4	7 1551 E	PA 200.8	
Selenium, dissolved	3.6 ug/L	2.0	1	AH14197	08/24/21 17:10	08/26/21 04:4	7 1551 E	PA 200.8	
Silver, dissolved	ND ug/L	0.10	1	AH14197	08/24/21 17:10	09/03/21 14:4	7 1551 E	PA 200.8	
Thallium, dissolved	ND ug/L	0.10	1	AH14197	08/24/21 17:10	08/26/21 04:4	7 1551 E	PA 200.8	
Vanadium, dissolved	2.1 ug/L	1.0	1	AH14197	08/24/21 17:10	08/26/21 04:4	7 1551 E	PA 200.8	
Zinc, dissolved	33 ug/L	5.0	1	AH14197	08/24/21 17:10	08/26/21 04:4	7 1551 E	PA 200.8	

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501 Project Number: [none]

Reported: 09/10/21 16:29

	Result	Reporting Limit	Dilution	Batch	Prepared	Analyzed	ELAP#	Method	Note
13-5-10L1 (21H2826-01)		Sample Type:	Water		Sampled	l: 08/19/21 08:3	0		
Conventional Chemistry Parameters by APHA/E	PA Methods								
Color	ND CU	5.0	1	AH14316	08/19/21 16:25	08/19/21 16:25	2728	SM2120B	
MBAS, calculated as LAS, mw 340	ND mg/L	0.050	1	AH14260	08/20/21 14:30	08/20/21 16:30	1551	SM5540C	
Perchlorate	ND ug/L	2.0	1	AH14654	08/26/21 08:00	08/26/21 19:13	2303	EPA 314.0	
Sulfide	ND mg/L	0.10	1	AH14407	08/24/21 06:00	08/24/21 06:00	1551	SM4500-S2 D	
Total Dissolved Solids	1100 mg/L	10	1	AH14335	08/23/21 04:40	08/31/21 08:13	1551	SM2540C	
Turbidity	0.15 NTU	0.10	1	AH14318	08/19/21 16:42	08/19/21 16:42	2728	SM2130B	
Bicarbonate Alkalinity as CaCO3	400 mg/L	5.0	1	AH14790	08/30/21 08:00	08/30/21 15:48	1551	SM2320B	
Carbonate Alkalinity as CaCO3	ND mg/L	5.0	1	AH14790	08/30/21 08:00	08/30/21 15:48	1551	SM2320B	
Hydroxide Alkalinity as CaCO3	ND mg/L	5.0	1	AH14790	08/30/21 08:00	08/30/21 15:48	1551	SM2320B	
Total Alkalinity as CaCO3	400 mg/L	5.0	1	AH14790	08/30/21 08:00	08/30/21 15:48	1551	SM2320B	
Hardness, Total	603 mg/L	5	1	AH14872	09/01/21 13:35	09/03/21 17:49	1551	SM2340B	
Anions by EPA Method 300.0									
Chloride	130 mg/L	10	20	AH14265	08/20/21 20:49	08/20/21 20:49	1551	EPA 300.0	
Fluoride	0.37 mg/L	0.10	1	AH14265	08/20/21 20:32	08/20/21 20:32	1551	EPA 300.0	
Nitrate as N	6.8 mg/L	0.20	1	AH14265	08/20/21 20:32	08/20/21 20:32	1551	EPA 300.0	
Sulfate as SO4	280 mg/L	10	20	AH14265	08/20/21 20:49	08/20/21 20:49	1551	EPA 300.0	
Microbiological Parameters by APHA Standard M	1ethods								
Total Coliforms	ND MPN/100m	L 1.0	1	AH14326	08/19/21 13:22	08/20/21 13:46	2728	SM9223B	
E. Coli	ND MPN/100m	L 1.0	1	AH14326	08/19/21 13:22	08/20/21 13:46	2728	SM9223B	
Volatile Organic Compounds by EPA Method 524	.2								
Bromodichloromethane	ND ug/L	1.00	1	AH14496	08/25/21 15:00	08/26/21 09:29	1551	EPA 524.2	
Bromoform	ND ug/L	1.00	1	AH14496	08/25/21 15:00	08/26/21 09:29	1551	EPA 524.2	
Chloroform	3.09 ug/L	1.00	1	AH14496	08/25/21 15:00	08/26/21 09:29	1551	EPA 524.2	
Dibromochloromethane	ND ug/L	1.00	1	AH14496	08/25/21 15:00	08/26/21 09:29	1551	EPA 524.2	
Trihalomethanes (total)	3.09 ug/L	1.00	1	AH14496	08/25/21 15:00	08/26/21 09:29	1551	EPA 524.2	
Surrogate: Bromofluorobenzene	94.0 %	70-130		AH14496	08/25/21 15:00	08/26/21 09:29	1551	EPA 524.2	
Surrogate: Dibromofluoromethane	87.0 %	70-130		AH14496	08/25/21 15:00	08/26/21 09:29	1551	EPA 524.2	
Surrogate: Toluene-d8	98.2 %	70-130		AH14496	08/25/21 15:00	08/26/21 09:29	1551	EPA 524.2	

Reported:

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215 Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501 09/10/21 16:29 Project Number: [none]

	Result	Reporting Limit Di	ilution	Batch	Prepared	Analyzed	ELAP#	Method	Note
13-5-10L1 (21H2826-01)		Sample Type: Wa	ater		Sampled	: 08/19/21 08:3	0		
Haloacetic Acids by EPA Method 552.2									
Monobromoacetic Acid	ND ug/L	1.0	1	AH14766	08/31/21 07:00	09/02/21 11:30	1551	EPA 552.2	
Monochloroacetic Acid	ND ug/L	2.0	1	AH14766	08/31/21 07:00	09/02/21 11:30	1551	EPA 552.2	
Dibromoacetic Acid	ND ug/L	1.0	1	AH14766	08/31/21 07:00	09/02/21 11:30	1551	EPA 552.2	
Dichloroacetic Acid	ND ug/L	1.0	1	AH14766	08/31/21 07:00	09/02/21 11:30	1551	EPA 552.2	
Trichloroacetic Acid	ND ug/L	1.0	1	AH14766	08/31/21 07:00	09/02/21 11:30	1551	EPA 552.2	
Total Haloacetic Acids (HAA5)	ND ug/L	1.0	1	AH14766	08/31/21 07:00	09/02/21 11:30	1551	EPA 552.2	
Surrogate: 2,3-Dibromopropionic Acid	124 %	70-130		AH14766	08/31/21 07:00	09/02/21 11:30	1551	EPA 552.2	
Surrogate: 2-Bromopropionic Acid	130 %	70-130		AH14766	08/31/21 07:00	09/02/21 11:30	1551	EPA 552.2	

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501

Project Number: [none]

Reported: 09/10/21 16:29

Metals (Dissolved) by EPA 200 Series Methods - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AH14872 - Metals Digest (D)										
Blank (AH14872-BLK1)				Prepared: (09/01/21 A	nalyzed: 09	/03/21			
Calcium, dissolved	ND	1.0	mg/L	•						
Iron, dissolved	ND	0.10	mg/L							
Magnesium, dissolved	ND	1.0	mg/L							
Potassium, dissolved	ND	1.0	mg/L							
Sodium, dissolved	ND	1.0	mg/L							
LCS (AH14872-BS1)				Prepared: (09/01/21 A	nalyzed: 09	/03/21			
Calcium, dissolved	8.37	1.0	mg/L	8.00		105	85-115			
Iron, dissolved	1.90	0.10	mg/L	2.00		95.1	85-115			
Magnesium, dissolved	8.66	1.0	mg/L	8.00		108	85-115			
Potassium, dissolved	8.06	1.0	mg/L	8.00		101	85-115			
Sodium, dissolved	8.12	1.0	mg/L	8.00		101	85-115			
Duplicate (AH14872-DUP1)	Soi	urce: 21H345	2-01	Prepared: (09/01/21 A	nalyzed: 09	/03/21			
Calcium, dissolved	48.0	1.0	mg/L		47.3			1.38	20	
ron, dissolved	ND	0.10	mg/L		ND				20	
Magnesium, dissolved	28.7	1.0	mg/L		28.2			1.74	20	
Potassium, dissolved	4.07	1.0	mg/L		4.04			0.855	20	
Sodium, dissolved	23.1	1.0	mg/L		22.8			1.01	20	
Matrix Spike (AH14872-MS1)	Soi	urce: 21H345	2-01	Prepared: (09/01/21 A	nalyzed: 09	/03/21			
Calcium, dissolved	56.4	1.0	mg/L	8.00	47.3	114	70-130			
ron, dissolved	1.91	0.10	mg/L	2.00	ND	95.5	70-130			
Magnesium, dissolved	37.9	1.0	mg/L	8.00	28.2	122	70-130			
Potassium, dissolved	12.6	1.0	mg/L	8.00	4.04	107	70-130			
Sodium, dissolved	30.6	1.0	mg/L	8.00	22.8	96.6	70-130			
Matrix Spike (AH14872-MS2)	Soi	urce: 21H337	4-01	Prepared: (09/01/21 A	nalyzed: 09	/03/21			
Calcium, dissolved	21.6	1.0	mg/L	8.00	12.9	108	70-130			
fron, dissolved	1.95	0.10	mg/L	2.00	ND	97.3	70-130			
Magnesium, dissolved	17.3	1.0	mg/L	8.00	8.10	115	70-130			
Potassium, dissolved	9.84	1.0	mg/L	8.00	1.75	101	70-130			
Sodium, dissolved	27.1	1.0	mg/L	8.00	19.7	92.7	70-130			

Reported:

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215 Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501 09/10/21 16:29 Project Number: [none]

Metals (Dissolved) by EPA 200 Series Methods - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AH14872 - Metals Digest (D)										
Matrix Spike Dup (AH14872-MSD1)	Sou	urce: 21H345	2-01	Prepared: (09/01/21 A	nalyzed: 09	/03/21			
Calcium, dissolved	56.6	1.0	mg/L	8.00	47.3	117	70-130	0.409	20	
Iron, dissolved	1.87	0.10	mg/L	2.00	ND	93.6	70-130	1.95	20	
Magnesium, dissolved	37.4	1.0	mg/L	8.00	28.2	115	70-130	1.46	20	
Potassium, dissolved	12.4	1.0	mg/L	8.00	4.04	105	70-130	1.10	20	
Sodium, dissolved	30.8	1.0	mg/L	8.00	22.8	99.2	70-130	0.666	20	
Batch AI13118 - EPA 245.1 Hg Water										
Blank (AI13118-BLK1)				Prepared: (09/02/21 A	nalyzed: 09	/03/21			
Mercury, dissolved	ND	0.20	ug/L							
LCS (AI13118-BS1)				Prepared: (09/02/21 A	nalyzed: 09	/03/21			
Mercury, dissolved	2.56	0.20	ug/L	2.50		102	85-115			
Duplicate (AI13118-DUP1)	Soi	urce: 21H263	3-02	Prepared: (09/02/21 A	nalyzed: 09	/03/21			
Mercury, dissolved	ND	0.20	ug/L		ND				20	
Matrix Spike (AI13118-MS1)	Soi	urce: 21H263	3-02	Prepared: (09/02/21 A	nalyzed: 09	/03/21			
Mercury, dissolved	2.52	0.20	ug/L	2.50	ND	101	70-130			
Matrix Spike Dup (AI13118-MSD1)	Soi	urce: 21H263	3-02	Prepared: (09/02/21 A	nalyzed: 09	/03/21			
Mercury, dissolved	2.51	0.20	ug/L	2.50	ND	100	70-130	0.437	20	

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501 Project Number: [none]

Reported: 09/10/21 16:29

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AH14197 - EPA 200.8 (D)										
Blank (AH14197-BLK1)				Prepared: (08/24/21 Aı	nalyzed: 08	/27/21			
Aluminum, dissolved	ND	10	ug/L							
Antimony, dissolved	ND	0.50	ug/L							
Arsenic, dissolved	ND	0.50	ug/L							
Barium, dissolved	ND	0.50	ug/L							
Beryllium, dissolved	ND	0.10	ug/L							
Boron, dissolved	ND	50	ug/L							
Cadmium, dissolved	ND	0.10	ug/L							
Chromium, dissolved	ND	0.50	ug/L							
Copper, dissolved	0.591	0.50	ug/L							
Lead, dissolved	ND	0.25	ug/L							
Manganese, dissolved	ND	5.0	ug/L							
Molybdenum, dissolved	ND	0.25	ug/L							
Nickel, dissolved	ND	0.50	ug/L							
Selenium, dissolved	ND	2.0	ug/L							
Silver, dissolved	ND	0.10	ug/L							
Γhallium, dissolved	ND	0.10	ug/L							
Vanadium, dissolved	ND	1.0	ug/L							
Zinc, dissolved	ND	5.0	ug/L							
LCS (AH14197-BS1)				Prepared: ()8/24/21 Aı	nalyzed: 08	/27/21			
Aluminum, dissolved	554	10	ug/L	520		107	85-115			
Antimony, dissolved	20.8	0.50	ug/L	20.0		104	85-115			
Arsenic, dissolved	21.1	0.50	ug/L	20.0		105	85-115			
Barium, dissolved	20.3	0.50	ug/L	20.0		102	85-115			
Beryllium, dissolved	20.7	0.10	ug/L	20.0		104	85-115			
Boron, dissolved	106	50	ug/L	100		106	85-115			
Cadmium, dissolved	20.3	0.10	ug/L	20.0		101	85-115			
Chromium, dissolved	20.3	0.50	ug/L	20.0		101	85-115			
Copper, dissolved	22.3	0.50	ug/L	20.0		112	85-115			
Lead, dissolved	20.5	0.25	ug/L	20.0		103	85-115			
Manganese, dissolved	20.5	5.0	ug/L	20.0		102	85-115			
Molybdenum, dissolved	21.3	0.25	ug/L	20.0		106	85-115			
Nickel, dissolved	20.1	0.50	ug/L	20.0		100	85-115			
Selenium, dissolved	21.6	2.0	ug/L	20.0		108	85-115			
Silver, dissolved	18.0	0.10	ug/L	20.0		90.1	85-115			

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501

Project Number: [none]

Reported: 09/10/21 16:29

Analyte(s)	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
• ` ` `	ROSuit	Limit	Omo	Level	Rosuit	/UILLC	Limits	IG D	Limit	8
Batch AH14197 - EPA 200.8 (D)										
LCS (AH14197-BS1)				Prepared: 0	08/24/21 At	nalyzed: 08	/26/21			
Thallium, dissolved	20.4	0.10	ug/L	20.0		102	85-115			
Vanadium, dissolved	20.6	1.0	ug/L	20.0		103	85-115			
Zinc, dissolved	103	5.0	ug/L	100		103	85-115			
Duplicate (AH14197-DUP1)	Sour	ce: 21H263	3-01	Prepared: 0	08/24/21 At	nalyzed: 08	/27/21			
Aluminum, dissolved	ND	100	ug/L		ND				20	
Antimony, dissolved	ND	0.50	ug/L		ND				20	
Arsenic, dissolved	5.05	0.50	ug/L		4.88			3.43	20	
Barium, dissolved	41.3	0.50	ug/L		40.5			2.00	20	
Beryllium, dissolved	ND	0.10	ug/L		ND				20	
Boron, dissolved	1930	50	ug/L		1910			0.965	20	
Cadmium, dissolved	ND	0.10	ug/L		ND				20	
Chromium, dissolved	11.6	0.50	ug/L		11.5			1.13	20	
Copper, dissolved	24.4	0.50	ug/L		24.2			0.967	20	
Lead, dissolved	0.340	0.25	ug/L		0.296			14.0	20	
Manganese, dissolved	ND	5.0	ug/L		ND				20	
Molybdenum, dissolved	5.45	0.25	ug/L		5.36			1.49	20	
Nickel, dissolved	1.19	0.50	ug/L		1.20			0.848	20	
Selenium, dissolved	5.75	2.0	ug/L		5.43			5.61	20	
Silver, dissolved	ND	0.10	ug/L		0.218			200	20	
Γhallium, dissolved	ND	0.10	ug/L		ND				20	
Vanadium, dissolved	6.40	1.0	ug/L		6.47			1.08	20	
Zinc, dissolved	13.8	5.0	ug/L		13.4			2.85	20	
MRL Check (AH14197-MRL1)				Prepared: 0	08/24/21 At	nalyzed: 08	/27/21			
Aluminum, dissolved	12.2	10	ug/L	8.00		153	0-200			
Silver, dissolved	0.0833	0.10	ug/L	0.0800		104	0-200			
Thallium, dissolved	0.0721	0.10	ug/L	0.0800		90.1	0-200			
Vanadium, dissolved	0.878	1.0	ug/L	0.800		110	0-200			

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501

Project Number: [none]

Reported: 09/10/21 16:29

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AH14197 - EPA 200.8 (D)										
Matrix Spike (AH14197-MS1)	Sour	ce: 21H263	3-05	Prepared: (08/24/21 A	nalyzed: 08	/27/21			
Aluminum, dissolved	616	10	ug/L	520	ND	117	70-130			QM-01
Antimony, dissolved	19.8	0.50	ug/L	20.0	ND	99.1	70-130			
Arsenic, dissolved	27.4	0.50	ug/L	20.0	7.71	98.7	70-130			
Barium, dissolved	82.4	0.50	ug/L	20.0	65.2	86.1	70-130			
Beryllium, dissolved	18.3	0.10	ug/L	20.0	ND	91.4	70-130			
Boron, dissolved	2380	50	ug/L	100	2470	NR	70-130			QM-4X
Cadmium, dissolved	18.5	0.10	ug/L	20.0	ND	92.6	70-130			
Chromium, dissolved	19.5	0.50	ug/L	20.0	ND	97.3	70-130			
Copper, dissolved	23.0	0.50	ug/L	20.0	3.01	100	70-130			
Lead, dissolved	16.2	0.25	ug/L	20.0	ND	80.8	70-130			
Manganese, dissolved	441	5.0	ug/L	20.0	429	63.4	70-130			QM-0
Molybdenum, dissolved	29.8	0.25	ug/L	20.0	8.61	106	70-130			
Nickel, dissolved	24.8	0.50	ug/L	20.0	7.15	88.4	70-130			
Selenium, dissolved	19.6	2.0	ug/L	20.0	ND	90.8	70-130			
Silver, dissolved	17.2	0.10	ug/L	20.0	ND	86.1	70-130			QM-0
Γhallium, dissolved	16.0	0.10	ug/L	20.0	ND	80.2	70-130			
Vanadium, dissolved	24.9	1.0	ug/L	20.0	5.33	97.9	70-130			
Zinc, dissolved	98.0	5.0	ug/L	100	7.93	90.0	70-130			
Matrix Spike Dup (AH14197-MSD1)	Sour	ce: 21H263	3-05	Prepared: (08/24/21 A	nalyzed: 08	/27/21			
Aluminum, dissolved	621	10	ug/L	520	ND	118	70-130	0.734	20	QM-0
Antimony, dissolved	19.7	0.50	ug/L	20.0	ND	98.3	70-130	0.783	20	
Arsenic, dissolved	27.3	0.50	ug/L	20.0	7.71	98.0	70-130	0.533	20	
Barium, dissolved	82.5	0.50	ug/L	20.0	65.2	86.3	70-130	0.0474	20	
Beryllium, dissolved	18.3	0.10	ug/L	20.0	ND	91.7	70-130	0.349	20	
Boron, dissolved	2330	50	ug/L	100	2470	NR	70-130	2.06	20	QM-42
Cadmium, dissolved	18.7	0.10	ug/L	20.0	ND	93.3	70-130	0.746	20	
Chromium, dissolved	19.8	0.50	ug/L	20.0	ND	99.0	70-130	1.72	20	
Copper, dissolved	23.1	0.50	ug/L	20.0	3.01	100	70-130	0.257	20	
Lead, dissolved	15.9	0.25	ug/L	20.0	ND	79.6	70-130	1.41	20	
Manganese, dissolved	448	5.0	ug/L	20.0	429	99.2	70-130	1.61	20	
Molybdenum, dissolved	29.8	0.25	ug/L	20.0	8.61	106	70-130	0.125	20	
Nickel, dissolved	25.3	0.50	ug/L	20.0	7.15	90.7	70-130	1.81	20	
Selenium, dissolved	19.8	2.0	ug/L	20.0	ND	91.7	70-130	0.900	20	
Silver, dissolved	17.6	0.10	ug/L	20.0	ND	88.1	70-130	2.40	20	QM-0

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501 Project Number: [none] Reported:

09/10/21 16:29

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AH14197 - EPA 200.8 (D)										
Matrix Spike Dup (AH14197-MSD1)	Source	e: 21H263	3-05	Prepared: (08/24/21 A	nalyzed: 08	/26/21			
Thallium, dissolved	15.6	0.10	ug/L	20.0	ND	78.2	70-130	2.57	20	
mamum, dissorved			U	20.0	TID					
Vanadium, dissolved	25.3	1.0	ug/L	20.0	5.33	99.8	70-130	1.46	20	

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215 Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501 09/10/21 16:29 Project Number: [none]

Conventional Chemistry Parameters by APHA/EPA Methods - Quality Control

		Reporting		Spike	Spike Source %RI				EC RPD		
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag	
Batch AH14260 - General Preparation											
Blank (AH14260-BLK1)				Prepared &	Analyzed:	08/20/21					
MBAS, calculated as LAS, mw 340	ND	0.050	mg/L								
LCS (AH14260-BS1)				Prepared &	Analyzed:	08/20/21					
MBAS, calculated as LAS, mw 340	0.201	0.050	mg/L	0.200		101	80-120				
Matrix Spike (AH14260-MS1)	Soui	rce: 21H263	3-01	Prepared &	analyzed:						
MBAS, calculated as LAS, mw 340	0.188	0.050	mg/L	0.200	ND	94.0	80-120				
Matrix Spike Dup (AH14260-MSD1)	Soui	rce: 21H263	3-01	Prepared &	k Analyzed:	08/20/21					
MBAS, calculated as LAS, mw 340	0.201	0.050	mg/L	0.200	ND	101	80-120	6.84	20		
Batch AH14318 - General Prep (BAL)											
Duplicate (AH14318-DUP1)	Soui	rce: 21H282	6-01	Prepared &	Analyzed:	08/19/21					
Turbidity	0.150	0.10	NTU		0.150			0.00	15		
Batch AH14335 - General Preparation											
Blank (AH14335-BLK1)				Prepared: (08/23/21 A	nalyzed: 08	/31/21				
Total Dissolved Solids	ND	10	mg/L								
Duplicate (AH14335-DUP1)	Soui	rce: 21H221	3-01	Prepared: (08/23/21 A	nalyzed: 08	/31/21				
Total Dissolved Solids	138	10	mg/L		138			0.00	15		
Duplicate (AH14335-DUP2)	Sour	rce: 21H226	2-07	Prepared: (08/23/21 A	nalyzed: 08	/31/21				
Total Dissolved Solids	200	10	mg/L		198			1.01	15		

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215 Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501 09/10/21 16:29 Project Number: [none]

Conventional Chemistry Parameters by APHA/EPA Methods - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AH14407 - General Preparation										
Blank (AH14407-BLK1)				Prepared &	Analyzed:	08/24/21				
Sulfide	ND	0.10	mg/L							
LCS (AH14407-BS1)				Prepared &	z Analyzed:	08/24/21				
Sulfide	0.230	0.10	mg/L	0.222		104	85-115			
Duplicate (AH14407-DUP1)	Sou	rce: 21H263	3-01	Prepared &	Analyzed:	08/24/21				
Sulfide	ND	0.10	mg/L		ND				15	
Matrix Spike (AH14407-MS1)	Sou	rce: 21H263	3-01	Prepared &	Analyzed:	08/24/21				
Sulfide	0.0910	0.10	mg/L	0.222	ND	41.0	80-120			QM-05
Matrix Spike Dup (AH14407-MSD1)	Sou	rce: 21H263	3-01	Prepared &	Analyzed:	08/24/21				
Sulfide	0.0900	0.10	mg/L	0.222	ND	40.5	80-120	1.10	15	QM-05
Batch AH14654 - NB General Prep										
Blank (AH14654-BLK1)				Prepared &	Analyzed:	08/26/21				
Perchlorate	ND	2.0	ug/L							
LCS (AH14654-BS1)				Prepared &	Analyzed:	08/26/21				
Perchlorate	9.55	2.0	ug/L	10.0		95.5	85-115			
Duplicate (AH14654-DUP1)	Sour	rce: 21H303	2-01	Prepared &	a Analyzed:	08/26/21				
Perchlorate	ND	2.0	ug/L	-	ND				15	
Matrix Spike (AH14654-MS1)	Sou	rce: 21H303	2-07	Prepared &	Analyzed:	08/26/21				
Perchlorate	9.73	2.0	ug/L	10.0	ND	97.3	70-130			

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215 Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501 09/10/21 16:29 Project Number: [none]

Conventional Chemistry Parameters by APHA/EPA Methods - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Fla
Batch AH14654 - NB General Prep										
Matrix Spike Dup (AH14654-MSD1)	Sou	rce: 21H303	2-07	Prepared &	Analyzed:	08/26/21				
Perchlorate	9.60	2.0	ug/L	10.0	ND	96.0	70-130	1.35	15	
Batch AH14790 - General Preparation										
Blank (AH14790-BLK1)				Prepared &	Analyzed:	08/30/21				
Bicarbonate Alkalinity as CaCO3	ND	5.0	mg/L							
Carbonate Alkalinity as CaCO3	ND	5.0	mg/L							
Total Alkalinity as CaCO3	ND	5.0	mg/L							
Hydroxide Alkalinity as CaCO3	ND	5.0	mg/L							
LCS (AH14790-BS1)				Prepared &	: Analyzed:	08/30/21				
Total Alkalinity as CaCO3	75.0	5.0	mg/L	80.0		93.8	70-130			
Duplicate (AH14790-DUP1)	Sou	rce: 21H307	2-03	Prepared &	: Analyzed:	08/30/21				
Hydroxide Alkalinity as CaCO3	ND	5.0	mg/L		ND				20	
Carbonate Alkalinity as CaCO3	ND	5.0	mg/L		ND				20	
Bicarbonate Alkalinity as CaCO3	111	5.0	mg/L		110			0.905	20	
Total Alkalinity as CaCO3	111	5.0	mg/L		110			0.905	20	
Batch AH14872 - Metals Digest (D)										
Blank (AH14872-BLK1)				Prepared: (09/01/21 A	nalyzed: 09	/03/21			
Hardness, Total	ND	5	mg/L							
Duplicate (AH14872-DUP1)	Sou	rce: 21H345	2-01	Prepared: (09/01/21 A	nalyzed: 09	/03/21			
Hardness, Total	238	5	mg/L		234			1.56	20	

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501 Project Number: [none]

Reported: 09/10/21 16:29

Anions b	v EPA Method	300.0 - O	Duality Control
----------	--------------	-----------	------------------------

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AH14265 - EPA 300.0										
Blank (AH14265-BLK1)				Prepared &	Analyzed:	08/20/21				
Sulfate as SO4	ND	0.50	mg/L							
Nitrate as N	ND	0.20	mg/L							
Fluoride	ND	0.10	mg/L							
Chloride	ND	0.50	mg/L							
LCS (AH14265-BS1)				Prepared &	Analyzed:	08/20/21				
Sulfate as SO4	23.2	0.50	mg/L	22.2		105	90-110			
Nitrate as N	5.63	0.20	mg/L	5.56		101	90-110			
Fluoride	5.81	0.10	mg/L	5.56		105	90-110			
Chloride	11.4	0.50	mg/L	11.1		103	90-110			
Duplicate (AH14265-DUP1)	Sou	rce: 21H272	3-01	Prepared &	Analyzed:	08/20/21				
Fluoride	0.115	0.10	mg/L		0.102			12.0	20	
Sulfate as SO4	22.6	0.50	mg/L		22.6			0.115	20	
Chloride	31.8	5.0	mg/L		32.0			0.564	20	
Nitrate as N	ND	0.20	mg/L		ND			1.23	20	
Matrix Spike (AH14265-MS1)	Sou	rce: 21H272	3-01	Prepared &	Analyzed:	08/20/21				
Nitrate as N	5.51	2.0	mg/L	5.56	ND	99.2	80-120			
Fluoride	4.93	1.0	mg/L	5.56	ND	88.8	80-120			
Chloride	42.4	5.0	mg/L	11.1	32.0	93.4	80-120			
Sulfate as SO4	41.1	5.0	mg/L	22.2	22.6	83.3	80-120			
Matrix Spike (AH14265-MS2)	Sou	rce: 21H281	5-01	Prepared &	z Analyzed:	08/20/21				
Sulfate as SO4	25.7	5.0	mg/L	22.2	6.41	86.9	80-120			
Chloride	12.7	5.0	mg/L	11.1	ND	90.0	80-120			
Nitrate as N	5.81	2.0	mg/L	5.56	ND	105	80-120			
Fluoride	5.08	1.0	mg/L	5.56	ND	91.4	80-120			

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501 Project Number: [none]

Reported: 09/10/21 16:29

Anions by EPA Method 300.0 - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
eatch AH14265 - EPA 300.0										
Matrix Spike Dup (AH14265-MSD1)	Sour	ce: 21H272	3-01	Prepared: (08/20/21 At	nalyzed: 08	/23/21			
Chloride	42.4	5.0	mg/L	11.1	32.0	93.4	80-120	0.00	20	
	42.4 41.2	5.0 5.0	mg/L mg/L	11.1 22.2	32.0 22.6	93.4 83.8	80-120 80-120	0.00 0.297	20 20	
Chloride Sulfate as SO4 Fluoride			_							

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501

Project Number: [none]

Reported: 09/10/21 16:29

Volatile Organic Compounds by EPA Method 524.2 - Quality Control

Analyte(s)	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
• ` ` `	Kesuit	Lillit	Ullits	Level	Kesuit	70KEC	Lillits	KrD	Lillit	Tiag
Batch AH14496 - VOAs in Water GCMS										
Blank (AH14496-BLK1)				Prepared &	Analyzed:	08/25/21				
Bromodichloromethane	ND	1.00	ug/L							
Bromoform	ND	1.00	ug/L							
Chloroform	ND	1.00	ug/L							
Dibromochloromethane	ND	1.00	ug/L							
Trihalomethanes (total)	ND	1.00	ug/L							
Surrogate: Bromofluorobenzene	25.4		ug/L	25.0		102	70-130			
Surrogate: Dibromofluoromethane	24.6		ug/L	25.0		98.5	70-130			
Surrogate: Toluene-d8	24.8		ug/L	25.0		99.1	70-130			
LCS (AH14496-BS1)				Prepared &	z Analyzed:	08/25/21				
Bromodichloromethane	4.57	1.00	ug/L	5.00		91.4	70-130			
Bromoform	4.31	1.00	ug/L	5.00		86.2	70-130			
Chloroform	5.19	1.00	ug/L	5.00		104	70-130			
Dibromochloromethane	4.45	1.00	ug/L	5.00		89.0	70-130			
Surrogate: Bromofluorobenzene	27.8		ug/L	25.0		111	70-130			
Surrogate: Dibromofluoromethane	23.5		ug/L	25.0		94.2	70-130			
Surrogate: Toluene-d8	24.8		ug/L	25.0		99.2	70-130			
LCS Dup (AH14496-BSD1)				Prepared &	z Analyzed:	08/25/21				
Bromodichloromethane	4.59	1.00	ug/L	5.00		91.8	70-130	0.437	30	
Bromoform	4.11	1.00	ug/L	5.00		82.2	70-130	4.75	30	
Chloroform	5.14	1.00	ug/L	5.00		103	70-130	0.968	30	
Dibromochloromethane	4.58	1.00	ug/L	5.00		91.6	70-130	2.88	30	
Surrogate: Bromofluorobenzene	28.1		ug/L	25.0		113	70-130			
Surrogate: Dibromofluoromethane	22.4		ug/L	25.0		89.5	70-130			
Surrogate: Toluene-d8	24.9		ug/L	25.0		99.6	70-130			
Matrix Spike (AH14496-MS1)	So	urce: 21H246	9-02	Prepared: (08/25/21 A	nalyzed: 08	/26/21			
Bromodichloromethane	20.5	1.00	ug/L	5.00	14.0	130	70-130			
Bromoform	4.73	1.00	ug/L	5.00	ND	94.6	70-130			
Chloroform	79.8	1.00	ug/L	5.00	67.2	253	70-130			QM-
Dibromochloromethane	8.71	1.00	ug/L	5.00	3.65	101	70-130			
Surrogate: Bromofluorobenzene	28.3		ug/L	25.0		113	70-130			
Surrogate: Dibromofluoromethane	23.0		ug/L	25.0		91.8	70-130			

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

Project Number: [none]

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501

Reported: 09/10/21 16:29

Volatile Organic Compounds by EPA Method 524.2 - Quality Control

Analyte(s)	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AH14496 - VOAs in Water GCMS										
Matrix Spike (AH14496-MS1)	Sour	ce: 21H246	9-02	Prepared: (08/25/21 A	nalyzed: 08	/26/21			
Surrogate: Toluene-d8	24.4		ug/L	25.0		97.6	70-130			
Matrix Spike (AH14496-MS2)	Sour	1-01	Prepared: (08/25/21 A	nalyzed: 08	/26/21				
Bromodichloromethane	6.50	1.00	ug/L	5.00	1.77	94.6	70-130			
Bromoform	4.42	1.00	ug/L	5.00	ND	88.4	70-130			
Chloroform	60.2	1.00	ug/L	5.00	50.7	190	70-130			QM-05
Dibromochloromethane	4.27	1.00	ug/L	5.00	ND	85.4	70-130			
Surrogate: Bromofluorobenzene	27.8		ug/L	25.0		111	70-130			
Surrogate: Dibromofluoromethane	21.4		ug/L	25.0		85.8	70-130			
Surrogate: Toluene-d8	23.7		ug/L	25.0		94.7	70-130			

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501 Project Number: [none]

Reported: 09/10/21 16:29

Haloacetic Acids by EPA Method 552.2 - Quality Control

1.0 2.0 1.0 1.0 1.0	Units ug/L ug/L ug/L ug/L ug/L	Level Prepared: (Result 08/31/21 A	%REC	/01/21	RPD	Limit	Flag
2.0 1.0 1.0 1.0	ug/L ug/L ug/L	Prepared: (08/31/21 A	nalyzed: 09	/01/21			
2.0 1.0 1.0 1.0	ug/L ug/L ug/L	Frepared.	00/31/21 A	naryzed. 09	/01/21			
2.0 1.0 1.0 1.0	ug/L ug/L ug/L							
1.0 1.0 1.0	ug/L ug/L							
1.0 1.0	ug/L							
1.0	-							
	ug/L							
		0.05		0.4.1	70.120			
	ug/L	9.85		84.1	70-130			
	ug/L	10.0		109	70-130			
		Prepared: (08/31/21 A	nalyzed: 09	/01/21			
1.0	ug/L	25.0		114	70-130			
2.0	ug/L	25.0		114	70-130			
1.0	ug/L	25.0		99.7	70-130			
1.0	ug/L	25.0		114	70-130			
1.0	ug/L	25.0		98.0	70-130			
	ug/L	9.85		98.5	70-130			
	ug/L	10.0		126	70-130			
ce: 21H263	3₋01	Prepared: ()8/31/21 A	nalyzed: 09	/02/21			
1.0	ug/L	25.0	ND	127	70-130			
2.0	ug/L	25.0	ND	121	70-130			
1.0	ug/L	25.0	ND	113	70-130			
1.0	ug/L	25.0	ND	124	70-130			
1.0	ug/L	25.0	ND	110	70-130			
	ug/L	9.85		120	70-130			
	ug/L	10.0		143	70-130			S-G
ce: 21H273	8 ₌01	Prepared: ()8/31/21 A	nalyzed: 09	/02/21			
1.0	ug/L	25.0	ND	103	70-130			
2.0	ug/L	25.0	ND	205	70-130			QM-07
1.0	-	25.0	ND	95.0	70-130			
1.0	ug/L	25.0	ND	96.7	70-130			
	1.0 1.0	1.0 ug/L 1.0 ug/L	1.0 ug/L 25.0 1.0 ug/L 25.0 1.0 ug/L 25.0	1.0 ug/L 25.0 ND 1.0 ug/L 25.0 ND 1.0 ug/L 25.0 ND	1.0 ug/L 25.0 ND 95.0 1.0 ug/L 25.0 ND 105 1.0 ug/L 25.0 ND 96.7	1.0 ug/L 25.0 ND 95.0 70-130 1.0 ug/L 25.0 ND 105 70-130 1.0 ug/L 25.0 ND 96.7 70-130	1.0 ug/L 25.0 ND 95.0 70-130 1.0 ug/L 25.0 ND 105 70-130 1.0 ug/L 25.0 ND 96.7 70-130	1.0 ug/L 25.0 ND 95.0 70-130 1.0 ug/L 25.0 ND 105 70-130 1.0 ug/L 25.0 ND 96.7 70-130

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501 Project Number: [none]

Reported: 09/10/21 16:29

Haloacetic Acids by EPA Method 552.2 - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag

Batch AH14766 - EPA 552.2

Matrix Spike (AH14766-MS2) Source: 21H2738-01 Prepared: 08/31/21 Analyzed: 09/02/21

11.5

Surrogate: 2-Bromopropionic Acid

ug/L

115

Alpha Analytical Laboratories, Inc.

email: clientservices@alpha-labs.com

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215 Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501 Project Number: [none] 09/10/21 16:29

Notes and Definitions

FILT The sample was filtered in the lab prior to analysis.

QM-01 The spike recovery for this QC sample is outside of established control limits possibly due to a sample matrix interference.

QM-05 The spike recovery was outside acceptance limits for the MS and/or MSD due to matrix interference. The LCS and/or LCSD

were within acceptance limits showing that the laboratory is in control and the data is acceptable.

QM-07 The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS

recovery.

QM-4X The spike recovery was outside of QC acceptance limits for the MS and/or MSD due to analyte concentration at 4 times or

greater the spike concentration. The QC batch was accepted based on LCS and/or LCSD recoveries within the acceptance

limits.

S-GC Surrogate recovery outside of control limits. The data was accepted based on valid recovery of the remaining surrogates.

ND Analyte NOT DETECTED at or above the reporting limit

dry Sample results reported on a dry weight basis

REC Recovery

RPD Relative Percent Difference

Corporate Laboratory (1551) 707-468-0401 208 Mason Street, Ukiah CA 95482

Los Angeles (Service Center) 310-743-5711 1230 E 233rd St #205, Carson CA 90745

San Diego Laboratory (3055) 760-930-2555 2722 Loker Ave West, Ste A, Carlsbad CA 92010 North Bay Laboratory (2303) 707-769-3128 110 Liberty Street, Petaluma CA 94952

Bay Area Laboratory (2728) 925-828-6226 262 Rickenbacker Clicle, Livermore CA 94551

Central Valley Laboratory (2922) 916-686-5190 9090 Union Park Way #113, Elk Grove CA 95624

Reports and Invoices delivered by email as PDF files

clientservices@alpha-labs.com

Leb No. 21H2826 Pg of

Report to	Involc	e to (if different)	$\overline{}$	Proir	ect Info	_	—	+						Ana	lysis.	Reg	tresf	_						T	_	TA	-	ヿ	Temp °C
Company:	Contact:	1 to (ii canoremy	Project Na			<u>-</u>		+	T	\top		_) 		100		г			$\overline{}$	\top	╁			dard	7	Ukiah
Todd Groundwater	03		Round 3	3 ASR			ality	!		'	1 1	U^{I}		1 1	1-1	1 1		1 1	'	'	1					10-d		Ì	<u> </u>
	- " * 44-22-		7		seline			-[`		'	1 1	U^{I}		1 1		,	1 1	13	اج!	['	[Į		0		Į.	
	Email Address:		Project Nu	ımber				'	'	1.	1 1	U^{I}		1 1		,]	1 1	5	≥'	'	1	1		\vdash		U 5	<u></u>	\dashv	Livermore
Nicole Grimm	l								'	'	1 1	1 1		1	S	,	1]	ន្ទី	Se l	['							25%	6	19.1
Phone:	Phone;		PO Numb	er.	_	_].₽		'	1 1	(1		1	₩ B	,]	ġ	ag !	8	['						Ó		Ī	Elk Grove
510-747-6920								ampir.		'					de / N	,	Mg	SBB	a l B	'	,			\vdash			75%	-	
Physical Address:			Frequency	y:				. j	jgj	'	1 1	1		1	Ē	,]	<u>.</u>	۱¥۱	8	1 1	eta	1				0		Ī	Petaluma
2490 Mariner Square Loop, Suite 215, Alar	meda CA 94501							ers p	Guant .	ٰ <u>ج</u> ا	.				de / Fi	fate	٢	Ϋ́	ž.	무	Ved M			\vdash		Óthe	ег	\dashv	
Email address:		Cor	ontainer Pre	eserva	ation	M:	atrix	計量	. [놀 '	<u>ğ</u>	1 1	1	1	1-1	ğ	S	stats	श्च	^함	{	ssol				1	0		Ī	Carlsbad
ngrimm@toddgroundwater.com		111	$\{\ \ \ \}$.		ုပ္သိ	3	[루	ا يو ا	1			2	SQ.	Ĕ	Ë	Ĕ	हैं।	٦	=	,					١	
Field Sampler - Printed Name and Signature:						ate		و ا	၂၀	la l	lora	1			ota		8	[[]	[왕	245	동	estic		Ŀ	_		days	_	Los Angeles
Nicole Grimm re	<u>~ ~ ~ </u>	no bette	jar jar 2203			ng Wa		Other Total Number of Containers per Sample ID	BAL - TCEC GW 30hr Quantitray	BAL - Color and Turbidity	NB - Perchlorate	ا بي ا		g	Alkalinity, Total / Chloride / Fluoride / MBAS	Nitrate as N / TDS / Sulfate	Dissolved 200,7 metals - Ca Fe K Mg Na.	Dissolved 200.8 metals - Ag Al As B Ba Be Cd Cr Cu	Dissolved 200.8 metals - Mn Mo Ni Pb Sb Se TI V Zn	Dissolved 245.1 CVAA - Hg	Lab Filtration for Dissolved Metals	Metals Digestion		Ļ	_	Ť	size	_	
Sample identification	Time		Poly bottle Glass jar Other Na2S2O3	코볼	Sone	Drink Wast	Soil	Cur. Total	BAL	BAL	剪	₹	MHT	Sulfide	Alkal	Nitra	Diss	Diss	Diss	Diss	Lab	Meta	\perp	250m	500m	닏	Half G	pacti	Source Code
13-5-10L1	8:30	8/19	x x	\prod	\coprod	x		1	×															L				×	
•		×	$\Pi\Pi$		×	×	П	1		×					\prod						Г	Γ	T	T		\prod	П		
			×	\prod	×	×	П	1		\Box	×	\sqcap	\Box	П	П	\Box	\sqcap	\sqcap				\vdash	\top	×	П	П	П	1	
		×		1	×	×	\dagger	1	.	\vdash	\Box	×	\sqcap	\Box	一	\neg	\Box	\sqcap	\Box	\Box	П	\vdash	十	T	Ħ	Ħ	H	1	
	'		T ×	$\dagger \dagger$	#	×	$\dagger \dagger$	3	,†	H	\prod	\sqcap	×	\sqcap	寸	7	一	\neg	\square	П	H	\vdash	十	+	H	Ħ	\dagger	1	
	'		×	+	×	×	$\dagger \dagger$	1	1	H	\prod	\sqcap		×	一	寸	,	\sqcap		\sqcap	\Box	\vdash	十	×	H	Ħ	H	†	
		-	_×	+	×	×	1	†		 		\sqcap	$\mid \rightarrow \mid$	\sqcap	x	х	x	x	x	х	x	×	十	+	H	H	×	+	
		-+1+		+	+	十	#	+	+	+	-	\vdash	-	\dashv	\dashv	十	\dashv	\vdash	H	Н	\vdash	\vdash	+	+	${}$	${m H}$	Н	+	
	 	1-1-1	 	++	+	十	卄	+	+	+-'	H	\vdash	-	\dashv	\dashv	\dashv	\dashv	\vdash	H	\vdash	H	\vdash	+	十	dash	dash	${f H}$	+	
		 	┝╂┼╂┼	++	+	+	₩	+	+	+-'	H	\vdash		\vdash	\dashv	\dashv	\dashv		H	H	\vdash	⊬	+	十	붜	igert	H	+	
	 !	 	HHH	4	4	4	₩	\downarrow	-	 _'	\square	$oldsymbol{\sqcup}$	 	\vdash	\mapsto	4	إب	لــا		\sqcup	\bigsqcup	igspace	\downarrow	上	ot	Ц	Ц	4	
	<u> </u>			\coprod	Щ		Щ	1	<u></u> '	<u> </u>		\Box	\sqcup	\Box	\Box		<u> </u>	\Box	Ц	\bigsqcup_{n}	\bigsqcup^{\prime}	Ļ	<u>L</u>		Ļ	\prod		L	
Relinquished by		Received by		+		lme		+	_	Date		ب_		<u></u>		<u>, r</u>				Addit	.iona	ıl Re	quir	reme	ent	8			
n		[[Y]]		\perp	<u>/z</u>	31	<u>/_</u>	1	08/	[19]			(CA I			DΤ		S	State :	Syst	tem !	No:	_				
(H87).		- 13B		1/	8	<u> 2</u> 6	<u>; </u>		<u> </u>	19/	121		 		_	_	<u></u>	<u>-</u>	—	—	_	—	_	—	_	_		_	
No. of the second secon		de		1	ُح<	00	ر	\sum_{i}	<u> }//</u>	9	12	7	1	/ \	CA Geo	Tra	cker	r	Fac	cility (Glob	al IC) No	: <u>—</u>			—	_	
				T					7	7				ı	EDF	Re	port	ì	Sam	npling	j Cor	mpar	ny Lo	.og C)ode	le:	-	—	

WORK ORDER

Printed: 8/20/2021 2:01:19PM

21H2826

Alpha Analytical Laboratories Ukiah to North Bay Chain of Custody

Client: Todd Gro Project: Round 3 A	undwater ASR Water Quality Baseline	Client Code: DP_T Project Number: [none		Bid: Roun PO #:	d 3 ASR Water Quality
Date Due: Received By: Logged In By:	09/03/21 15:00 (10 day TAT) James Bixler Sean Foley	Date Received:	08/19/21 22:00 08/20/21 13:49		
Samples Received at:	deg C	All containers receive	ved and intact:	YES NO	
Analysis	Department	Expires	Comments		
21 H2826-01 13-5-10 NB Perchlorate EPA	L1 [Water] Sampled 08/19/2 314.0 NB Wet Chem			Lab Pitter	j
Containers Supplie 250mL Poly Unpres (C					

Alpha Analytical Laboratories, Inc.

email: clientservices@alpha-labs.com

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

17 September 2021

Todd Groundwater

Attn: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Alameda, CA 94501

RE: Round 3 ASR Water Quality Baseline

Work Order: 21H3513

Enclosed are the results of analyses for samples received by the laboratory on 08/26/21 22:15. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jeanette L. Poplin For David S. Pingatore

Jeanette Popli

Project Manager

Alpha Analytical Laboratories, Inc.

email: clientservices@alpha-labs.com

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501

Project Number: [none]

Reported:

09/17/21 10:32

Bay Area: 262 Rickenbacker Circle | Livermore, CA 94551 | T: 925-828-6226 | F: 925-828-6309 | ELAP# 2728 Central Valley: 9090 Union Park Way Suite 113 | Elk Grove, CA 95624 | T: 916-686-5190 | F: 916-686-5192 | ELAP# 2922 North Bay: 110 Liberty Street | Petaluma, CA 94952 | T: 707-769-3128 | F: 707-769-8093 | ELAP# 2303 San Diego: 2722 Loker Avenue West Suite A | Carlsbad, CA 92010 | T: 760-930-2555 | F: 760-930-2510 | ELAP# 3055

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
12-5-23A20	21H3513-01	Water	08/26/21 09:30	08/26/21 22:15

Reported:

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215 Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501 09/17/21 10:32 Project Number: [none]

	Result	Reporting Limit	Dilution	Batch	Prepared	Analyzed	ELAP#	# Method	Note
12-5-23A20 (21H3513-01)		Sample Type:	Water		Sample	d: 08/26/21 09:3	0		
Metals by EPA 200 Series Methods									
Silica (SiO2)	27 mg/L	1.0	1	AI13318	09/07/21 15:07	09/10/21 12:0	0 2303	EPA 200.7	
Calcium	40 mg/L	1.0	1	AI13153	09/07/21 17:05	09/10/21 16:4	7 1551	EPA 200.7	
Chromium, hexavalent	5.0 ug/L	1.0	1	AH14689	08/30/21 20:18	08/30/21 20:1	8 1551	EPA 218.6	
Magnesium	52 mg/L	1.0	1	AI13153	09/07/21 17:05	09/10/21 16:4	7 1551	EPA 200.7	
Metals by EPA Method 200.8 ICP/MS									
Cobalt	ND ug/L	0.40	4	AH14797	09/01/21 14:17	09/02/21 20:0	6 1551	EPA 200.8	R-01
Uranium	1.3 pCi/l	1.0	4	AH14797	09/01/21 14:17	09/02/21 20:0	6 1551	EPA 200.8	
Conventional Chemistry Parameters by APHA	/EPA Methods								
Ammonia as NH3	ND mg/L	0.50	1	AI13747	09/15/21 10:00	09/15/21 16:0	0 1551	SM4500NH3B,C	
Hardness, Total	315 mg/L	5			09/07/21 17:05	09/10/21 16:4		· ·	
Phosphorus, total	0.095 mg/L	0.040			08/31/21 10:42	08/31/21 14:5:			
Total Organic Carbon	ND mg/L	1.00		AI13418	09/09/21 14:35	09/10/21 07:0			
Volatile Organic Compounds by EPA Method	_								
Acetone Acetone	ND ug/L	5.0	1	AI13372	09/08/21 09:00	09/08/21 16:3	1 1551	EPA 524.2	
Acrylonitrile	ND ug/L	5.0		AI13372	09/08/21 09:00	09/08/21 16:3			
Benzene	ND ug/L	0.50		AI13372		09/08/21 16:3			
Bromobenzene	ND ug/L	0.50			09/08/21 09:00	09/08/21 16:3			
Bromochloromethane	ND ug/L	0.50		AI13372	09/08/21 09:00	09/08/21 16:3			
Bromodichloromethane	ND ug/L	1.0		AI13372	09/08/21 09:00	09/08/21 16:3			
Bromoform	ND ug/L	1.0		AI13372	09/08/21 09:00	09/08/21 16:3			
Bromomethane	ND ug/L	0.50		AI13372	09/08/21 09:00	09/08/21 16:3			
n-Butylbenzene	ND ug/L	0.50	1	AI13372	09/08/21 09:00	09/08/21 16:3	1 1551	EPA 524.2	
sec-Butylbenzene	ND ug/L	0.50	1	AI13372	09/08/21 09:00	09/08/21 16:3	1 1551	EPA 524.2	
tert-Butylbenzene	ND ug/L	0.50	1	AI13372	09/08/21 09:00	09/08/21 16:3	1 1551	EPA 524.2	
Carbon disulfide	ND ug/L	0.50	1	AI13372	09/08/21 09:00	09/08/21 16:3	1 1551	EPA 524.2	
Carbon tetrachloride	ND ug/L	0.50	1	AI13372	09/08/21 09:00	09/08/21 16:3	1 1551	EPA 524.2	
Chlorobenzene	ND ug/L	0.50	1	AI13372	09/08/21 09:00	09/08/21 16:3	1 1551	EPA 524.2	
Chloroethane	ND ug/L	0.50	1	AI13372	09/08/21 09:00	09/08/21 16:3	1 1551	EPA 524.2	
Chloroform	ND ug/L	1.0	1	AI13372	09/08/21 09:00	09/08/21 16:3	1 1551	EPA 524.2	
Chloromethane	ND ug/L	0.50	1	AI13372	09/08/21 09:00	09/08/21 16:3	1 1551	EPA 524.2	
2-Chlorotoluene	ND ug/L	0.50	1	AI13372	09/08/21 09:00	09/08/21 16:3	1 1551	EPA 524.2	
4-Chlorotoluene	ND ug/L	0.50	1	AI13372	09/08/21 09:00	09/08/21 16:3	1 1551	EPA 524.2	
Dibromochloromethane	ND ug/L	1.0	1	AI13372	09/08/21 09:00	09/08/21 16:3	1 1551	EPA 524.2	
Dibromomethane	ND ug/L	0.50	1	AI13372	09/08/21 09:00	09/08/21 16:3	1 1551	EPA 524.2	
1,2-Dichlorobenzene	ND ug/L	0.50	1	AI13372	09/08/21 09:00	09/08/21 16:3	1 1551	EPA 524.2	
1,3-Dichlorobenzene	ND ug/L	0.50	1	AI13372	09/08/21 09:00	09/08/21 16:3	1 1551	EPA 524.2	
1,4-Dichlorobenzene	ND ug/L	0.50	1	AI13372	09/08/21 09:00	09/08/21 16:3	1 1551	EPA 524.2	
Dichlorodifluoromethane	ND ug/L	0.50	1	AI13372	09/08/21 09:00	09/08/21 16:3	1 1551	EPA 524.2	
1,1-Dichloroethane	ND ug/L	0.50	1	AI13372	09/08/21 09:00	09/08/21 16:3	1 1551	EPA 524.2	
1,2-Dichloroethane	ND ug/L	0.50	1	AI13372	09/08/21 09:00	09/08/21 16:3	1 1551	EPA 524.2	

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501 Project Number: [none]

Reported: 09/17/21 10:32

	Result	Reporting Limit Ω	Dilution	Batch	Prepared	Analyzed	ELAP#	Method	Note
12-5-23A20 (21H3513-01)		Sample Type: W	Vater		Sampleo	d: 08/26/21 09:	30		
Volatile Organic Compounds by EPA Metho	od 524.2 (cont'd)								
1,1-Dichloroethene	ND ug/L	0.50	1	AI13372	09/08/21 09:00	09/08/21 16:3	1 1551 E	EPA 524.2	
cis-1,2-Dichloroethene	ND ug/L	0.50	1	AI13372	09/08/21 09:00	09/08/21 16:3	1 1551 E	EPA 524.2	
trans-1,2-Dichloroethene	ND ug/L	0.50	1	AI13372	09/08/21 09:00	09/08/21 16:3	1 1551 E	EPA 524.2	
1,3-Dichloropropene (total)	ND ug/L	0.50	1	AI13372	09/08/21 09:00	09/08/21 16:3	1 1551 E	EPA 524.2	
1,2-Dichloropropane	ND ug/L	0.50	1	AI13372	09/08/21 09:00	09/08/21 16:3	1 1551 E	EPA 524.2	
1,3-Dichloropropane	ND ug/L	0.50	1	AI13372	09/08/21 09:00	09/08/21 16:3	1 1551 E	EPA 524.2	
2,2-Dichloropropane	ND ug/L	0.50	1	AI13372	09/08/21 09:00	09/08/21 16:3	1 1551 E	EPA 524.2	
1,1-Dichloropropene	ND ug/L	0.50	1	AI13372	09/08/21 09:00	09/08/21 16:3	1 1551 E	EPA 524.2	
cis-1,3-Dichloropropene	ND ug/L	0.50	1	AI13372	09/08/21 09:00	09/08/21 16:3	1 1551 E	EPA 524.2	
trans-1,3-Dichloropropene	ND ug/L	0.50	1	AI13372	09/08/21 09:00	09/08/21 16:3	1 1551 E	EPA 524.2	
Ethylbenzene	ND ug/L	0.50	1	AI13372	09/08/21 09:00	09/08/21 16:3	1 1551 E	EPA 524.2	
Hexachlorobutadiene	ND ug/L	0.50	1	AI13372	09/08/21 09:00	09/08/21 16:3	1 1551 E	EPA 524.2	
Isopropylbenzene	ND ug/L	0.50	1	AI13372	09/08/21 09:00	09/08/21 16:3	1 1551 E	EPA 524.2	
p-Isopropyltoluene	ND ug/L	0.50	1	AI13372	09/08/21 09:00	09/08/21 16:3	1 1551 E	EPA 524.2	
Methyl ethyl ketone	ND ug/L	5.0	1	AI13372	09/08/21 09:00	09/08/21 16:3	1 1551 E	EPA 524.2	
Methyl isobutyl ketone	ND ug/L	5.0	1	AI13372	09/08/21 09:00	09/08/21 16:3	1 1551 E	EPA 524.2	
Methyl tert-butyl ether	ND ug/L	3.0	1	AI13372	09/08/21 09:00	09/08/21 16:3	1 1551 E	EPA 524.2	
Methylene chloride	ND ug/L	0.50	1	AI13372	09/08/21 09:00	09/08/21 16:3	1 1551 E	EPA 524.2	
Naphthalene	ND ug/L	0.50	1	AI13372	09/08/21 09:00	09/08/21 16:3	1 1551 E	EPA 524.2	
n-Propylbenzene	ND ug/L	0.50	1	AI13372	09/08/21 09:00	09/08/21 16:3	1 1551 E	EPA 524.2	
Styrene	ND ug/L	0.50	1	AI13372	09/08/21 09:00	09/08/21 16:3	1 1551 E	EPA 524.2	
1,1,1,2-Tetrachloroethane	ND ug/L	0.50	1	AI13372	09/08/21 09:00	09/08/21 16:3	1 1551 E	EPA 524.2	
1,1,2,2-Tetrachloroethane	ND ug/L	0.50	1	AI13372	09/08/21 09:00	09/08/21 16:3	1 1551 E	EPA 524.2	
Tetrachloroethene	ND ug/L	0.50	1	AI13372	09/08/21 09:00	09/08/21 16:3	1 1551 E	EPA 524.2	
Toluene	ND ug/L	0.50	1	AI13372	09/08/21 09:00	09/08/21 16:3	1 1551 E	EPA 524.2	
1,2,3-Trichlorobenzene	ND ug/L	0.50	1	AI13372	09/08/21 09:00	09/08/21 16:3	1 1551 E	EPA 524.2	
1,2,4-Trichlorobenzene	ND ug/L	0.50	1	AI13372	09/08/21 09:00	09/08/21 16:3	1 1551 E	EPA 524.2	
1,1,1-Trichloroethane	ND ug/L	0.50	1	AI13372	09/08/21 09:00	09/08/21 16:3	1 1551 E	EPA 524.2	
1,1,2-Trichloroethane	ND ug/L	0.50	1	AI13372	09/08/21 09:00	09/08/21 16:3	1 1551 E	EPA 524.2	
Trichloroethene	ND ug/L	0.50	1	AI13372	09/08/21 09:00	09/08/21 16:3	1 1551 E	EPA 524.2	
Trichlorofluoromethane	ND ug/L	5.0	1	AI13372	09/08/21 09:00	09/08/21 16:3	1 1551 E	EPA 524.2	
Trichlorotrifluoroethane	ND ug/L	10	1	AI13372	09/08/21 09:00	09/08/21 16:3	1 1551 E	EPA 524.2	
1,2,4-Trimethylbenzene	ND ug/L	0.50	1	AI13372	09/08/21 09:00	09/08/21 16:3	1 1551 E	EPA 524.2	
1,3,5-Trimethylbenzene	ND ug/L	0.50	1	AI13372	09/08/21 09:00	09/08/21 16:3	1 1551 E	EPA 524.2	
Vinyl chloride	ND ug/L	0.50	1	AI13372	09/08/21 09:00	09/08/21 16:3			
m,p-Xylene	ND ug/L	0.50	1	AI13372	09/08/21 09:00	09/08/21 16:3			
o-Xylene	ND ug/L	0.50	1	AI13372	09/08/21 09:00	09/08/21 16:3	1 1551 E	EPA 524.2	
Xylenes (total)	ND ug/L	0.50	1	AI13372	09/08/21 09:00	09/08/21 16:3			
Trihalomethanes (total)	ND ug/L	0.50	1	AI13372	09/08/21 09:00	09/08/21 16:3			
Surrogate: Bromofluorobenzene	103 %	70-130		AI13372	09/08/21 09:00	09/08/21 16:3			

Reported:

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501

09/17/21 10:32 Project Number: [none]

	Result	Reporting Limit Dilution	Batch	Prepared	Analyzed	ELAP#	Method	Note
12-5-23A20 (21H3513-01)		Sample Type: Water		Sampled	: 08/26/21 09:	30		
Volatile Organic Compounds by EPA Meth	od 524.2 (cont'd)							
Surrogate: Dibromofluoromethane	91.0 %	70-130	AI13372	09/08/21 09:00	09/08/21 16:3	<i>I</i> 1551	EPA 524.2	
Surrogate: Toluene-d8	107 %	70-130	AI13372	09/08/21 09:00	09/08/21 16:3	<i>I</i> 1551	EPA 524.2	

Reported:

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215 Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501 09/17/21 10:32 Project Number: [none]

	Wictais by I	2171200 50	VI 105 1VI	cinous Q	anity Co	1101				
		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AH14689 - General Prep										
Blank (AH14689-BLK1)				Prepared &	Analyzed:	08/30/21				
Chromium, hexavalent	ND	1.0	ug/L							
LCS (AH14689-BS1)				Prepared &	Analyzed:	08/30/21				
Chromium, hexavalent	9.13	1.0	ug/L	10.0		91.3	90-110			
Duplicate (AH14689-DUP1)	Sour	ce: 21H351	3-01	Prepared &	Analyzed:	08/30/21				
Chromium, hexavalent	5.00	1.0	ug/L		4.99			0.180	20	
Matrix Spike (AH14689-MS1)	Sour	ce: 21H351	3-01	Prepared &	Analyzed:	08/30/21				
Chromium, hexavalent	13.8	1.0	ug/L	10.0	4.99	88.4	90-110			QM-01
Matrix Spike Dup (AH14689-MSD1)	Sour	ce: 21H351	3-01	Prepared &	: Analyzed:	08/30/21				
Chromium, hexavalent	13.8	1.0	ug/L	10.0	4.99	88.3	90-110	0.0940	20	QM-01
Batch AI13153 - Metals Digest										
Blank (AI13153-BLK1)				Prepared: (09/07/21 A	nalyzed: 09	9/09/21			
Calcium	ND	1.0	mg/L							
Magnesium	ND	1.0	mg/L							
LCS (AI13153-BS1)				Prepared: (09/07/21 A	nalyzed: 09	9/09/21			
Calcium	7.92	1.0	mg/L	8.00		99.0	85-115			
Magnesium	8.43	1.0	mg/L	8.00		105	85-115			
Duplicate (AI13153-DUP1)	Sour	ce: 21H356	1-01	Prepared: (09/07/21 A	nalyzed: 09	9/09/21			
Calcium	4.22	1.0	mg/L		4.16			1.49	20	
Magnesium	ND	1.0	mg/L		ND			1.35	20	

Reported:

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215 Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501 09/17/21 10:32 Project Number: [none]

	Metals by	E1 A 200 S	crics ivi	ctilous - Qi	uanty Co	111101				
Analyte(s)	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AI13153 - Metals Digest										
Matrix Spike (AI13153-MS1)	Sou	rce: 21H356	1-01	Prepared: (09/07/21 A	nalyzed: 09	/09/21			
Calcium	12.8	1.0	mg/L	8.00	4.16	107	70-130			
Magnesium	9.33	1.0	mg/L	8.00	ND	111	70-130			
Matrix Spike (AI13153-MS2)	Sou	rce: 21H353	5-01	Prepared: (09/07/21 A	nalyzed: 09	/09/21			
Calcium	84.8	1.0	mg/L	8.00	78.5	79.0	70-130			
Magnesium	33.6	1.0	mg/L	8.00	26.1	93.5	70-130			
Matrix Spike Dup (AI13153-MSD1)	Sou	rce: 21H356	1-01	Prepared: (09/07/21 A	nalyzed: 09	/09/21			
Calcium	12.9	1.0	mg/L	8.00	4.16	109	70-130	0.943	20	
Magnesium	9.43	1.0	mg/L	8.00	ND	112	70-130	1.05	20	
atch AI13318 - NB EPA 200 series DA										
Blank (AI13318-BLK1)				Prepared: (09/07/21 A	nalyzed: 09	/10/21			
Silica (SiO2)	ND	1.0	mg/L							
LCS (AI13318-BS1)				Prepared: (09/07/21 A	nalyzed: 09	/10/21			
Silica (SiO2)	5.16	1.0	mg/L	5.35		96.4	0-200			
LCS Dup (AI13318-BSD1)				Prepared: (09/07/21 A	nalyzed: 09	/10/21			
Silica (SiO2)	5.22	1.0	mg/L	5.35		97.7	0-200	1.26	200	
Duplicate (AI13318-DUP1)	Sou	rce: 21H343	8-02	Prepared: (09/07/21 A	nalyzed: 09	/10/21			
Silica (SiO2)	22.7	1.0	mg/L		23.1			1.64	200	
Matrix Spike (AI13318-MS1)	Sou	rce: 21H340	3-01	Prepared: (09/07/21 A	nalyzed: 09	/10/21			
Silica (SiO2)	48.1	1.0	mg/L	5.35	48.4	NR	0-200			QM-0

Reported:

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215 Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501 09/17/21 10:32 Project Number: [none]

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AI13318 - NB EPA 200 series DA										
Matrix Spike (AI13318-MS2)	Sourc	e: 21H3438	3-01	Prepared: (09/07/21 A	nalyzed: 09	/10/21			
6.1. (6.03)	19.5	1.0	mg/L	5.35	16.0	(5.6	0-200			
Silica (SiO2)	19.3	1.0	mg/L	3.33	16.0	65.6	0-200			
Silica (SiO2) Matrix Spike Dup (AI13318-MSD1)		e: 21H340	Ü		09/07/21 A					

Reported:

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215 Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501 09/17/21 10:32 Project Number: [none]

Metals by EPA Method 200.8 ICP/MS - Quality Control

	-				-					
. 1. ()	n 1:	Reporting	** *	Spike	Source	A/DEG	%REC	nnn	RPD	Elec
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AH14797 - EPA 200.8										
Blank (AH14797-BLK1)				Prepared: (09/01/21 A	nalyzed: 09	9/02/21			
Cobalt	ND	0.10	ug/L							
Uranium	ND	1.0	pCi/l							
LCS (AH14797-BS1)				Prepared: (09/01/21 A	analyzed: 09	9/02/21			
Cobalt	19.9	0.10	ug/L	20.0		99.6	85-115			
Uranium	13.4	1.0	pCi/l	13.4		99.8	85-115			
Duplicate (AH14797-DUP1)	Sour	rce: 21H334	8-01	Prepared: (09/01/21 A	analyzed: 09	9/02/21			
Cobalt	ND	0.40	ug/L		ND				20	R-01
Uranium	ND	1.0	pCi/l		ND				20	
Matrix Spike (AH14797-MS1)	Sour	rce: 21H334	8-01	Prepared: (09/01/21 A	analyzed: 09	9/02/21			
Cobalt	19.6	0.40	ug/L	20.0	ND	98.1	70-130			
Uranium	13.3	1.0	pCi/l	13.4	ND	99.4	70-130			
Matrix Spike (AH14797-MS2)	Sour	rce: 21H379	7-01	Prepared: (09/01/21 A	analyzed: 09	9/02/21			
Cobalt	19.8	0.40	ug/L	20.0	ND	99.2	70-130			
Uranium	13.3	1.0	pCi/l	13.4	ND	99.5	70-130			
Matrix Spike Dup (AH14797-MSD1)	Sour	rce: 21H334	8-01	Prepared: (09/01/21 A	nalyzed: 09	9/02/21			
Cobalt	19.4	0.40	ug/L	20.0	ND	97.0	70-130	1.14	20	
Uranium	13.1	1.0	pCi/l	13.4	ND	97.9	70-130	1.50	20	

Reported:

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215 Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501 09/17/21 10:32 Project Number: [none]

Conventional Chemistry Parameters by APHA/EPA Methods - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AH14761 - General Prep										
Blank (AH14761-BLK1)				Prepared &	Analyzed:	08/31/21				
Phosphorus, total	ND	0.040	mg/L							
LCS (AH14761-BS1)				Prepared &	Analyzed:	08/31/21				
Phosphorus, total	0.195	0.040	mg/L	0.200		97.5	85-115			
Duplicate (AH14761-DUP1)	Sour	rce: 21H328	9-01	Prepared &	Analyzed:	08/31/21				
Phosphorus, total	ND	0.040	mg/L		ND			0.00	20	
Matrix Spike (AH14761-MS1)	Soui	rce: 21H328	9-01	Prepared &	Analyzed:	08/31/21				
Phosphorus, total	0.207	0.040	mg/L	0.200	ND	97.0	70-130			
Matrix Spike (AH14761-MS2)	Soui	rce: 21H318	9-02	Prepared &	Analyzed:	08/31/21				
Phosphorus, total	0.225	0.040	mg/L	0.200	ND	112	70-130			
Matrix Spike Dup (AH14761-MSD1)	Soui	rce: 21H328	9-01	Prepared &	Analyzed:	08/31/21				
Phosphorus, total	0.215	0.040	mg/L	0.200	ND	101	70-130	3.79	20	
Batch AI13153 - Metals Digest										
Blank (AI13153-BLK1)				Prepared: (09/07/21 A	nalyzed: 09	/09/21			
Hardness, Total	ND	5	mg/L							
Batch AI13418 - General Prep										
Blank (AI13418-BLK1)				Prepared &	Analyzed:	09/09/21				
Total Organic Carbon	ND	1.00	mg/L							

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215 Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501 09/17/21 10:32 Project Number: [none]

Conventional Chemistry Parameters by APHA/EPA Methods - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AI13418 - General Prep										
LCS (AI13418-BS1)				Prepared &	Analyzed:	09/09/21				
Total Organic Carbon	8.96	1.00	mg/L	10.0		89.6	85-115			
LCS Dup (AI13418-BSD1)				Prepared &	: Analyzed:	09/09/21				
Total Organic Carbon	9.03	1.00	mg/L	10.0		90.3	85-115	0.864	20	
Duplicate (AI13418-DUP1)	Sou	ce: 21H334	3-03	Prepared &	: Analyzed:	09/09/21				
Total Organic Carbon	3.11	1.00	mg/L	-	3.08			1.08	20	
MRL Check (AI13418-MRL1)				Prepared &	: Analyzed:	09/09/21				
Total Organic Carbon	0.350	1.00	mg/L	0.300	-	117	0-200			
Matrix Spike (AI13418-MS1)	Sou	ce: 21H334	3-03	Prepared &	: Analyzed:	09/09/21				
Total Organic Carbon	11.8	1.00	mg/L	10.0	3.08	87.2	70-130			
Matrix Spike Dup (AI13418-MSD1)	Sou	ce: 21H334	3-03	Prepared &	: Analyzed:	09/09/21				
Total Organic Carbon	12.0	1.00	mg/L	10.0	3.08	89.4	70-130	1.82	20	
Batch AI13747 - General Preparation										
LCS (AI13747-BS1)				Prepared &	: Analyzed:	09/15/21				
Ammonia as NH3	5.85	0.50	mg/L	6.10		96.0	90-110			
LCS Dup (AI13747-BSD1)				Prepared &	: Analyzed:	09/15/21				
Ammonia as NH3	5.96	0.50	mg/L	6.10		97.7	90-110	1.81	20	
Matrix Spike (AI13747-MS1)	Sou	ce: 2110041	-02	Prepared &	: Analyzed:	09/15/21				
Ammonia as NH3	5.75	0.50	mg/L	6.10	ND	94.2	85-115			

Reported:

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501 Project Number: [none]

Reported: 09/17/21 10:32

Conventional Chemistry Parameters by APHA/EPA Methods - Quality Control

Analyte(s)	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AI13747 - General Preparation										
Matrix Spike Dup (AI13747-MSD1)	Sou	rce: 2110041	-02	Prepared &	Analyzed:	09/15/21				
Ammonia as NH3	5.85	0.50	mg/L	6.10	ND	96.0	85-115	1.83	20	

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501 Project Number: [none]

Reported: 09/17/21 10:32

Ameliato (c)	D. 4	Reporting	T T '4	Spike	Source	0/PEC	%REC	DDD	RPD	Flag
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	riag
Batch AI13372 - VOAs in Water GCMS										
Blank (AI13372-BLK1)				Prepared: (09/07/21 A	nalyzed: 09	/08/21			
Acetone	ND	5.0	ug/L							
Acrylonitrile	ND	5.0	ug/L							
Benzene	ND	0.50	ug/L							
Bromobenzene	ND	0.50	ug/L							
Bromochloromethane	ND	0.50	ug/L							
Bromodichloromethane	ND	1.0	ug/L							
Bromoform	ND	1.0	ug/L							
Bromomethane	ND	0.50	ug/L							
n-Butylbenzene	ND	0.50	ug/L							
sec-Butylbenzene	ND	0.50	ug/L							
tert-Butylbenzene	ND	0.50	ug/L							
Carbon disulfide	ND	0.50	ug/L							
Carbon tetrachloride	ND	0.50	ug/L							
Chlorobenzene	ND	0.50	ug/L							
Chloroethane	ND	0.50	ug/L							
Chloroform	ND	1.0	ug/L							
Chloromethane	ND	0.50	ug/L							
2-Chlorotoluene	ND	0.50	ug/L							
4-Chlorotoluene	ND	0.50	ug/L							
Dibromochloromethane	ND	1.0	ug/L							
Dibromomethane	ND	0.50	ug/L							
1,2-Dichlorobenzene	ND	0.50	ug/L							
1,3-Dichlorobenzene	ND	0.50	ug/L							
1,4-Dichlorobenzene	ND	0.50	ug/L							
Dichlorodifluoromethane	ND	0.50	ug/L							
1,1-Dichloroethane	ND	0.50	ug/L							
1,2-Dichloroethane	ND	0.50	ug/L							
1,1-Dichloroethene	ND	0.50	ug/L							
cis-1,2-Dichloroethene	ND	0.50	ug/L							
trans-1,2-Dichloroethene	ND	0.50	ug/L							
1,3-Dichloropropene (total)	ND	0.50	ug/L							
1,2-Dichloropropane	ND	0.50	ug/L							
1,3-Dichloropropane	ND	0.50	ug/L							
2,2-Dichloropropane	ND	0.50	ug/L							
1,1-Dichloropropene	ND	0.50	ug/L							

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501 Project Number: [none]

Reported: 09/17/21 10:32

A 1.40	D 1:	Reporting	** **	Spike	Source	A/DEC	%REC	D.DD	RPD	Els -
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AI13372 - VOAs in Water GCMS										
Blank (AI13372-BLK1)				Prepared: (09/07/21 A	nalyzed: 09	/08/21			
cis-1,3-Dichloropropene	ND	0.50	ug/L							
trans-1,3-Dichloropropene	ND	0.50	ug/L							
Ethylbenzene	ND	0.50	ug/L							
Hexachlorobutadiene	ND	0.50	ug/L							
Isopropylbenzene	ND	0.50	ug/L							
p-Isopropyltoluene	ND	0.50	ug/L							
Methyl ethyl ketone	ND	5.0	ug/L							
Methyl isobutyl ketone	ND	5.0	ug/L							
Methyl tert-butyl ether	ND	3.0	ug/L							
Methylene chloride	ND	0.50	ug/L							
Naphthalene	ND	0.50	ug/L							
n-Propylbenzene	ND	0.50	ug/L							
Styrene	ND	0.50	ug/L							
1,1,1,2-Tetrachloroethane	ND	0.50	ug/L							
1,1,2,2-Tetrachloroethane	ND	0.50	ug/L							
Tetrachloroethene	ND	0.50	ug/L							
Toluene	ND	0.50	ug/L							
1,2,3-Trichlorobenzene	ND	0.50	ug/L							
1,2,4-Trichlorobenzene	ND	0.50	ug/L							
1,1,1-Trichloroethane	ND	0.50	ug/L							
1,1,2-Trichloroethane	ND	0.50	ug/L							
Trichloroethene	ND	0.50	ug/L							
Trichlorofluoromethane	ND	5.0	ug/L							
Trichlorotrifluoroethane	ND	10	ug/L							
1,2,4-Trimethylbenzene	ND	0.50	ug/L							
1,3,5-Trimethylbenzene	ND	0.50	ug/L							
Vinyl chloride	ND	0.50	ug/L							
m,p-Xylene	ND	0.50	ug/L							
o-Xylene	ND	0.50	ug/L							
Xylenes (total)	ND	0.50	ug/L							
Trihalomethanes (total)	ND	0.50	ug/L							
Surrogate: Bromofluorobenzene	27.4		ug/L	25.0		110	70-130			
Surrogate: Dibromofluoromethane	30.3		ug/L	25.0		121	70-130			
Surrogate: Toluene-d8	26.5		ug/L	25.0		106	70-130			

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501 Project Number: [none]

Reported: 09/17/21 10:32

-										
Analyte(s)	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AI13372 - VOAs in Water GCMS										
LCS (AI13372-BS1)				Prepared: (09/07/21 Ar	nalyzed: 09	/08/21			
Acetone	24.4	5.0	ug/L	20.0		122	70-130			
Acrylonitrile	5.16	5.0	ug/L	5.00		103	70-130			
Benzene	4.78	0.50	ug/L	5.00		95.6	70-130			
Bromobenzene	4.89	0.50	ug/L	5.00		97.8	70-130			
Bromochloromethane	5.01	0.50	ug/L	5.00		100	70-130			
Bromodichloromethane	4.38	1.0	ug/L	5.00		87.6	70-130			
Bromoform	4.21	1.0	ug/L	5.00		84.2	70-130			
Bromomethane	6.12	0.50	ug/L	5.00		122	70-130			
n-Butylbenzene	4.82	0.50	ug/L	5.00		96.4	70-130			
sec-Butylbenzene	5.11	0.50	ug/L	5.00		102	70-130			
tert-Butylbenzene	4.96	0.50	ug/L	5.00		99.2	70-130			
Carbon disulfide	5.23	0.50	ug/L	5.00		105	70-130			
Carbon tetrachloride	4.41	0.50	ug/L	5.00		88.2	70-130			
Chlorobenzene	4.63	0.50	ug/L	5.00		92.6	70-130			
Chloroethane	4.78	0.50	ug/L	5.00		95.6	70-130			
Chloroform	4.57	1.0	ug/L	5.00		91.4	70-130			
Chloromethane	5.65	0.50	ug/L	5.00		113	70-130			
2-Chlorotoluene	4.98	0.50	ug/L	5.00		99.6	70-130			
4-Chlorotoluene	4.71	0.50	ug/L	5.00		94.2	70-130			
Dibromochloromethane	4.11	1.0	ug/L	5.00		82.2	70-130			
Dibromomethane	4.48	0.50	ug/L	5.00		89.6	70-130			
1,2-Dichlorobenzene	4.45	0.50	ug/L	5.00		89.0	70-130			
1,3-Dichlorobenzene	4.73	0.50	ug/L	5.00		94.6	70-130			
1,4-Dichlorobenzene	4.36	0.50	ug/L	5.00		87.2	70-130			
Dichlorodifluoromethane	5.63	0.50	ug/L	5.00		113	70-130			
1,1-Dichloroethane	5.04	0.50	ug/L	5.00		101	70-130			
1,2-Dichloroethane	4.30	0.50	ug/L	5.00		86.0	70-130			
1,1-Dichloroethene	4.49	0.50	ug/L	5.00		89.8	70-130			
cis-1,2-Dichloroethene	4.99	0.50	ug/L	5.00		99.8	70-130			
trans-1,2-Dichloroethene	5.05	0.50	ug/L	5.00		101	70-130			
1,2-Dichloropropane	4.22	0.50	ug/L	5.00		84.4	70-130			
1,3-Dichloropropane	4.57	0.50	ug/L	5.00		91.4	70-130			
2,2-Dichloropropane	5.04	0.50	ug/L	5.00		101	70-130			
1,1-Dichloropropene	4.98	0.50	ug/L	5.00		99.6	70-130			
cis-1,3-Dichloropropene	4.22	0.50	ug/L	5.00		84.4	70-130			

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501 Project Number: [none]

Reported: 09/17/21 10:32

Analyte(s)	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Analyte(s)	Result	LIIIII	Ullits	Level	Resuit	/0KEC	Lillius	KFD	Liiiit	Tiug
Batch AI13372 - VOAs in Water GCMS										
LCS (AI13372-BS1)				Prepared: (09/07/21 Aı	nalyzed: 09	/08/21			
trans-1,3-Dichloropropene	4.25	0.50	ug/L	5.00		85.0	70-130			
Ethylbenzene	4.74	0.50	ug/L	5.00		94.8	70-130			
Hexachlorobutadiene	4.23	0.50	ug/L	5.00		84.6	70-130			
Isopropylbenzene	5.08	0.50	ug/L	5.00		102	70-130			
p-Isopropyltoluene	5.00	0.50	ug/L	5.00		100	70-130			
Methyl ethyl ketone	9.51	5.0	ug/L	10.0		95.1	70-130			
Methyl isobutyl ketone	8.98	5.0	ug/L	10.0		89.8	70-130			
Methyl tert-butyl ether	4.89	3.0	ug/L	5.00		97.8	70-130			
Methylene chloride	5.74	0.50	ug/L	5.00		115	70-130			
Naphthalene	4.25	0.50	ug/L	5.00		85.0	70-130			
n-Propylbenzene	4.90	0.50	ug/L	5.00		98.0	70-130			
Styrene	4.52	0.50	ug/L	5.00		90.4	70-130			
1,1,1,2-Tetrachloroethane	4.44	0.50	ug/L	5.00		88.8	70-130			
1,1,2,2-Tetrachloroethane	4.72	0.50	ug/L	5.00		94.4	70-130			
Tetrachloroethene	4.37	0.50	ug/L	5.00		87.4	70-130			
Toluene	4.75	0.50	ug/L	5.00		95.0	70-130			
1,2,3-Trichlorobenzene	4.26	0.50	ug/L	5.00		85.2	70-130			
1,2,4-Trichlorobenzene	4.15	0.50	ug/L	5.00		83.0	70-130			
1,1,1-Trichloroethane	4.94	0.50	ug/L	5.00		98.8	70-130			
1,1,2-Trichloroethane	4.50	0.50	ug/L	5.00		90.0	70-130			
Trichloroethene	4.71	0.50	ug/L	5.00		94.2	70-130			
Trichlorofluoromethane	5.28	5.0	ug/L	5.00		106	70-130			
Trichlorotrifluoroethane	5.61	10	ug/L	5.00		112	70-130			
1,2,4-Trimethylbenzene	4.96	0.50	ug/L	5.00		99.2	70-130			
1,3,5-Trimethylbenzene	4.90	0.50	ug/L	5.00		98.0	70-130			
Vinyl chloride	4.00	0.50	ug/L	5.00		80.0	70-130			
m,p-Xylene	9.45	0.50	ug/L	10.0		94.5	70-130			
o-Xylene	4.83	0.50	ug/L	5.00		96.6	70-130			
Xylenes (total)	14.3	0.50	ug/L	15.0		95.2	70-130			
Surrogate: Bromofluorobenzene	26.8		ug/L	25.0		107	70-130			
Surrogate: Dibromofluoromethane	26.8		ug/L	25.0		107	70-130			
Surrogate: Toluene-d8	25.5		ug/L	25.0		102	70-130			

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501 Project Number: [none]

Reported: 09/17/21 10:32

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AI13372 - VOAs in Water GCMS										
LCS Dup (AI13372-BSD1)				Prepared: (09/07/21 Aı	nalyzed: 09	/08/21			
Acetone	24.2	5.0	ug/L	20.0		121	70-130	0.659	30	
Acrylonitrile	5.75	5.0	ug/L	5.00		115	70-130	10.8	30	
Benzene	4.80	0.50	ug/L	5.00		96.0	70-130	0.418	30	
Bromobenzene	4.98	0.50	ug/L	5.00		99.6	70-130	1.82	30	
Bromochloromethane	5.36	0.50	ug/L	5.00		107	70-130	6.75	30	
Bromodichloromethane	4.41	1.0	ug/L	5.00		88.2	70-130	0.683	30	
Bromoform	4.25	1.0	ug/L	5.00		85.0	70-130	0.946	30	
Bromomethane	4.86	0.50	ug/L	5.00		97.2	70-130	23.0	30	
n-Butylbenzene	4.78	0.50	ug/L	5.00		95.6	70-130	0.833	30	
sec-Butylbenzene	5.20	0.50	ug/L	5.00		104	70-130	1.75	30	
tert-Butylbenzene	5.06	0.50	ug/L	5.00		101	70-130	2.00	30	
Carbon disulfide	5.59	0.50	ug/L	5.00		112	70-130	6.65	30	
Carbon tetrachloride	4.75	0.50	ug/L	5.00		95.0	70-130	7.42	30	
Chlorobenzene	4.72	0.50	ug/L	5.00		94.4	70-130	1.93	30	
Chloroethane	3.77	0.50	ug/L	5.00		75.4	70-130	23.6	30	
Chloroform	4.80	1.0	ug/L	5.00		96.0	70-130	4.91	30	
Chloromethane	5.80	0.50	ug/L	5.00		116	70-130	2.62	30	
2-Chlorotoluene	5.01	0.50	ug/L	5.00		100	70-130	0.601	30	
4-Chlorotoluene	4.82	0.50	ug/L	5.00		96.4	70-130	2.31	30	
Dibromochloromethane	4.14	1.0	ug/L	5.00		82.8	70-130	0.727	30	
Dibromomethane	4.51	0.50	ug/L	5.00		90.2	70-130	0.667	30	
1,2-Dichlorobenzene	4.46	0.50	ug/L	5.00		89.2	70-130	0.224	30	
1,3-Dichlorobenzene	4.89	0.50	ug/L	5.00		97.8	70-130	3.33	30	
1,4-Dichlorobenzene	4.38	0.50	ug/L	5.00		87.6	70-130	0.458	30	
Dichlorodifluoromethane	5.67	0.50	ug/L	5.00		113	70-130	0.708	30	
1,1-Dichloroethane	5.34	0.50	ug/L	5.00		107	70-130	5.78	30	
1,2-Dichloroethane	4.78	0.50	ug/L	5.00		95.6	70-130	10.6	30	
1,1-Dichloroethene	4.89	0.50	ug/L	5.00		97.8	70-130	8.53	30	
rans-1,2-Dichloroethene	5.44	0.50	ug/L	5.00		109	70-130	7.44	30	
cis-1,2-Dichloroethene	5.38	0.50	ug/L	5.00		108	70-130	7.52	30	
1,2-Dichloropropane	4.30	0.50	ug/L	5.00		86.0	70-130	1.88	30	
1,3-Dichloropropane	4.54	0.50	ug/L	5.00		90.8	70-130	0.659	30	
2,2-Dichloropropane	6.03	0.50	ug/L	5.00		121	70-130	17.9	30	
1,1-Dichloropropene	4.83	0.50	ug/L	5.00		96.6	70-130	3.06	30	
eis-1,3-Dichloropropene	4.57	0.50	ug/L	5.00		91.4	70-130	7.96	30	

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501 Project Number: [none]

Reported: 09/17/21 10:32

		Reporting		Spike	Source		%REC		RPD	T21
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AI13372 - VOAs in Water GCMS										
LCS Dup (AI13372-BSD1)				Prepared: (09/07/21 A	nalyzed: 09	/08/21			
trans-1,3-Dichloropropene	4.41	0.50	ug/L	5.00		88.2	70-130	3.70	30	
Ethylbenzene	4.79	0.50	ug/L	5.00		95.8	70-130	1.05	30	
Hexachlorobutadiene	4.20	0.50	ug/L	5.00		84.0	70-130	0.712	30	
Isopropylbenzene	5.15	0.50	ug/L	5.00		103	70-130	1.37	30	
p-Isopropyltoluene	5.13	0.50	ug/L	5.00		103	70-130	2.57	30	
Methyl ethyl ketone	10.4	5.0	ug/L	10.0		104	70-130	8.94	30	
Methyl tert-butyl ether	5.64	3.0	ug/L	5.00		113	70-130	14.2	30	
Methyl isobutyl ketone	9.18	5.0	ug/L	10.0		91.8	70-130	2.20	30	
Methylene chloride	6.22	0.50	ug/L	5.00		124	70-130	8.03	30	
Naphthalene	4.33	0.50	ug/L	5.00		86.6	70-130	1.86	30	
n-Propylbenzene	5.03	0.50	ug/L	5.00		101	70-130	2.62	30	
Styrene	4.61	0.50	ug/L	5.00		92.2	70-130	1.97	30	
1,1,1,2-Tetrachloroethane	4.60	0.50	ug/L	5.00		92.0	70-130	3.54	30	
1,1,2,2-Tetrachloroethane	4.79	0.50	ug/L	5.00		95.8	70-130	1.47	30	
Tetrachloroethene	4.35	0.50	ug/L	5.00		87.0	70-130	0.459	30	
Toluene	4.81	0.50	ug/L	5.00		96.2	70-130	1.26	30	
1,2,3-Trichlorobenzene	4.31	0.50	ug/L	5.00		86.2	70-130	1.17	30	
1,2,4-Trichlorobenzene	4.21	0.50	ug/L	5.00		84.2	70-130	1.44	30	
1,1,1-Trichloroethane	5.15	0.50	ug/L	5.00		103	70-130	4.16	30	
1,1,2-Trichloroethane	4.53	0.50	ug/L	5.00		90.6	70-130	0.664	30	
Trichloroethene	4.69	0.50	ug/L	5.00		93.8	70-130	0.426	30	
Trichlorofluoromethane	5.39	5.0	ug/L	5.00		108	70-130	2.06	30	
Trichlorotrifluoroethane	6.12	10	ug/L	5.00		122	70-130	8.70	30	
1,2,4-Trimethylbenzene	5.14	0.50	ug/L	5.00		103	70-130	3.56	30	
1,3,5-Trimethylbenzene	4.94	0.50	ug/L	5.00		98.8	70-130	0.813	30	
Vinyl chloride	3.58	0.50	ug/L	5.00		71.6	70-130	11.1	30	
m,p-Xylene	9.74	0.50	ug/L	10.0		97.4	70-130	3.02	30	
o-Xylene	4.95	0.50	ug/L	5.00		99.0	70-130	2.45	30	
Xylenes (total)	14.7	0.50	ug/L	15.0		97.9	70-130	2.83	30	
Surrogate: Bromofluorobenzene	26.6		ug/L	25.0		107	70-130			
Surrogate: Dibromofluoromethane	28.0		ug/L	25.0		112	70-130			
Surrogate: Toluene-d8	25.6		ug/L	25.0		102	70-130			

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501 Project Number: [none]

Reported: 09/17/21 10:32

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AI13372 - VOAs in Water GCMS										
Matrix Spike (AI13372-MS1)	Sour	ce: 21H377	3-01	Prepared: (09/07/21 A	nalyzed: 09	/08/21			
Acetone	25.6	5.0	ug/L	20.0	ND	128	70-130			
Acrylonitrile	4.59	5.0	ug/L	5.00	ND	91.8	70-130			
Benzene	5.20	0.50	ug/L	5.00	ND	104	70-130			
Bromobenzene	5.50	0.50	ug/L	5.00	ND	110	70-130			
Bromochloromethane	4.83	0.50	ug/L	5.00	ND	96.6	70-130			
Bromodichloromethane	10.2	1.0	ug/L	5.00	4.46	116	70-130			
Bromoform	8.99	1.0	ug/L	5.00	2.19	136	70-130			QM-05
Bromomethane	3.59	0.50	ug/L	5.00	ND	71.8	70-130			
n-Butylbenzene	5.91	0.50	ug/L	5.00	ND	118	70-130			
sec-Butylbenzene	5.75	0.50	ug/L	5.00	ND	115	70-130			
tert-Butylbenzene	5.60	0.50	ug/L	5.00	ND	112	70-130			
Carbon disulfide	4.85	0.50	ug/L	5.00	ND	97.0	70-130			
Carbon tetrachloride	4.87	0.50	ug/L	5.00	ND	97.4	70-130			
Chlorobenzene	5.33	0.50	ug/L	5.00	ND	107	70-130			
Chloroethane	4.69	0.50	ug/L	5.00	ND	93.8	70-130			
Chloroform	7.83	1.0	ug/L	5.00	3.25	91.6	70-130			
Chloromethane	6.24	0.50	ug/L	5.00	ND	125	70-130			
2-Chlorotoluene	5.53	0.50	ug/L	5.00	ND	111	70-130			
4-Chlorotoluene	5.43	0.50	ug/L	5.00	ND	109	70-130			
Dibromochloromethane	11.3	1.0	ug/L	5.00	4.85	128	70-130			
Dibromomethane	4.76	0.50	ug/L	5.00	ND	95.2	70-130			
1,2-Dichlorobenzene	4.99	0.50	ug/L	5.00	ND	99.8	70-130			
1,3-Dichlorobenzene	5.27	0.50	ug/L	5.00	ND	105	70-130			
1,4-Dichlorobenzene	5.02	0.50	ug/L	5.00	ND	100	70-130			
Dichlorodifluoromethane	6.10	0.50	ug/L	5.00	ND	122	70-130			
1,1-Dichloroethane	4.94	0.50	ug/L	5.00	ND	98.8	70-130			
1,2-Dichloroethane	4.73	0.50	ug/L	5.00	ND	94.6	70-130			
1,1-Dichloroethene	4.50	0.50	ug/L	5.00	ND	90.0	70-130			
cis-1,2-Dichloroethene	4.90	0.50	ug/L	5.00	ND	98.0	70-130			
trans-1,2-Dichloroethene	4.90	0.50	ug/L	5.00	ND	98.0	70-130			
1,2-Dichloropropane	4.83	0.50	ug/L	5.00	ND	96.6	70-130			
1,3-Dichloropropane	5.29	0.50	ug/L	5.00	ND	106	70-130			
2,2-Dichloropropane	6.00	0.50	ug/L	5.00	ND	120	70-130			
1,1-Dichloropropene	5.33	0.50	ug/L	5.00	ND	107	70-130			
cis-1,3-Dichloropropene	4.94	0.50	ug/L	5.00	ND	98.8	70-130			

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501 Project Number: [none]

Reported: 09/17/21 10:32

	n .	Reporting	** .	Spike	Source	0/8==	%REC	n	RPD	T-1
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AI13372 - VOAs in Water GCMS										
Matrix Spike (AI13372-MS1)	Soui	rce: 21H377	3-01	Prepared: (09/07/21 A	nalyzed: 09	/08/21			
trans-1,3-Dichloropropene	4.31	0.50	ug/L	5.00	ND	86.2	70-130			
Ethylbenzene	5.57	0.50	ug/L	5.00	ND	111	70-130			
Hexachlorobutadiene	5.23	0.50	ug/L	5.00	ND	105	70-130			
Isopropylbenzene	5.63	0.50	ug/L	5.00	ND	113	70-130			
p-Isopropyltoluene	5.66	0.50	ug/L	5.00	ND	113	70-130			
Methyl ethyl ketone	10.9	5.0	ug/L	10.0	ND	109	70-130			
Methyl isobutyl ketone	10.5	5.0	ug/L	10.0	ND	105	70-130			
Methyl tert-butyl ether	3.77	3.0	ug/L	5.00	ND	75.4	70-130			
Methylene chloride	5.18	0.50	ug/L	5.00	ND	104	70-130			
Naphthalene	4.65	0.50	ug/L	5.00	ND	93.0	70-130			
n-Propylbenzene	5.59	0.50	ug/L	5.00	ND	112	70-130			
Styrene	5.51	0.50	ug/L	5.00	ND	110	70-130			
1,1,1,2-Tetrachloroethane	4.83	0.50	ug/L	5.00	ND	96.6	70-130			
1,1,2,2-Tetrachloroethane	4.82	0.50	ug/L	5.00	ND	96.4	70-130			
Tetrachloroethene	5.08	0.50	ug/L	5.00	ND	102	70-130			
Toluene	5.49	0.50	ug/L	5.00	ND	110	70-130			
1,2,3-Trichlorobenzene	4.71	0.50	ug/L	5.00	ND	94.2	70-130			
1,2,4-Trichlorobenzene	4.68	0.50	ug/L	5.00	ND	93.6	70-130			
1,1,1-Trichloroethane	5.21	0.50	ug/L	5.00	ND	104	70-130			
1,1,2-Trichloroethane	5.15	0.50	ug/L	5.00	ND	103	70-130			
Trichloroethene	5.20	0.50	ug/L	5.00	ND	104	70-130			
Trichlorofluoromethane	5.85	5.0	ug/L	5.00	ND	117	70-130			
Trichlorotrifluoroethane	6.06	10	ug/L	5.00	ND	121	70-130			
1,2,4-Trimethylbenzene	5.61	0.50	ug/L	5.00	ND	112	70-130			
1,3,5-Trimethylbenzene	5.49	0.50	ug/L	5.00	ND	110	70-130			
Vinyl chloride	5.13	0.50	ug/L	5.00	ND	103	70-130			
m,p-Xylene	11.4	0.50	ug/L	10.0	ND	114	70-130			
o-Xylene	6.16	0.50	ug/L	5.00	ND	123	70-130			
Xylenes (total)	17.6	0.50	ug/L	15.0	ND	117	70-130			
Surrogate: Bromofluorobenzene	25.8		ug/L	25.0		103	70-130			
Surrogate: Dibromofluoromethane	23.1		ug/L	25.0		92.2	70-130			
Surrogate: Toluene-d8	25.5		ug/L	25.0		102	70-130			

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501 Project Number: [none]

Reported: 09/17/21 10:32

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AI13372 - VOAs in Water GCMS										
Matrix Spike Dup (AI13372-MSD1)	Sour	ce: 21H377	3-01	Prepared: (09/07/21 A	nalyzed: 09	/08/21			
Acetone	15.7	5.0	ug/L	20.0	ND	78.6	70-130	47.7	30	QM-05
Acrylonitrile	3.95	5.0	ug/L	5.00	ND	79.0	70-130	15.0	30	
Benzene	5.23	0.50	ug/L	5.00	ND	105	70-130	0.575	30	
Bromobenzene	5.68	0.50	ug/L	5.00	ND	114	70-130	3.22	30	
Bromochloromethane	4.63	0.50	ug/L	5.00	ND	92.6	70-130	4.23	30	
Bromodichloromethane	10.7	1.0	ug/L	5.00	4.46	125	70-130	4.49	30	
Bromoform	11.4	1.0	ug/L	5.00	2.19	185	70-130	24.1	30	QM-05
Bromomethane	4.42	0.50	ug/L	5.00	ND	88.4	70-130	20.7	30	
n-Butylbenzene	5.93	0.50	ug/L	5.00	ND	119	70-130	0.338	30	
sec-Butylbenzene	5.94	0.50	ug/L	5.00	ND	119	70-130	3.25	30	
tert-Butylbenzene	5.82	0.50	ug/L	5.00	ND	116	70-130	3.85	30	
Carbon disulfide	5.12	0.50	ug/L	5.00	ND	102	70-130	5.42	30	
Carbon tetrachloride	5.16	0.50	ug/L	5.00	ND	103	70-130	5.78	30	
Chlorobenzene	5.37	0.50	ug/L	5.00	ND	107	70-130	0.748	30	
Chloroethane	4.64	0.50	ug/L	5.00	ND	92.8	70-130	1.07	30	
Chloroform	8.03	1.0	ug/L	5.00	3.25	95.6	70-130	2.52	30	
Chloromethane	7.90	0.50	ug/L	5.00	ND	158	70-130	23.5	30	QM-05
2-Chlorotoluene	5.65	0.50	ug/L	5.00	ND	113	70-130	2.15	30	
4-Chlorotoluene	5.36	0.50	ug/L	5.00	ND	107	70-130	1.30	30	
Dibromochloromethane	12.6	1.0	ug/L	5.00	4.85	156	70-130	11.5	30	QM-05
Dibromomethane	4.40	0.50	ug/L	5.00	ND	88.0	70-130	7.86	30	
1,2-Dichlorobenzene	4.96	0.50	ug/L	5.00	ND	99.2	70-130	0.603	30	
1,3-Dichlorobenzene	5.40	0.50	ug/L	5.00	ND	108	70-130	2.44	30	
1,4-Dichlorobenzene	5.00	0.50	ug/L	5.00	ND	100	70-130	0.399	30	
Dichlorodifluoromethane	6.32	0.50	ug/L	5.00	ND	126	70-130	3.54	30	
1,1-Dichloroethane	5.12	0.50	ug/L	5.00	ND	102	70-130	3.58	30	
1,2-Dichloroethane	4.23	0.50	ug/L	5.00	ND	84.6	70-130	11.2	30	
1,1-Dichloroethene	4.73	0.50	ug/L	5.00	ND	94.6	70-130	4.98	30	
trans-1,2-Dichloroethene	5.03	0.50	ug/L	5.00	ND	101	70-130	2.62	30	
cis-1,2-Dichloroethene	4.83	0.50	ug/L	5.00	ND	96.6	70-130	1.44	30	
1,2-Dichloropropane	4.78	0.50	ug/L	5.00	ND	95.6	70-130	1.04	30	
1,3-Dichloropropane	5.13	0.50	ug/L	5.00	ND	103	70-130	3.07	30	
2,2-Dichloropropane	6.27	0.50	ug/L	5.00	ND	125	70-130	4.40	30	
1,1-Dichloropropene	5.50	0.50	ug/L	5.00	ND	110	70-130	3.14	30	
cis-1,3-Dichloropropene	5.25	0.50	ug/L	5.00	ND	105	70-130	6.08	30	

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501 Project Number: [none]

Reported: 09/17/21 10:32

		Reporting		Spike	Source		%REC		RPD	El
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AI13372 - VOAs in Water GCMS										
Matrix Spike Dup (AI13372-MSD1)	Sour	ce: 21H377	3-01	Prepared: (09/07/21 Aı	nalyzed: 09	/08/21			
trans-1,3-Dichloropropene	4.34	0.50	ug/L	5.00	ND	86.8	70-130	0.694	30	
Ethylbenzene	5.69	0.50	ug/L	5.00	ND	114	70-130	2.13	30	
Hexachlorobutadiene	5.22	0.50	ug/L	5.00	ND	104	70-130	0.191	30	
sopropylbenzene	5.83	0.50	ug/L	5.00	ND	117	70-130	3.49	30	
p-Isopropyltoluene	5.91	0.50	ug/L	5.00	ND	118	70-130	4.32	30	
Methyl ethyl ketone	9.57	5.0	ug/L	10.0	ND	95.7	70-130	13.4	30	
Methyl tert-butyl ether	3.70	3.0	ug/L	5.00	ND	74.0	70-130	1.87	30	
Methyl isobutyl ketone	9.05	5.0	ug/L	10.0	ND	90.5	70-130	14.5	30	
Methylene chloride	4.42	0.50	ug/L	5.00	ND	88.4	70-130	15.8	30	
Naphthalene	4.54	0.50	ug/L	5.00	ND	90.8	70-130	2.39	30	
n-Propylbenzene	5.83	0.50	ug/L	5.00	ND	117	70-130	4.20	30	
Styrene	5.58	0.50	ug/L	5.00	ND	112	70-130	1.26	30	
,1,1,2-Tetrachloroethane	4.81	0.50	ug/L	5.00	ND	96.2	70-130	0.415	30	
,1,2,2-Tetrachloroethane	4.65	0.50	ug/L	5.00	ND	93.0	70-130	3.59	30	
etrachloroethene	5.12	0.50	ug/L	5.00	ND	102	70-130	0.784	30	
Coluene	5.50	0.50	ug/L	5.00	ND	110	70-130	0.182	30	
,2,3-Trichlorobenzene	4.72	0.50	ug/L	5.00	ND	94.4	70-130	0.212	30	
,2,4-Trichlorobenzene	4.68	0.50	ug/L	5.00	ND	93.6	70-130	0.00	30	
,1,1-Trichloroethane	5.23	0.50	ug/L	5.00	ND	105	70-130	0.383	30	
,1,2-Trichloroethane	4.82	0.50	ug/L	5.00	ND	96.4	70-130	6.62	30	
richloroethene	5.27	0.50	ug/L	5.00	ND	105	70-130	1.34	30	
richlorofluoromethane	6.27	5.0	ug/L	5.00	ND	125	70-130	6.93	30	
richlorotrifluoroethane	6.46	10	ug/L	5.00	ND	129	70-130	6.39	30	
,2,4-Trimethylbenzene	5.84	0.50	ug/L	5.00	ND	117	70-130	4.02	30	
,3,5-Trimethylbenzene	5.68	0.50	ug/L	5.00	ND	114	70-130	3.40	30	
/inyl chloride	4.97	0.50	ug/L	5.00	ND	99.4	70-130	3.17	30	
n,p-Xylene	11.7	0.50	ug/L	10.0	ND	117	70-130	2.42	30	
-Xylene	6.34	0.50	ug/L	5.00	ND	127	70-130	2.88	30	
Cylenes (total)	18.0	0.50	ug/L	15.0	ND	120	70-130	2.58	30	
urrogate: Bromofluorobenzene	26.2		ug/L	25.0		105	70-130			
Surrogate: Dibromofluoromethane	23.0		ug/L	25.0		92.0	70-130			
Surrogate: Toluene-d8	25.2		ug/L	25.0		101	70-130			

Alpha Analytical Laboratories, Inc.

email: clientservices@alpha-labs.com

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501

Project Number: [none]

Reported: 09/17/21 10:32

Notes and Definitions

QM-01 The spike recovery for this QC sample is outside of established control limits possibly due to a sample matrix interference.

QM-05 The spike recovery was outside acceptance limits for the MS and/or MSD due to matrix interference. The LCS and/or LCSD

were within acceptance limits showing that the laboratory is in control and the data is acceptable.

QM-07 The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS

recovery.

R-01 The Reporting Limit for this analyte has been raised to account for matrix interference.

ND Analyte NOT DETECTED at or above the reporting limit

dry Sample results reported on a dry weight basis

REC Recovery

RPD Relative Percent Difference

Corporate Laboratory (1551) 707-468-0401 208 Mason Street, Ukiah CA 95482

Los Angeles (Service Center) 310-743-5711 1230 E 233rd St #205, Carson CA 90745

San Diego Laboratory (3055) 760-930-2555 2722 Loker Ave West, Ste A, Carlsbad CA 92010 North Bay Laboratory (2303) 707-769-3128 110 Liberty Street, Petaluma CA 94952

Bay Area Laboratory (2728) 925-828-6226 262 Rickenbacker Circle, Livermore CA 94551

Central Valley Laboratory (2922) 916-686-5190 9090 Union Park Way #113, Elk Grove CA 95624 Chain of Custody Record

Reports and Invoices delivered by email as PDF files

clientservices@alpha-labs.com

Lab No. 21H3513 Pg____ of____

Report to	Invoice	to (if different)		-	_	Pro	ect I	nfo								7	nal	ysis	Rea	iest.		_	,		-	\top	-	ΤΑΊ	-	ł.	Temp '	C.
Company:	Contact:			Pro	ject N			_		┪	,			Ĭ				T	Ť	\neg	$\neg \neg$			П		十		and			Ukiah	
Todd Groundwater				R	ound		SR Wa		Quali	ty							- }									-1	1	0-da	ау	1		
Attn:	Email Address:			Pro	ject N		aselin	е		-															- 1	1		0		├	Livermo	
	Elliali Address.				jeot iv	- COLLIE	<i>)</i> C1.																	ہے	- !	┢	Ŕ	USI	H:	1		TV
Nicole Grimm										_		ress								-				Vec	- 1	ı	5-d	lay 2	5%	L_	<u> </u>	
Phone:	Phone:			PO	Num	ber:				- 1	e ID	ard								J	1			ا ۋِ		ı		0			Elk Gro	ve
510-747-6920										- 1	Sample ID	tal T									ŀ			st - s		┢	2-d		'5%	1		
Physical Address:				Fre	quen	cy:					er S	잍											/ista	Ē		ı		Ó			Petalun	na
2490 Mariner Square Loop, Suite 215, Alai	meda CA 94501			A	\dd-c	ons	/ log	sep	arat	e	ers p	8.03								ł			qns	ည္ကြ		┞		Othe	r	l		
Email address:	<u> </u>	-	Cor	tainer-	P	rese	rvation	工	Matri	×	tain(3	7.00	rg Sp			<u>is</u> ,			ı			8-	&		-		0			Carlsba	id
ngrimm@toddgroundwater.com			1		П					П	ပ်	ĮΞ)2 2(spho			[]	Beta	8			ľ	t of 1	ate				U		1		
Field Sampler - Printed Name and Signature:				┧╽	П		11	重			9.0	8.0	SSiC	Pho	≩	1	ies	8	82				E.	gg Ng	- 1		_	d	ays	┝╌	os Ange	eles
Nicole Grima 2			ial ottle		ខ			g Wa	vater		qun	al 20	ica a:	nia /	8.6		Volat	₽₽	n 226	6 H			PFAS	N P		F	Po	ly si	ze	ĺ	·	
Sample Identification		led on	40mL vial Glass bottle	oly bo	ther a2S2	<u>.</u>		ijki Rije	/astev oil	tper	Total Number of Containers	Co Total 200.8 / U DW 200.8 / Total Hardness	NB Silica as SiO2 200.7	Ammonia / Phosphorus	Cr6 218,6 DW	T0C	524.2 Volatiles Full List	Gross Alpha & Beta	Radium 226 & 228	Strontium 90	Tritium	Radon	537.1 PFAS List of 18 - sub Vista	525.2 Nonregulated SVOC tong list - sub Weck		<u>ا</u>	250mL 500mL		alf G	Sc	urce C	ode
	Time				OZ			╬	S (0)	P		Н			러	\dashv	-	-	- -	"	ᅴ	-	C)	۵	+	7	10	튀	Ŧ ĕ	\vdash		
	9.30	9/26/21	$\sqcup \sqcup$	<u>* </u>	Ш	<u></u>	<u>* </u>	\perp	Ш	Ц	2	х	x			_	4	4	4	4	_			\sqcup	4	- '	1	Ц	\perp	<u> </u>		
	'			×			x			Н	1	l		х)			j									×		1		
			П	x			x				1				x											٦,	$_{x}\square$	П	\top			
			x	$\forall \uparrow$	+	\parallel	$\frac{1}{x}$	T	T	Н	2	Н				x	\dashv	\dashv	\dashv	7	\dashv	_		H	\top	\dagger	+	H	+			
			×	+	+		++	+	H	H	4	H		\vdash		-+	_	\dashv	\dashv	\dashv	-	-		\vdash	+	+	+	Н	+	 		
40 5 00 4 00				\dashv	╂	×	+	╀	H	Н	-	Н		\vdash	_	\dashv	×	\dashv	_	4	\dashv	_	_	$\vdash \vdash$	\perp	+	44	igdash	+	<u> </u>		
12-5-23A20			Ш	<u> </u>	┷	Ц	 '	`	LL	Ц	1	Ш					4	×	_	_	_	_		Ш	\perp	\bot	Ш	×	Ш	<u> </u>		
				x		:	<u> </u>		Ш		4			_					x	x								×				
			x] [;	×			2		_								x	1				Т	П					
			×	\top	╅	Ħ	11,	X T	Ħ	П	2	Ħ					┪	\dashv	┪	\exists		x		П	_	十	H	H	\top			
			H	+	+	\vdash	++	╁	╁	╁┨	2	H	_			\dashv	┪	┥	-	-				\vdash	\dashv	+	╁┥	├┼	╌┼┤	$\vdash \vdash$		
			$\mid \downarrow \downarrow \downarrow$	* 	+	H	╀	╀	oxdot	H		┞╌┤		$\vdash \downarrow$		_	4	4	4	4	_	4	×	\sqcup	_	- *	Ш	Н	4	<u> </u>		
			×	ot		×	\coprod	L			2													×								
Relinquished by		Received	by.			1		Tim	e,`	2		,	Date	, ,				L ,		•		Α	ddit	ional	Requ	iren	ients	Ş. s		<u>-</u>	14	
2		27					112	13				8/3	26/	21,		(CA I					S	tate S	System	ı No:	:					
U		18					IS	2.6	$\overline{\mathcal{O}}$		P	T	26	$\sqrt{\epsilon}$	71	`		Writ	e-O	n El	<u> </u>				_		_					
0		-5 K				-				一	_	H	26	1		-	`	CA	_	Facility Global ID No:				_ [
		7/2				+	27	ر ا	<u> </u>	\dashv	`	ŊΥ	0	0	`	'	GeoTracker Sampling Company Log Code:															
	1															EDF Report Sampling Company Log Code:					— J											

WORK ORDER

Printed: 8/27/2021 2:13:39PM

21H3513

Alpha Analytical Laboratories Ukiah to North Bay Chain of Custody

r Quality Baseline	Client Code: DP_ Project Number: [non			i: Round 3 ASR Water Quality 1 #:
kler				
deg C	All containers rece	rived and intact:	YES	NO
Department	Expires	Comments		
er] Sampled 08/26/2 NB Metals	21 09:30 02/22/22 09:30			
	er] Sampled 08/26/2	15:00 (10 day TAT) kler Date Received: Date Logged All containers received: Department Expires Par Sampled 08/26/21 09:30	15:00 (10 day TAT) kler	15:00 (10 day TAT) kler

Relinquished By

Date

Time

Received By

Date

Time

Received By

Date

Time

Received By

Date

Time

Alpha Analytical Laboratories, Inc.

email: clientservices@alpha-labs.com

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

17 September 2021

Todd Groundwater

Attn: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Alameda, CA 94501

RE: Round 3 ASR Water Quality Baseline

Work Order: 21I1311

Enclosed are the results of analyses for samples received by the laboratory on 09/10/21 10:20. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jeanette L. Poplin For David S. Pingatore

Jeanette Popli

Project Manager

Alpha Analytical Laboratories, Inc.

email: clientservices@alpha-labs.com

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501

Project Number: [none]

Reported: 09/17/21 14:14

Bay Area: 262 Rickenbacker Circle | Livermore, CA 94551 | T: 925-828-6226 | F: 925-828-6309 | ELAP# 2728 Central Valley: 9090 Union Park Way Suite 113 | Elk Grove, CA 95624 | T: 916-686-5190 | F: 916-686-5192 | ELAP# 2922 North Bay: 110 Liberty Street | Petaluma, CA 94952 | T: 707-769-3128 | F: 707-769-8093 | ELAP# 2303 San Diego: 2722 Loker Avenue West Suite A | Carlsbad, CA 92010 | T: 760-930-2555 | F: 760-930-2510 | ELAP# 3055

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
13-5-10L1 (Ref 21H2826-01)	2111311-01	Water	08/19/21 08:30	09/10/21 10:20
3121 (Ref 21H2633-01)	2111311-02	Water	08/18/21 09:10	09/10/21 10:20
12-5-23A20 (Ref 21H2633-02)	2111311-03	Water	08/18/21 09:55	09/10/21 10:20
3357 (Ref 21H2633-03)	2111311-04	Water	08/18/21 10:30	09/10/21 10:20
3123 (Ref 21H2633-04)	2111311-05	Water	08/18/21 11:50	09/10/21 10:20
3127 (Ref 21H2633-05)	2111311-06	Water	08/18/21 12:25	09/10/21 10:20
Hollister #2 (Ref 21H2633-06)	2111311-07	Water	08/18/21 13:15	09/10/21 10:20

Received date indicates date additional analyses requested. Actual received date was 8/19/21@ 22:00 (21H5826), Rec 8/18/21 @ 22:15 (21H2633)

Reported:

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215 Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501 09/17/21 14:14 Project Number: [none]

	Result	Reporting Limit	Dilution	Batch	Prepared	Analyzed	ELAP#	Method	Note
13-5-10L1 (Ref 21H2826-01) (21I1311-01)		Sample Type:	Water		Sample	d: 08/19/21 08:3	30		
Metals by EPA 200 Series Methods									
Calcium	73 mg/L	0.050	1	AI13785	09/15/21 10:33	09/17/21 13:0	5 2303	EPA 200.7	
Magnesium	88 mg/L	0.050	1	AI13785	09/15/21 10:33	09/17/21 13:0	5 2303	EPA 200.7	
Conventional Chemistry Parameters by APHA/EP	A Methods								
Hardness, Total	542 mg/L	1	1	AI13785	09/15/21 10:33	09/17/21 13:0	5 2303	SM2340B	
3121 (Ref 21H2633-01) (21I1311-02)		Sample Type:	Water		Sample	d: 08/18/21 09:1	10		
Metals by EPA 200 Series Methods									
Calcium	47 mg/L	0.050	1	AI13785	09/15/21 10:33	09/17/21 13:0	5 2303	EPA 200.7	
Magnesium	53 mg/L	0.050	1	AI13785	09/15/21 10:33	09/17/21 13:0	5 2303	EPA 200.7	
Conventional Chemistry Parameters by APHA/EP	A Methods								
Hardness, Total	336 mg/L	1	1	AI13785	09/15/21 10:33	09/17/21 13:0	5 2303	SM2340B	
12-5-23A20 (Ref 21H2633-02) (21I1311-03)		Sample Type:	Water		Sample	d: 08/18/21 09:5	55		
Metals by EPA 200 Series Methods									
Calcium	33 mg/L	0.050	1	AI13785	09/15/21 10:33	09/17/21 13:0	5 2303	EPA 200.7	
Magnesium	46 mg/L	0.050	1	AI13785	09/15/21 10:33	09/17/21 13:0	5 2303	EPA 200.7	
Conventional Chemistry Parameters by APHA/EP	A Methods								
Hardness, Total	271 mg/L	1	1	AI13785	09/15/21 10:33	09/17/21 13:0	5 2303	SM2340B	
3357 (Ref 21H2633-03) (21I1311-04)		Sample Type:	Water		Sample	d: 08/18/21 10:3	30		
Metals by EPA 200 Series Methods									
Calcium	39 mg/L	0.050	1	AI13785	09/15/21 10:33	09/17/21 13:0	5 2303	EPA 200.7	
Magnesium	39 mg/L	0.050	1	AI13785	09/15/21 10:33	09/17/21 13:0	5 2303	EPA 200.7	

Reported:

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215 Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501 09/17/21 14:14 Project Number: [none]

	Result	Reporting Limit I	Dilution	Batch	Prepared	Analyzed	ELAP# Method	Note
3357 (Ref 21H2633-03) (21I1311-04)		Sample Type: V	Vater		Sampleo	1: 08/18/21 10:3	0	
Conventional Chemistry Parameters by APHA/EPA	Methods							
Hardness, Total	259 mg/L	1	1	AI13785	09/15/21 10:33	09/17/21 13:0:	5 2303 SM2340B	
3123 (Ref 21H2633-04) (21I1311-05)		Sample Type: V	Vater		Sampleo	1: 08/18/21 11:5	0	
Metals by EPA 200 Series Methods								
Calcium	42 mg/L	0.050	1	AI13785	09/15/21 10:33	09/17/21 13:0:	5 2303 EPA 200.7	
Magnesium	25 mg/L	0.050	1	AI13785	09/15/21 10:33	09/17/21 13:0:	5 2303 EPA 200.7	
Conventional Chemistry Parameters by APHA/EPA	Methods							
Hardness, Total	209 mg/L	1	1	AI13785	09/15/21 10:33	09/17/21 13:0:	5 2303 SM2340B	
3127 (Ref 21H2633-05) (21I1311-06)		Sample Type: V	Vater		Sampleo	1: 08/18/21 12:2	5	
Metals by EPA 200 Series Methods								
Calcium	41 mg/L	0.050	1	AI13785	09/15/21 10:33	09/17/21 13:0:	5 2303 EPA 200.7	
Magnesium	48 mg/L	0.050	1	AI13785	09/15/21 10:33	09/17/21 13:0:	5 2303 EPA 200.7	
Conventional Chemistry Parameters by APHA/EPA	Methods							
Hardness, Total	300 mg/L	1	1	AI13785	09/15/21 10:33	09/17/21 13:0:	5 2303 SM2340B	
Hollister #2 (Ref 21H2633-06) (21I1311-07)		Sample Type: V	Vater		Sampleo	1: 08/18/21 13:1	5	
Metals by EPA 200 Series Methods								
Calcium	64 mg/L	0.050	1	AI13785	09/15/21 10:33	09/17/21 13:0:	5 2303 EPA 200.7	
Magnesium	76 mg/L	0.050	1	AI13785	09/15/21 10:33	09/17/21 13:0:	5 2303 EPA 200.7	

Result

email: clientservices@alpha-labs.com

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501

Project Number: [none]

Reported: 09/17/21 14:14

Method

Hollister #2 (Ref 21H2633-06) (21I1311-07)

Reporting Limit Dilution Sample Type: Water

Sampled: 08/18/21 13:15

Analyzed

Note

Conventional Chemistry Parameters by APHA/EPA Methods

Hardness, Total

AI13785 09/15/21 10:33

Batch

Prepared

09/17/21 13:05 2303 SM2340B

ELAP#

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501 Project Number: [none]

Reported: 09/17/21 14:14

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
atch AI13785 - NB EPA 200 series										
Blank (AI13785-BLK1)				Prepared: (09/15/21 A	nalyzed: 09	/17/21			
Calcium	ND	0.050	mg/L							
Magnesium	ND	0.050	mg/L							
LCS (AI13785-BS1)				Prepared: (09/15/21 A	nalyzed: 09	/17/21			
Calcium	23.2	0.050	mg/L	25.5		91.0	85-115			
Magnesium	23.3	0.050	mg/L	25.5		91.3	85-115			
LCS Dup (AI13785-BSD1)				Prepared: (09/15/21 A	nalyzed: 09	/17/21			
Calcium	22.9	0.050	mg/L	25.5		90.0	85-115	1.15	20	
Magnesium	23.0	0.050	mg/L	25.5		90.1	85-115	1.31	20	
Duplicate (AI13785-DUP1)	Soi	urce: 21I1311	-03	Prepared: ()9/15/21 Aı	nalyzed: 09	/17/21			
Calcium	34.8	0.050	mg/L		33.1			5.01	20	
Magnesium (1997)	47.9	0.050	mg/L		45.7			4.68	20	

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501 Project Number: [none] Reported:

09/17/21 14:14

Conventional Chemistry Parameters by APHA/EPA Methods - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AI13785 - NB EPA 200 series										
Blank (AI13785-BLK1)				Prepared: 0	09/15/21 A	nalyzed: 09/	/17/21			
Hardness, Total	ND	1	mg/L							
Duplicate (AI13785-DUP1)	Sou	ırce: 21 1311	-03	Prepared: 0	09/15/21 A	nalyzed: 09/	/17/21			
Hardness, Total	284	1	mg/L		271			4.78	20	

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501 Project Number: [none] Reported:

09/17/21 14:14

Notes and Definitions

ND Analyte NOT DETECTED at or above the reporting limit

dry Sample results reported on a dry weight basis

REC Recovery

RPD Relative Percent Difference 217131

262 Rickenbacker Clide, Livermore CA 94551 Bay Area Laboratory (2728) 925-828-6226

Los Angeles (Service Center) 310-743-5711

Fodd Groundwater

Nicole Grimm

ysical Address

510-747-6920

mail address:

Corporate Laboratory (1551) 707-468-0401 208 Mason Street, Ukiah CA 95492

North Bay Laboratory (2303) 707-769-3128 110 Liberty Street, Pétaluma CA 94952

Chain of Custody Record Reports and Involces delivered by email as PDF files clientservices@alpha-labs.com

way atots Solan **79**4683 Source Code Temp °C Uklah Los Angeles Elk Grove Soft Section tadress pseq RUSH: 5-day 25% Standard 10-day 2-day 75% days Hall G × ᄁ 0 0 Sampling Company Log Code: Additional Requirements 7W009 State System No: Facility Global ID No: Metals Digestion ab Filtration for Dissolved Metals × CA DDW Write-On EDT Dissolved 200.8 metals - Ag Al As B Ba Be Cd Ct Cu CA GeoTracker EDF Report Dissolved 200.7 metals - Ca Fe K Mg Na etaliu2 \ 20T \ N as etartiN Alkalinity, Total / Chloride / Fluoride / MSAS × 0 0 Central Valley Laboratory (2922) 916-686-5190 9090 Union Park Way #113, Elk Grove CA 95624 WHL × ~ etsnoirbrag - BN 181 Ò BAL - Color and Turbidity BAL - TCEC GW 30hr Quantitray Total Number of Containers per Sample ID Round 3 ASR Water Quality 922 VVastewater 23/ Drinking Water Project Info Baseline enoN Other Project Number: EONH Project Name: PO Number Frequency Na2S2O3 Other San Diego Laboratory (3055) 760-930-2555 2722 Loker Ave West, Sie A, Carisbad CA 92010 Taj essiĐ Poly bottle 4 × Glass bottle 1230 E 233rd St #205, Carson CA 90745 teiv Jmot Received by Invoice to (if different) 6118 Email.Address: 2490 Mariner Square Loop, Suite 215, Alameda CA 94501 8:30 Time Phone: eld Sampler - Printed Name and Signature Analytical Laboratorics Inc. WATERS, SEDIMENTS, SOLIDS www.alpha-labs.com ngrimm@toddgraundwater.com Sample Identification Refinquished by Niole Grimm 13-5-1017 Raport to

Corporate Leboratory (1651) 707-468-0401 208 Mason Street, Uklah CA 95482

Los Angeles (Service Center) 310-743-5711 1230 E 233rd St #205, Cerson CA 90745

Calpha Alpha Analytical Laboratorius Inc.

2722 Loker Ave West, Ste A, Carlsbad CA 92010 San Diego Laboratory (3055) 760-930-2555

WATERS, SEDIMENTS, SOLIDS www.alpha-labs.com

Central Valley Laboratory (2922) 916-686-5190 9090 Union Park Wpy #113, Elk Grove CA 95624

North Bay Laboratory (2303) 707-769-3128 110 Liberty Street, Petaluma CA 94952

262 Rickenbacker Circle, Livermore CA 94551 Bay Area Laboratory (2728) 925-928-6226

Chain of Custody Record clientservices@alpha-łabs.com Lab No.

11211211

Temp C Reports and Invoices delivered by email as PDF files

Number: Number	Number N	10-043	invoice to (if different)
Chief Chie	Nincipal Water Ninc	Columber Columber	
Coliner Coli	Name Chiner Chi	Character Char	
Chiner C	Coliner Coli	Company Containers per Sample Containers per Sam	
x x x Gibrer Containers per 1 x x x x Habba x x x x Habba x x x x Christing Water Containers per 1 Coliner Coliner Containers per 2 Soliner Coliner Containers per 3 x x x Containers Containers per 3 x BAL - Cotor and Turbidity x BAL - Cotor and Turbidity x BAL - Cotor and Turbidity x BAL - TCEC GW 30hr Quantities x BA	x x x x doose x x x x x doose x x x x x doose x x x x x x doose x x x x x x doose x x x x x x doose x x x x x x doose x x x x x doose x x x x x x doose x x x x x x doose x x x x x x doose x x x x x x doose x x x x x x x x x x x x x x x x x x x	The company of the co	
Chinet C	Coliner Coli	Cheek Chee	
x x x 25203 x y 25203 y 25203 y 25203 y 3019et x y 14003 x x x y 16059 x x x y 16059 x y 25019et y 1619et Dissolved 200.8 metal Dissolved 200.7 metal Dissolved 200.8 metal Dissolved 200.8 metal Dissolved 200.8 metal Dissolved 200.8 metal Dissolved 200.8 metal Dissolved 200.8 metal Dissolved 200.8 metal Dissolved 200.8 metal Dissolved 200.8 metal Dissolved 200.7 metal Dissolved 200.8 metal Dissolved 200.7 metal Dissolved 200.8 metal Dissolved 200.8 metal Dissolved 200.8 metal Dissolved 200.8 metal Dissolved 200.8 metal Dissolved 200.8 metal Dissolved 200.8 metal	Content Cont	1	
Albert A	A Mastawater A Massawater A Mastawater A Massawater A Mastawater A Mas	Helicon Heli	91
x x x bending Washeveter x x x x bindong Washeveter Cother x x x bindong Washeveter Soli Dissolved 3 Dissolved 4 Nitete as t Nit	x x x x decention of the record of the recor	The code Capital Cap	
			L vial ⊕ bodde V bodde ↓
x x x x x x x x x x x x x x x x x x x	x x x x x x x x x x x x x x x x x x x		Pol BID
×	X X X X X X X X X X X X X X X X X X X		+
	X	X X X X X X X X X X	×
× ×		Date. PISTA CADDW Additional Requirements Additional Requirements Additional Requirements Additional Requirements CADW State System No: CA EDF CADW State System No: CA EDF Report Sampling Company Log Code:	×
× × × × × × × × × × × × × × × × × × ×	× × ×	Pate	×
X X X X X X X X X X X X X X X X X X X	x x x x x x x x x x x x x x x x x x x	Pisto CA DDW Pisto On EDT Site CA O CA DDW CA CA CA CA CA CA CA C	
X X X X X X X X X X X X X X X X X X X	x		
X X X X X X X X X X X X X X X X X X X	X X X X X X X X X X X X X X X X X X X		<u> -</u>
	X	P S 2 0 CA DDW P S 2 0 Write-On EDT S 8 2 0 GeoTracker EDF Report	
	x x x x x x x x x x x x x x x x x x x	8/8/2/ CA DDW EDT CA DDW EDT CA Write-On EDT CA CA CA CA CA CA CA CA CA CA CA CA CA	}
X X X X X X X X X X X X X X X X X X X	X X X X X X X X X X X X X X X X X X X	18/21 CA EDF Report	
X X X X X X X X X X	X X X X X X X X X X	18/2/ O GeoTracker EDF Report	
X X X X X X X X X X	X		

<u>_</u>i

Corporate Laboratory (1551) 707-468-0401 208 Mason Street, Uklah CA 95482

Los Angeles (Service Center) 310-743-5711 1230 E 233rd St #205, Carson CA 90745

Calpha Apha Analylical Laboratories Inc.

San Diego Laboratory (3065) 760-930-2566 2722 Loker Ave West, Ste A, Carlebad CA 92010

WATERS, SEDIMENTS, SOLIDS www.alpha-labs.com

North Bay Laboratory (2303) 707-769-3128 110 Liberty Street, Potaluma CA 94952

Central Valley Laboratory (2922) 916-685-5190 9090 Union Park Wky #113, Elk Grove CA 95624

Bay Area Laboratory (2728) 925-928-6228 262 Rickenbacker Circle, Livermore CA 94551

Chain of Custody Record 211311

Reports and Involces delivered by email as PDF files

9 clientservices@alpha-labs.com

Policet Number: Policet Nu		invoice to (if different)		Project Info			An	Analysis Request	luost			TAT	
Thomas T		Contact	Project N	ame:								Stand	
Project Number Number Project Number Pr			Kound	3 ASR Water Quality Baseline					r			<u></u>	
The company The company		Email Address:	Project N	umber:					1			>	
Page Page									Cq C			RUSI 5-dev 2	
The safety of th		Phone:	PO Numb	er.	GI é			18V					1
Note Note								M / et				2-day 7	89
19 19 19 19 19 19 19 19			Frequency	*				piou			slete	_	
1	3 215, Ala	meda CA 94501								ı nM	W P) [1.
Time Time			.aer	L	_	ţibi		-		- sle	οίνε	<u></u>	<u></u>
1 1 1 1 1 1 1 1 1 1									_	met		> 	
	ignature			16/					_	8.00	_		
1 1 1 1 1 1 1 1 1 1	{	7	otte tie							S ba		Poly si	11
7.55 91.8	,	lampled on .	Class boly bol Glass ja Olher Nazsze Nazszek	HNO3 Other Drinking Wastew Soil	in IbioT	9-8N	MHTT		_	vlosaia		7 m000	psec
X		Ι.	×	×	ų.								× * \$ 600
X X X X X X X X X X			×		Ţ	×							0
X			×		-	×						×	
X			×		-	×			L				
X X X X X X X X X X				×	က		×						
X X X X X X X X X X			×		٠- 		×				-	×	,
Time Date			×		-			├	├	├	₩		
Time Date CA DDW Street CA DDW CA DD		-			نوا درم								
Pacelved by, Thrie Date CA DDW			-					_					
Time Date CA DDW State CA DDW													
Time Date CA DDW Start Date CA DDW Start		-									-		
\(\frac{\frac{1}{15}}{\frac{1}{15}}\) \(\frac{1}{15}\) \(Received by		ं प्राप्तक	¥ ÷	Date				Additi	onal Req	uirements	
2215 8/19/21 0 GeoTracker EDF Report		13		1908	X	2/2	0	CA DDV Write-O	V n EDT	សី	te Syster	n No:	
GeoTracker EDF Report				25.60		760	(δ		Facility 6	lobal ID	vo:	
		3		200	9	5	> 	GeoTra(EDF Re		Sampling	Company	Log Code:	

Corporate Laboratory (1551) 707-468-0401 208 Myson Street Uklah CA 85492

Los Angeles (Service Center) 310-743-5711

www.alpha-labs.com Waters, Sediments, Souds

North Bay Laboratory (2303) 707-769-3128 110 Liberty Street, Petaluma CA 94652

Bay Area Laboratory (2728) 925-928-6226 262 Rickenbacker Çirde, Livermore CA 94551

Central Vallay Laboraфry (2922) 916-686-5190 9090 Union Park Way #113, Elk Grove CA 95624

2111311 Chain &

clientservices@alpha-labs.com

Observed C	Section by Alfabetica.	Drolond Life					
	Contract.	Ombore Manes	-	Analysis:Request	91	TAT	Temp.C
undwater	,	Round 3 ASR Water Quality Baseline				Standard 10-day	Uklah 1.2
	Email Address;	Project Number:	T			0	Livemore
Grimm A						RUSH: 5-day 25%	S. S.
Phone: 510-747-6920	Phone:	PO Number:	Qi əldi	A8M Y	98 98 e8	0	Elk Grove
Physical Address:		Frequency:			8 aA 7 iV d	2-day 75%	
2490 Mariner Square Loop, Suite 216, Alameda CA 94501			nitnsı	e)	M rM PM rM	0	Petaluma
Email address:	Container	ner Preservation Matrix	anisi ID 1r	etlu	eb - eb	i d	Codobod
ngrimm@toddgroundwater.com			105 W ShuT t	3/80	Ojsa CAV Weta	>	
ted			OT BIN	L/N	8.00S 8.00S 1.3ÞS	days	Los Angeles
MEDIC OLIMAN	isiv bott	EOS V Bu	Mỹm TCE COI Perci	e nity, ss e	bevi bevi		
Sample Identification	Sampled on E S S S S S S S S S S S S S S S S S S	COTHER THOSE CONTRACTED	NB-1 BVF-	HTTT Buiffd Atkalli Mitrati Mitrati Mitrati	lossiQ	ecii 1911 G 20mil 20mil	Source Code
7267	10:30 30 18/18/21	×	×			4 ×	1 2000
7.000	×	×	×				7000
	×	×	×			×	100
	×	×		×		4	ALLES HINS
**	×		က	×			16.01-10.21
	*	×	1	×	;	, ×	
,	×	×	1	× ×	× × × ×	×	
	, ,						
	7						
				-	3		
y y y y y y	Received by	Time	Date		Additional Requirements	ments	
	3	4.05	18/18	O CA DDW	State System No:	ö	
60	\$ \	1400	8/65/21				
2/5		22.46	8/18/21	O CA GeoTracker	Facility Global ID No:		
			•	EDF Report	f Sampling Company Log Code:	J Code:	
Company of the Compan							

İ

Corporate Laboratory (1651) 707-469-0401 208 Mason Street, Uklah CA 95482 Colorha Analytical Laboratories Inc.

Los Angeles (Service Center) 310-743-5711 1230 E 233rd St #205, Cerson CA 90745 www.aipha-labs.com Waters, Sediments, Solids

San Diego Laboratory (3056) 760-930-2555 2722 Loker Ave West, Ste A, Carisbad CA 92010

North Bay Laboratory (2303) 707-768-3128 110 Liberty Street, Pataluma CA 94952

Central Valley Laboratory (2922) 916-686-5190 9090 Union Park Wdy #113, Elk Grove CA 95624

Bay Area Laboratory (\$728) 925-828-6226 262 Rickenbacker Circle, Livermore CA 94551

Chain of Custody Record Reports and Involces delivered by email as PDF files

- Hontrondros@alpha-lahs.com

•	-a
Cientservices@aipnasiaps.com	LAD NO. 2111023 Pg 4

Termp °C	Uklah	3.0	Livermore	かっさ	Elk Grove		Petaluma		Carlsbad		Los Angeles	Source Code	*Soe a, 1	19/19/		Affed HUBS	3 9-10-71								
TAT	Standard	10-day	\ >	KUSH: 5-day 25%	0	2-day 75%	0	Other	0	1	Doly cite	pseti	×	\frac{\fir}{\fint}}}}}}}}{\frac}}}}}}}}}}}}}{\fracc}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}		(H)	(S)		×		-		 nts		
			<u>].</u>			_		pə/	Noss			Lab Filtra iG alstelM iG alstelM			×			×	×				Additional Requirements	State System:No:	Facility Global ID No:
			<u>.</u>			ld iN	oM n	BH -	elste AA\	4 C/	S42	Dissolved Dissolved Dissolved							×		-	17.7	Addition		Facility 0
Analysis Request				s		_		elsi	ius \	D2	L/N	Alkalinity, Nitrate as Dissolved		·					×	-				CA DDW Write-On EDT	Ą
N. C.										e)	evoln	2AAH AHTT Sulfide		·	×	×	×	×					 : ;	0	76
	-				Ol el			ven)) 140	E W	ol, siu EC C	Fotal Num BAL - TCI	×	×	-	-	8	+	-				. Date	8 16/2	No.
Info		Nater Quality				٤			Matrix];	Yanking V Wastewate Jenti Jenti	×	×	×	×	×	×	×	∵ ~		7	Time	160,5	(100
Project Info	Project Name:	Round 3 ASR Water Quality Baseline	Project Number:		PO Number:		Frequency:		r Preservation			Ogret ICI ISSSSO3 Ogret	×			×	×	×				i .			
-		<u>-</u>	ď		P		<u> </u>		Container			Omit vial Slass bottle Soly bottle) ×	×	×	×	×	×	×				of by		
Involce to (if different)												Sampled on Date	1	12/01/0								,	Received by	1	**
Invole	Confact:		Email Address:		Phone:			eda CA 84501			`	Samp	いっこり) 										-	
	0	<u> </u>	Ш		۵			iulte 215, Alam		mo	und Signature:	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\							····	ı			à		
Report to		water	,	_			.\$\$:	2490 Mariner Square Loop, Suite 215, Alameda CA 94501		ngrimm@toddgroundwater.com	- Printed Name a	Sample Identification	20	C71C								:	Relinquished by	1	20
	Company:	Todd Groundwater	Attn:	Nicole Grimm	Phone;	510-747-6920	Physical Address:	2490 Wariner	Email address:	ngrimm@tod	Field Sampler	S Z		<u> </u>										8	1

Corporate Laboratory (1551) 707-458-0401 208 Mason Street, Uklah CA 95482

Los Angeles (Service Center) 310-743-5711 1230 E 233nd St #205, Cerson CA 90745

San Diego Laboratory (3056) 760-930-2565 2722 Loker Ave West, Ste A, Carlsbad CA 92010

www.alpha-labs.com Waters, Sedments, Solids

Bay Area Laboratory (2728) 925-928-6226 262 Rickenbacker Circle, Livermore CA 94551

North Bay Laboratory (2303) 707-769-3128 110 Liberty Street, Petaluma CA 94952 Central Valley Laboratory (2922) 916-986-5190 9090 Union Park Wity #113, Elk Grove CA 95624

cllentservices@alpha-labs.com Lab No. 21H2633

Chain of Custody Record Reports and Invoices delivered by email as PDF files 217(311

Reflect Water Committee from the	Report to	INVOKE TO (IT CITTETENT)	Project Info	-		Anar	Analysis Roduest	391.		_	TAT	Temp C
Comparison Com	Company:	Contact:	Project Name:					L			Standard	Uklah
Project Number: Project Nu	Todd Groundwater		Round 3 ASR Water (Quality						-	10-day	25
1	Attn:	Email Address:	Project Number.								<i>-</i>	
1 1 1 1 1 1 1 1 1 1	Nicole Grimm			- i - '							RUSH:	_
The content by the	Phone: (Phone:	PO Number:	al e				3 Be		<u> </u>	C	
Received by the company of the compa	-747-6920							88		<u> </u>	-day 75%	•
Received by State Marin	sical Address:		Frequency:	_	600			eA V		_	·	Petaluma
1 1 1 1 1 1 1 1 1 1	10 Mariner Square Loop, Sutte 215, Al:	ameda CA 94501					ejt	\ gA	ВH			
Received by Welser Color and Turk A X X X X X X X CAD Dissolved Soc. Total Number of Colors in Heads of Colo	Email address:		tainer Preservation	l Julie			shu2	- SIE	- A		<u> </u>	Carlsbad
1 1 1 1 1 1 1 1 1 1	imm@toddgroundwater.com				huT b	-	/50	tem 8	CV/	· -	>	
The color of the	Sampler - Printed Name and Signature	ia	↑ Tetr	io 19	nie 1		1/1	3.00	r.34 of a	ons	days	Los Angeles.
	Mak Criving	A	ottle, 11 503	qwr	olo		A 2B	S pa	s ba obsr	Ш	Poly size	•
	모	Sampled on	less is they only bo	oil Ther-	B - 5	epyjo	ederdi	vloszi	Mossi		Ð.III	
12.75		Date	の	o o T	N 8	s	N	a	n a		바	_}
	, j . (12:25 81832	×				_				×	See
X X X X X X X X X X	3127		×		×) 0 1
X X X X X X X X X X			×	-	×					×		
X X X X X X X X X X			×	7	×							1 4
X X X X X X X X X X		×	×			×						12-01-0 XJ
			×	-		×				×		
Received by Time Date Additional Requirements			×	-			×	×	├	×	×	
Received by Time												
Received: by Time Date Additional Requirements LT (6.55 S/072) O CA DDW State System No: State Syst						6.1	<u> </u>	<u>.</u>				
Received by Time							<u> </u>			-		
Received by Time Date CA DDW ET CL65 ST074 O CA DDW ST075 O CA DDW ST075 O CA DDW ST075 O CA DDW ST075 O CA DDW DDW					- ,		-					
47 (6.55 8/074 0 CA DDW 9/10/51 Write-On EDT 9/10/51 S/18/24 0 CA EDF Report EDF Report	Relinquished by	Received:by	Time		Date				ddittonal	teguireme	Ę.	
22/5 8/8/24 0 GeoTracker EDF Report	12	13	(6.65)	8	Roll		A DDW		State Sy	stem No:		
C GeoTracker EDF Report	(0)		0011	1	3-2		4		Hity Globa	N Si		
	2	2	000	1	*		seoTrack DF Repo		pling Com	any Lóg Co	de:	

3

.*

Corporate Laboratory (1551) 707-468-0401 208 Mason Street, Ukiah CA 85482

Los Angeles (Service Center) 310-743-5711 1230 E 233rd St #205, Carson CA 90745

Chaha Apha Analytical Laboratories inc.

San Diego Leboratory (3055) 760-830-2555 2722 Loker Ave West, Ste A, Carisbad CA 92010

WATERS, SEDIMENTS, SOLIDS www.alpha-labs.com

٠.

Central Velley Laboratory (2922) 916-686-5190 9090 Union Park Way #113, Elk Grove CA 95624

Bay Area Laboratory (2/28) 925-828-6228 262 Rickenbacker Clicle, Livermore CA 94551

North Bay Laboratory (2303) 707-769-3128 110 Liberty Street, Pétaluma CA 94952

Chain of Custody Record 2171311

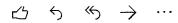
Reports and invoices delivered by email as PDF files

clientservices@alpha-labs.com

Lab No.

Alkelinity, Total / Chloride / Fluoride / MBAS Alkelinity, Total / Chloride / Fluoride / MBAS Alkelinity, Total / Chloride / Fluoride / MBAS Alkelinity, Total / Chloride / Fluoride / MBAS Dissolved 200.8 metals - Ag Al As B Ba Be Cd Cf Cu Dissolved 200.8 metals - Ag Al As B Ba Be Cd Cf Cu Dissolved 200.8 metals - Ma Mo Ni Pb Sb Se TI V Zn Dissolved 200.8 metals - Ma Mo Ni Pb Sb Se TI V Zn Dissolved 200.8 metals - Ag Al As B Ba Be Cd Cf Cu Metals Dissolved 200.8 metals - Ag Al As B Ba Be Cd Cf Cu Dissolved 200.8 metals - Ag Al As B Ba Be Cd Cf Cu Dissolved 200.8 metals - Ag Al As B Ba Be Cd Cf Cu Dissolved 200.8 metals - Ma Mo Ni Pb Sb Se TI V Zn Lab Filbation for Dissolved Metals Alkelinity, Total / Chloride / Fluoride / MBAS Dissolved 200.8 metals - Ag Al As B Ba Ba Cd Cf Cu Dissolved 200.8 metals - Ag Al As B Ba Ba Cd Cf Cu Dissolved 200.8 metals - Ag Al As B Ba Ba Cd Cf Cu Dissolved 200.8 metals - Ag Al As B Ba Ba Cd Cf Cu Dissolved 200.8 metals - Ag Al As B Ba Ba Cd Cf Cu Alkelinity, Total / Chloride / Fluoride / MBAS Dissolved 200.8 metals - Ag Al As B Ba Ba Cd Cf Cu Dissolved 200.8 metals - Ag Al As B Ba Ba Cd Cf Cu Alkelinity, Total / Chloride / Fluoride / MBAS Dissolved 200.8 metals - Ag Al As B Ba Ba Cd Cf Cu Alkelinity, Total / Chloride / Fluoride / MBAS Dissolved 200.8 metals - Ag Al As B Ba Ba Cd Cf Cu Alkelinity, Total / Chloride / Fluoride / MBAS Dissolved 200.8 metals - Ag Al As B Ba Ba Cd Cf Cu Alkelinity, Total / Chloride / MBAS Alkelinity, Total / Chloride / MBAS Alkelinity, Total / Chloride / MBAS Alkelinity, Total / Chloride / MBAS Alkelinity, Total / Chloride / MBAS Alkelinity, Total / Chloride / MBAS Alkelinity, Total / Chloride / MBAS Alkelinity, Total / Chloride / MBAS Alkelinity, Total / Chloride / MBAS Alkelinity, Total / Chloride / MBAS Alkelinity, Total / Chloride / MBAS Alkelinity, Total / Chloride / MBAS Alkelinity, Total / Chloride / MBAS Alkelinity, Total / Chloride / MBAS Alkelinity, Total / Chloride / MBAS Alkelinity, Total / Chloride	Total Number of Containers per Sample ID Total Number of Containers per Sample ID HAA5 All Hande Solo Metals - Ca Fe K Mg Na Dissolved 200.7 metals - Ca Fe K Mg Na Dissolved 200.8 metals - Mg Na Ba Ba Be Cd Cr Cu Dissolved 200.8 metals - Mn Mo Ni Pb Sb Sa Ti V Zn Dissolved 200.8 metals - Mn Mo Ni Pb Sb Sa Ti V Zn Dissolved 200.8 metals - Mg Na Dissolved Asc.1 CVAA - Hg Dissolved Asc.1 CVAA - Hg Metals Digestion X Solomit Park Filterion for Dissolved Metals A Scolomit	Contain Number of Containers per Sample ID Color and Turbidity NB - Perchiorate NH - Perchiorate Nitrate as N / TDS / Sulfate Nitrate as N / TDS / Sulfate Dissolved 200.8 metals - Ag Al As B Ba Be Cd Cr Cu Nitrate as N / TDS / Sulfate Nitrate as N / TDS / Sulfate Dissolved 200.8 metals - Ag Al As B Ba Be Cd Cr Cu Nitrate as N / TDS / Sulfate Nitrate a	Dearword States of Contrainers per Sample ID X A BAL - Color and Turbidity X A BAL - Color and Turbidity X A BAL - Color and Turbidity X HAH - Color and Turb	
At the color and Turbidity A BAL - Color and Turbidity A BAL - Color and Turbidity A BAL - Color and Turbidity HAAS Suffide Suffide Alkelinity, Total / Chloride / Fluoride / MBAS Bulkalinity, Total / Chloride / Fluoride / MBAS Dissolved 200.8 metals - Ag Al As B B Be Cd Cr C Dissolved 200.8 metals - An Mo Ni Pb Sb Se Ti V S Dissolved 200.8 metals - An Mo Ni Pb Sb Se Ti V S Dissolved 200.8 metals - M	A Total Number of Containers per Sample ID Total Number of Containers per Sample ID Total Number of Containers per Sample ID Alkalinity, Total / Chloride / Fluoride / MBAS Alkalinity, Total / Chloride / Fluoride / MBAS Dissolved 200.7 metals - Ag Al As B Ba Be Cd Cr C Dissolved 200.7 metals - Ag Al As B Ba Be Cd Cr C Dissolved 200.8 metals - An Mo Ni Pb Sb Sa Ti V S Dissolved 200.8 metals - An Mo Ni Pb Sb Sa Ti V S Dissolved 200.8 metals - An Mo Ni Pb Sb Sa Ti V S Dissolved 200.8 metals - An Mo Ni Pb Sb Sa Ti V S Dissolved 200.7 metals - Ag Al As B Ba Be Cd Cr C Dissolved 200.7 metals - Ag Al As B Ba Be Cd Cr C Dissolved 200.7 metals - An Mo Ni Pb Sb Sa Ti V S Dissolved 200.8 metals - An Mo Ni Pb	A HARIS Digestion A Metals Digestion A Metal	Other A BAL - TCEC GW John Containers per Sample ID A BAL - TCHOR GW John Containers per Sample ID A BAL - TCHOR GW John Containers per Sample ID A BAL - TCHOR GW John Containers per Sample ID A BAL - TCHOR GW John Containers per Sample ID A BAL - TCHOR GW John Containers per Sample ID A BAL - TCHOR GW John Containers per Sample ID A BAL - TCHOR GW John Containers per Sample ID A BAL - TCHOR GW John Containers per Sample ID A BAL - TCHOR GW John Containers per Sample ID A BAL - TCHOR GW John Containers per Sample ID A BAL - TCHOR GW John Containers per Sample ID A BAL - TCHOR GW John Containers per Sample ID A BAL - TCHOR GW John Containers per Sample ID A BAL - TCHOR GW John Containers per Sample ID A BAL - TCHOR GW John Containers per Sample ID A BAL - TCHOR GW JOHN CONTAINERS per John Containers per Sample ID A BAL - TCHOR GW JOHN CONTAINERS per John Containers per Sample ID A BAL - TCHOR W JOHN CONTAINERS per John Containers per Sample ID A BAL - TCHOR W JOHN CONTAINERS per John Containers per Sample ID A BAL - TCHOR W JOHN CONTAINERS per John CONTAINERS per John Containers per Sample ID A BAL - TCHOR W JOHN CONTAINERS per John Containers per Sample ID A BAL - TCHOR W JOHN CONTAINERS per John CONTAINERS per John Containers per John Containers per Sample ID A BAL - TCHOR W JOHN CONTAINERS per John CONTAINERS per John Containers per John	Round 3 ASR Water Quality Baseline
Athere of Containers per Sample ID Total Number of Containers per Sample ID * BAL - TCEC GW 30hr Quantitray BAL - Color and Turbidity HAAS Suffide Suffide Dissolved 200.8 metals - Mn Mo Ni Pb Sb Se Dissolved 200.8 metals - Mn Mn Mn Ni Pb Sb Se Dissolved 200.8 metals - Mn Mn Ni Pb Sb Se Dissolved 200.8 metals - Mn Mn Ni Pb Sb Se Dissolved 200.8 metals - Mn Mn Ni Pb Sb Se Dissolved 200.8 metals - Mn Mn Ni Pb Sb Se Dissolved 200.8 metals - Mn Mn Ni Pb Sb Se Dissolved 200.8 metals - Mn Mn Ni Pb Sb Se Dissolved 200.8 metals - Mn Mn Ni Pb Sb Se Dissolved 200.8 metals - Mn Mn Ni Pb Sb Se Dissolved 200.8 metals - Mn Mn Ni Pb Sb Se Dissolved 200.8 metals - Mn Mn Ni Pb Sb Se Dissolved 200.8 metals - Mn Mn Ni Pb Sb Se Dissolved 200.8 metals - Mn Mn Ni Pb Sb Se Dissolved 200.8 metals - Mn Mn Ni Pb Sb Se Dissolved 200.8 metals - Mn Mn Ni Pb Sb Se Dissolved 200.8 metals - Mn Mn Ni Pb Sb Se Dissolved 200.8 metals - Mn Mn Ni Pb Sb Se Dissolved 200.8 metals - Mn Mn Ni Pb Sb Se Dissolved 200.8 metals - Mn Mn Ni Pb Sb Se Dissolved 200.8 metals - Mn Mn Ni	A Factor and Turbidity Total Number of Containers per Sample ID Total Number of Containers per Sample ID A PAL - Color and Turbidity HAA5 A NB - Perchiorate A N	Atherements per Sample ID A BAL - Total Number of Contrainers per Sample ID A BAL - Color and Turbidity A HAAS HAAS Alkelinity, Total / Chloride / Fluoride / MBAS Suffide Suffide Dissolved 200.7 metals - Ca Fe K Mg Na Dissolved 200.8 metals - Mn Mo Ni Pb Sb Se Dissolved 200.8 metals - Mn Mo Ni Pb Sb Se Dissolved 200.8 metals - Mn Mo Ni Pb Sb Se Dissolved 200.8 metals - Hg Dissolved 200.8 metals - Mn Mo Ni Pb Sb Se Dissolved 200.8 metals - Mn Mo Ni Pb Sb Sb Sb Sb Sb Sb Sb Sb Sb Sb Sb Sb Sb	Other A Pale Color and Turbidity	Project Number:
A Year I Verminer per Sample A Year I Verminer per Sample A Year I Versi Number of Containers per Sample A Year I Versi Verminers Suffice A Year I Versi Verminers Suffice A Year I Versi Verminers Suffice A Year I Versi Verminers Suffice A Year I Versi Verminers Suffice A Year I Versi Verminers Suffice A Year I Versi Verminers Suffice A Year I Versi Verminers Suffice A Year I Verminers Suffi A Year I Verminers Suffi A Year I Verminers Suffi A Year I Verminers Suffi A Year I Ve	A Factor of Containers per Sample of Total Number of Containers per Sample of Total Number of Containers per Sample of Total Volor and Turbidity of Perchlorate of Na Perchlor	A PACE CON and Turbidity Total Number of Containers per Sample HAL - TCEC GW 30hr Quantitiesy WHAT TTHM Alkelinity, Total / Chloride / Fluoride / Illund	Other Avite-On EDI Write-On EDI Reality Global ID No. CA DDW State System No.	PO Number:
Ather A Total Number of Containers per: X BAL - TCEC GW 30hr Quantities WBAL - Color and Turbidity HAA5 HAA5 Cuffide Cuffid	A PAL - TCEC GW 30hr Quantities Total Number of Containers per: BAL - TCEC GW 30hr Quantities A BAL - Color and Turbidity HAA5 Suffide Suffide Alkalinity, Total / Chloride / Fluo Bissolved 200.7 metals - Ca Fe Dissolved 200.8 metals - Mn Mo Dissolved 200.8 metals - Mn Mn Mo Dissolved 200.8 metals - Mn Mn Mn Mn Mn Mn Mn Mn Mn Mn Mn Mn Mn	Aber TCEC GW 30hr Quantities per in the containers per in the containers per in the containers per in the containers per in the containers and Turbidity in the Perchicosta in the containers and Turbidity in the containers and Turbidity in the containers and Turbidities in the containers and Turbidities and Mittage as N / TDS / Sulfate in the containers	Date: C A DDW C A D	1
Ather A Total Number of Containe A Total Number of Containe A Mela Number of Containe A Mela Number of Containe A Mela Number of Containe A Mela Number of Containe A Number of C	A BAL - TCEC GW 30hr Curtaines A BAL - TCEC GW 30hr Curtaines A BAL - TCEC GW 30hr Curtaines A MB - Perchiorate Suffide Alkelinity, Total V Chloride Bussolved 200,8 metals - Dissolved 200,8 metals - Dissolved 200,8 metals - Metals Dissolved 200,8 metals - Dissolved 200,8 metals - A Lab Filtration for Dissolved Metals Digestion A Softil A Softil A Softil Bussolved 200,8 metals - Dissolved		Officer of the container of Con	rrequency:
Total Number of Conference of	A Total Number of Corn Total Number of Corn Total Number of Corn BAL - Color and Turt HAA5 HAA5 Alkalinity, Total / Chi Dissolved 200.8 met Dissolved 200.8 met Dissolved 200.8 met Dissolved 200.8 met Dissolved 200.8 met Metals Digestion That Filtration for Dissolved 200.8 met Dissolved 200.8 met	A Ferchlorate A BAL - TCEC GW 30F A BAL - TCEC GW 30F A BAL - Color and Turk A HAA5 A HAA5 A HAA5 A HAA5 A HAB1 B Lasolved 200.7 met Dissolved 200.8 met Dissolved 200.8 met Dissolved 200.8 met A Half G B FERCHLORATE A HAB1 A HAB1 B FERCHLORATE A HAB1 A HAB1 B FERCHLORATE A HAB1 A	Other Action of the Perchance of Community Global ID No: State System No: State System No: Other Color and Turk State Not and Turk State Not and Turk State System No: State System No: Other Color and Turk State System Sta	Container Preservation Matrix
Total Number of the color and	A BAL - TCEC G A BAL - Color an A BAL - Color an HAAS HAAS A BAL - Color an A BAL - Color an A BAL - Color an BAL - Color an A BAL - Color an A BAL - Color an BAL - Color an A BAL - Color an A BAL - Color an A BAL - Color an A BAL - Color an A BAL - Color an A BAL - Color an A BAL - Color an A BAL - Color an A BAL - Color an A BAL - Color an A BAL - Color an A BAL - Color an A BAL - Color an A BAL - Color an A BAL - Color an A BAL - Color an A BAL - TCEC G A BA	A Helia Digestive Scombor Colorer A HAAS A H	Disached 200	
Other A Cotal Num A BAL - Co BAL - Co Name of the cotal of the cota	A SACH AND CONNEL CONNE	A	Date: C A DDW State System No: C A DDW State	18deV
alp wa	De rest x	D WS ×	X X X X X X X X X X	Class jar Othe Other Other Other Other Other Other Other Other Other Other Oth
alb as ×	ALP AS	x x x	X X X X X X X X X X	×
	×		X X X X X X X X X X	×
))-1 ₀	0 X)		Date Date CA DDW State System No: CA CA CA CA CA CA CA CA CA CA CA CA CA C	×
H & & & &	() X) ×	×	Date: Styles O CA DDW Write-On EDT O CA Write-On EDT O CA EDF Roport	×
Added X	X X X X X X X X X X X X X X X X X X X	* * * * * * * * * * * * * * * * * * *	Date: Date: CA DDW S 24 O CA DDW S 24 O CA S 24 O CA EDF Roport	
	x x x x x x x x x x x x x x x x x x x	x	Date CA DW Write-On EDT CA DW CA	
	x x x x x x x x x x x x x x x x x x x	x	Styles O CA DDW (Styles on EDT (Styl	
	X X X X X X X X X X X X X X X X X X X	x	State 0 CADDW (S 24 O Write-On EDT CADDW (S 24 O CADDW EDT CADDW EDT CADDW EDT CADDW EDT CADDW EDF Roport	
	x	x	S 21 O CA DDW (S 21) O CA DDW (S 21) O CA CA CA CA CA CA CA CA CA CA CA CA CA	Time
X X X X X X X X X X	X	X	1822 O GeoTracker EDF Roport	1605
X X X X X X X X X X		S W 25 O CA DDW State System No:	GeoTracker EDF Roport	ab
X X X X X X X X X X	X		EDF Report	X1 CC
X X X X X X X X X X	X			

-آم


Fw: Todd Groundwater / edits to three reports

SM

Stephen wicweeney

Fri 9/10/2021 10:03 AM

To: Cade Burkhammer

From: Sean Foley <sfoley@alpha-labs.com> Sent: Friday, September 10, 2021 9:54 AM

To: Stephen McWeeney <stephen@alpha-labs.com>

Cc: David Pingatore <david@alpha-labs.com>

Subject: FW: Todd Groundwater / edits to three reports

Hi Stephen,

Please scan in email below.

Thanks

From: David Pingatore

Sent: Thursday, September 09, 2021 3:08 PM

To: Sean Foley <sfoley@alpha-labs.com>; Chelsea Sandelin <chelsea@alpha-labs.com>; Jeanette Poplin

<ipoplin@alpha-labs.com>

Cc: Nicole Grimm <ngrimm@toddgroundwater.com> **Subject:** Todd Groundwater / edits to three reports

Importance: High

Please create a new work order for the samples on 21H2633 and 21H2826, running Total Hardness. This can be placed on a 5-day TAT, plus surcharge.

Thanks, David

Reply Forward

Alpha Analytical Laboratories, Inc.

email: clientservices@alpha-labs.com

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

24 September 2021

Todd Groundwater

Attn: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Alameda, CA 94501

RE: Round 3 ASR Water Quality Baseline

Work Order: 21H2617

Enclosed are the results of analyses for samples received by the laboratory on 08/18/21 22:15. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jeanette L. Poplin For David S. Pingatore

Jeanette Popli

Project Manager

Alpha Analytical Laboratories, Inc.

email: clientservices@alpha-labs.com

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501

Project Number: Round 3 ASR Water Quality Baseline

Reported:

Project Number. Round 3 ASR Water Quality baseline

09/24/21 14:03

Bay Area: 262 Rickenbacker Circle | Livermore, CA 94551 | T: 925-828-6226 | F: 925-828-6309 | ELAP# 2728 Central Valley: 9090 Union Park Way Suite 113 | Elk Grove, CA 95624 | T: 916-686-5190 | F: 916-686-5192 | ELAP# 2922 North Bay: 110 Liberty Street | Petaluma, CA 94952 | T: 707-769-3128 | F: 707-769-8093 | ELAP# 2303 San Diego: 2722 Loker Avenue West Suite A | Carlsbad, CA 92010 | T: 760-930-2555 | F: 760-930-2510 | ELAP# 3055

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
3121	21H2617-01	Water	08/18/21 08:38	08/18/21 22:15

Reported:

09/24/21 14:03

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501

Project Number: Round 3 ASR Water Quality Baseline

	Resu	lt	Reporting Limit	Dilution	Batch	Prepared	Analyzed	ELAP#	Method	Note
3121 (21H2617-01)			Sample Type:	Water		Sampled	: 08/18/21 08:3	8		
Metals by EPA 200 Series Methods										
Silica (SiO2)	18	mg/L	1.0	1	AI13078	09/01/21 11:47	09/03/21 15:15	2303 I	EPA 200.7	
Calcium	52	mg/L	1.0	1	AH14695	08/31/21 08:57	09/03/21 18:06	5 1551 I	EPA 200.7	
Chromium, hexavalent	11	ug/L	1.0	1	AH14395	08/23/21 15:19	08/24/21 00:46	5 1551 I	EPA 218.6	
Magnesium	59	mg/L	1.0	1	AH14695	08/31/21 08:57	09/03/21 18:06	5 1551 I	EPA 200.7	
Metals by EPA Method 200.8 ICP/MS										
Cobalt	ND	ug/L	0.40	4	AH14675	08/27/21 13:50	08/30/21 17:01	1551 I	EPA 200.8	R-01
Uranium	2.9	pCi/l	1.0	4	AH14675	08/27/21 13:50	08/30/21 17:01	1551 I	EPA 200.8	
Conventional Chemistry Parameters by APHA/EPA	Methods	i								
Ammonia as NH3	ND	mg/L	0.50	1	AI13121	09/07/21 09:30	09/07/21 16:30	1551 S	SM4500NH3B,C	
Hardness, Total	374	mg/L	5	1	AH14695	08/31/21 08:57	09/03/21 18:06	1551 \$	SM2340B	
Phosphorus, total	0.079	mg/L	0.040	1	AH14650	08/27/21 10:18	08/27/21 16:20	1551 8	SM4500-P E	
Total Organic Carbon	ND	mg/L	1.00	1	AH14594	08/31/21 14:40	09/01/21 00:45	1551 8	SM5310C	
Volatile Organic Compounds by EPA Method 524.2										
Acetone	ND	ug/L	5.0	1	AH14583	08/26/21 12:00	08/26/21 15:32	2 1551 I	EPA 524.2	
Acrylonitrile	ND	ug/L	5.0	1	AH14583	08/26/21 12:00	08/26/21 15:32	2 1551 I	EPA 524.2	
Benzene	ND	ug/L	0.50	1	AH14583	08/26/21 12:00	08/26/21 15:32	2 1551 I	EPA 524.2	
Bromobenzene	ND	ug/L	0.50	1	AH14583	08/26/21 12:00	08/26/21 15:32	2 1551 I	EPA 524.2	
Bromochloromethane	ND	ug/L	0.50	1	AH14583	08/26/21 12:00	08/26/21 15:32	2 1551 I	EPA 524.2	
Bromodichloromethane	ND	ug/L	1.0	1	AH14583	08/26/21 12:00	08/26/21 15:32	2 1551 I	EPA 524.2	
Bromoform	ND	ug/L	1.0	1	AH14583	08/26/21 12:00	08/26/21 15:32	2 1551 I	EPA 524.2	
Bromomethane	ND	ug/L	0.50	1	AH14583	08/26/21 12:00	08/26/21 15:32	2 1551 I	EPA 524.2	
n-Butylbenzene	ND	ug/L	0.50	1	AH14583	08/26/21 12:00	08/26/21 15:32	2 1551 I	EPA 524.2	
sec-Butylbenzene	ND	ug/L	0.50	1	AH14583	08/26/21 12:00	08/26/21 15:32	2 1551 H	EPA 524.2	
tert-Butylbenzene	ND	ug/L	0.50	1	AH14583	08/26/21 12:00	08/26/21 15:32	2 1551 I	EPA 524.2	
Carbon disulfide	ND	ug/L	0.50	1	AH14583	08/26/21 12:00	08/26/21 15:32	2 1551 I	EPA 524.2	
Carbon tetrachloride	ND	ug/L	0.50	1	AH14583	08/26/21 12:00	08/26/21 15:32	2 1551 I	EPA 524.2	
Chlorobenzene	ND	ug/L	0.50	1	AH14583	08/26/21 12:00	08/26/21 15:32	2 1551 I	EPA 524.2	
Chloroethane	ND	ug/L	0.50	1	AH14583	08/26/21 12:00	08/26/21 15:32	2 1551 I	EPA 524.2	
Chloroform	ND	ug/L	1.0	1	AH14583	08/26/21 12:00	08/26/21 15:32	2 1551 I	EPA 524.2	
Chloromethane	ND	ug/L	0.50	1	AH14583	08/26/21 12:00	08/26/21 15:32	2 1551 I	EPA 524.2	
2-Chlorotoluene	ND	ug/L	0.50	1	AH14583	08/26/21 12:00	08/26/21 15:32	2 1551 I	EPA 524.2	
4-Chlorotoluene	ND	ug/L	0.50	1	AH14583	08/26/21 12:00	08/26/21 15:32	2 1551 I	EPA 524.2	
Dibromochloromethane	ND	ug/L	1.0	1	AH14583	08/26/21 12:00	08/26/21 15:32	2 1551 I	EPA 524.2	
Dibromomethane	ND	ug/L	0.50	1	AH14583	08/26/21 12:00	08/26/21 15:32	2 1551 I	EPA 524.2	
1,2-Dichlorobenzene	ND	ug/L	0.50	1	AH14583	08/26/21 12:00	08/26/21 15:32	2 1551 I	EPA 524.2	
1,3-Dichlorobenzene	ND	ug/L	0.50	1	AH14583	08/26/21 12:00	08/26/21 15:32	2 1551 I	EPA 524.2	
1,4-Dichlorobenzene	ND	ug/L	0.50	1	AH14583	08/26/21 12:00	08/26/21 15:32	2 1551 I	EPA 524.2	
Dichlorodifluoromethane	ND	ug/L	0.50	1	AH14583	08/26/21 12:00	08/26/21 15:32	2 1551 I	EPA 524.2	
1,1-Dichloroethane	ND	ug/L	0.50	1	AH14583	08/26/21 12:00	08/26/21 15:32	2 1551 I	EPA 524.2	
1,2-Dichloroethane	ND	ug/L	0.50	1	AH14583	08/26/21 12:00	08/26/21 15:32	2 1551 I	EPA 524.2	

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501 Project Number: Round 3 ASR Water Quality Baseline

Reported: 09/24/21 14:03

	Result	Reporting Limit	Dilution	Batch	Prepared	Analyzed	ELAP#	Method	Note
3121 (21H2617-01)		Sample Type: V	Vater		Sample	1: 08/18/21 08:3	38		
Volatile Organic Compounds by EPA Metho	d 524.2 (cont'd)								
1,1-Dichloroethene	ND ug/L	0.50	1	AH14583	08/26/21 12:00	08/26/21 15:3	2 1551 I	EPA 524.2	
cis-1,2-Dichloroethene	ND ug/L	0.50	1	AH14583	08/26/21 12:00	08/26/21 15:3	2 1551 I	EPA 524.2	
trans-1,2-Dichloroethene	ND ug/L	0.50	1	AH14583	08/26/21 12:00	08/26/21 15:3	2 1551 H	EPA 524.2	
1,3-Dichloropropene (total)	ND ug/L	0.50	1	AH14583	08/26/21 12:00	08/26/21 15:3	2 1551 F	EPA 524.2	
1,2-Dichloropropane	ND ug/L	0.50	1	AH14583	08/26/21 12:00	08/26/21 15:3	2 1551 H	EPA 524.2	
1,3-Dichloropropane	ND ug/L	0.50	1	AH14583	08/26/21 12:00	08/26/21 15:3	2 1551 H	EPA 524.2	
2,2-Dichloropropane	ND ug/L	0.50	1	AH14583	08/26/21 12:00	08/26/21 15:3	2 1551 I	EPA 524.2	
1,1-Dichloropropene	ND ug/L	0.50	1	AH14583	08/26/21 12:00	08/26/21 15:3	2 1551 H	EPA 524.2	
cis-1,3-Dichloropropene	ND ug/L	0.50	1	AH14583	08/26/21 12:00	08/26/21 15:3	2 1551 H	EPA 524.2	
trans-1,3-Dichloropropene	ND ug/L	0.50	1	AH14583	08/26/21 12:00	08/26/21 15:3	2 1551 H	EPA 524.2	
Ethylbenzene	ND ug/L	0.50	1	AH14583	08/26/21 12:00	08/26/21 15:3	2 1551 H	EPA 524.2	
Hexachlorobutadiene	ND ug/L	0.50	1	AH14583	08/26/21 12:00	08/26/21 15:3	2 1551 H	EPA 524.2	
Isopropylbenzene	ND ug/L	0.50	1	AH14583	08/26/21 12:00	08/26/21 15:3	2 1551 H	EPA 524.2	
p-Isopropyltoluene	ND ug/L	0.50	1	AH14583	08/26/21 12:00	08/26/21 15:3	2 1551 F	EPA 524.2	
Methyl ethyl ketone	ND ug/L	5.0	1	AH14583	08/26/21 12:00	08/26/21 15:3	2 1551 I	EPA 524.2	
Methyl isobutyl ketone	ND ug/L	5.0	1	AH14583	08/26/21 12:00	08/26/21 15:3	2 1551 I	EPA 524.2	
Methyl tert-butyl ether	ND ug/L	3.0	1	AH14583	08/26/21 12:00	08/26/21 15:3	2 1551 I	EPA 524.2	
Methylene chloride	ND ug/L	0.50	1	AH14583	08/26/21 12:00	08/26/21 15:3	2 1551 H	EPA 524.2	
Naphthalene	ND ug/L	0.50	1	AH14583	08/26/21 12:00	08/26/21 15:3	2 1551 H	EPA 524.2	
n-Propylbenzene	ND ug/L	0.50	1	AH14583	08/26/21 12:00	08/26/21 15:3	2 1551 I	EPA 524.2	
Styrene	ND ug/L	0.50	1	AH14583	08/26/21 12:00	08/26/21 15:3	2 1551 I	EPA 524.2	
1,1,1,2-Tetrachloroethane	ND ug/L	0.50	1	AH14583	08/26/21 12:00	08/26/21 15:3	2 1551 H	EPA 524.2	
1,1,2,2-Tetrachloroethane	ND ug/L	0.50	1	AH14583	08/26/21 12:00	08/26/21 15:3	2 1551 H	EPA 524.2	
Tetrachloroethene	ND ug/L	0.50	1	AH14583	08/26/21 12:00	08/26/21 15:3	2 1551 H	EPA 524.2	
Toluene	ND ug/L	0.50	1	AH14583	08/26/21 12:00	08/26/21 15:3	2 1551 I	EPA 524.2	
1,2,3-Trichlorobenzene	ND ug/L	0.50	1	AH14583	08/26/21 12:00	08/26/21 15:3	2 1551 I	EPA 524.2	
1,2,4-Trichlorobenzene	ND ug/L	0.50	1	AH14583	08/26/21 12:00	08/26/21 15:3	2 1551 H	EPA 524.2	
1,1,1-Trichloroethane	ND ug/L	0.50	1	AH14583	08/26/21 12:00	08/26/21 15:3	2 1551 H	EPA 524.2	
1,1,2-Trichloroethane	ND ug/L	0.50	1	AH14583	08/26/21 12:00	08/26/21 15:3	2 1551 H	EPA 524.2	
Trichloroethene	ND ug/L	0.50	1	AH14583	08/26/21 12:00	08/26/21 15:3	2 1551 F	EPA 524.2	
Trichlorofluoromethane	ND ug/L	5.0	1	AH14583	08/26/21 12:00	08/26/21 15:3	2 1551 F	EPA 524.2	
Trichlorotrifluoroethane	ND ug/L	10	1	AH14583	08/26/21 12:00	08/26/21 15:3	2 1551 H	EPA 524.2	
1,2,4-Trimethylbenzene	ND ug/L	0.50	1	AH14583	08/26/21 12:00	08/26/21 15:3	2 1551 F	EPA 524.2	
1,3,5-Trimethylbenzene	ND ug/L	0.50	1	AH14583	08/26/21 12:00	08/26/21 15:3	2 1551 F	EPA 524.2	
Vinyl chloride	ND ug/L	0.50	1	AH14583	08/26/21 12:00	08/26/21 15:3	2 1551 F	EPA 524.2	
m,p-Xylene	ND ug/L	0.50	1	AH14583	08/26/21 12:00	08/26/21 15:3	2 1551 I	EPA 524.2	
o-Xylene	ND ug/L	0.50	1	AH14583	08/26/21 12:00	08/26/21 15:3	2 1551 I	EPA 524.2	
Xylenes (total)	ND ug/L	0.50	1	AH14583	08/26/21 12:00	08/26/21 15:3	2 1551 E	EPA 524.2	
Trihalomethanes (total)	ND ug/L	0.50	1	AH14583	08/26/21 12:00	08/26/21 15:3	2 1551 E	EPA 524.2	
Surrogate: Bromofluorobenzene	110 %	70-130		AH14583	08/26/21 12:00	08/26/21 15:3	2 1551 <i>E</i>	EPA 524.2	

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501

Project Number: Round 3 ASR Water Quality Baseline

09/24/21 14:03

Reported:

	Result	Reporting Limit Dilution	Batch Prepared	Analyzed ELAP# Method	No
21 (21H2617-01)		Sample Type: Water	Sampled	1: 08/18/21 08:38	
olatile Organic Compounds by EPA Method	d 524.2 (cont'd)		_		
Surrogate: Dibromofluoromethane	93.3 %	70-130	AH14583 08/26/21 12:00	08/26/21 15:32 1551 EPA 524.2	
Surrogate: Toluene-d8	105 %	70-130	AH14583 08/26/21 12:00	08/26/21 15:32 1551 EPA 524.2	
				<u> </u>	
	_				
<u> </u>					

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501

Project Number: Round 3 ASR Water Quality Baseline

Reported: 09/24/21 14:03

 Result	Reporting Limit Dilution	Batch	Prepared	Analyzed	ELAP#	Method	Note
	= !						
	= :						
	= :						
	= :						
	= !						
	= :						
	= i						
	= :						
	:						
	= :						
	= :						
	. .						
	= :						
	= :						

Alpha Analytical Laboratories, Inc.

email: clientservices@alpha-labs.com

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501

Project Number: Round 3 ASR Water Quality Baseline

Reported: 09/24/21 14:03

Result Reporting Limit Dilution Batch Prepared Analyzed ELAP# Method Note

Reported:

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215 Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501 09/24/21 14:03 Project Number: Round 3 ASR Water Quality Baseline

Metals by EPA 200 Series Methods - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AH14395 - General Prep										
Blank (AH14395-BLK1)				Prepared &	Analyzed:	08/23/21				
Chromium, hexavalent	ND	1.0	ug/L							
LCS (AH14395-BS1)				Prepared &	Analyzed:	08/23/21				
Chromium, hexavalent	9.27	1.0	ug/L	10.0		92.7	90-110			
Duplicate (AH14395-DUP1)	Sour	ce: 21H260	4-01	Prepared &	z Analyzed:	08/23/21				
Chromium, hexavalent	1.96	1.0	ug/L		2.00			2.07	20	
Matrix Spike (AH14395-MS1)	Sour	ce: 21H260	4-01	Prepared &	Analyzed:	08/23/21				
Chromium, hexavalent	10.9	1.0	ug/L	10.0	2.00	88.6	90-110			QM-07
Matrix Spike Dup (AH14395-MSD1)	Sour	Source: 21H2604-01 Prep			Analyzed:	08/23/21				
Chromium, hexavalent	10.8	1.0	ug/L	10.0	2.00	87.7	90-110	0.804	20	QM-07
Batch AH14695 - Metals Digest										
Blank (AH14695-BLK1)				Prepared: (08/31/21 A	nalyzed: 09	/03/21			
Calcium	ND	1.0	mg/L							
Magnesium	ND	1.0	mg/L							
LCS (AH14695-BS1)				Prepared: (08/31/21 A	nalyzed: 09	/03/21			
Calcium	8.45	1.0	mg/L	8.00		106	85-115			
Magnesium	8.88	1.0	mg/L	8.00		111	85-115			
Duplicate (AH14695-DUP1)	Sour	ce: 21H264	0-04	Prepared: (08/31/21 A	nalyzed: 09	/03/21			
Calcium	5.03	1.0	mg/L		5.06			0.681	20	
Magnesium	1.08	1.0	mg/L		1.09			0.428	20	

Reported:

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215 Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501 09/24/21 14:03 Project Number: Round 3 ASR Water Quality Baseline

Metals by EPA 200 Series Methods - Quality Control

	•			_	•					
Analyte(s)	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AH14695 - Metals Digest										
Matrix Spike (AH14695-MS1)	Soul	rce: 21H264	0-04	Prepared: (08/31/21 A	nalyzed: 09	9/03/21			
Calcium	13.5	1.0	mg/L	8.00	5.06	106	70-130			
Magnesium	9.94	1.0	mg/L	8.00	1.09	111	70-130			
Matrix Spike (AH14695-MS2)	Sou	rce: 21H267	5-03	Prepared: (08/31/21 A	nalyzed: 09	9/03/21			
Calcium	14.9	1.0	mg/L	8.00	5.89	112	70-130			
Magnesium	11.6	1.0	mg/L	8.00	2.41	115	70-130			
Matrix Spike Dup (AH14695-MSD1)	Sou	rce: 21H264	0-04	Prepared: (08/31/21 A	nalyzed: 09	9/03/21			
Calcium	13.8	1.0	mg/L	8.00	5.06	109	70-130	1.84	20	
Magnesium	9.83	1.0	mg/L	8.00	1.09	109	70-130	1.10	20	
Batch AI13078 - NB EPA 200 series										
Blank (AI13078-BLK1)				Prepared: (09/01/21 A	nalyzed: 09	9/03/21			
Silica (SiO2)	ND	1.0	mg/L							
LCS (AI13078-BS1)				Prepared: (09/01/21 A	nalyzed: 09	9/03/21			
Silica (SiO2)	5.13	1.0	mg/L	5.35		95.9	0-200			
LCS Dup (AI13078-BSD1)				Prepared: (09/01/21 A	nalyzed: 09	0/03/21			
Silica (SiO2)	5.03	1.0	mg/L	5.35		94.0	0-200	1.90	200	
Matrix Spike (AI13078-MS1)	Sour	rce: 21H281	7-01	Prepared: (09/01/21 A	nalyzed: 09	9/03/21			
Silica (SiO2)	67.2	1.0	mg/L	5.35	73.9	NR	0-200			QM-0

Alpha Analytical Laboratories, Inc.

email: clientservices@alpha-labs.com

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501 Project Number: Round 3 ASR Water Quality Baseline

Reported: 09/24/21 14:03

Metals by EPA Method 200.8 ICP/MS - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AH14675 - EPA 200.8										
Blank (AH14675-BLK1)				Prepared: (08/27/21 A	nalyzed: 08	8/30/21			
Cobalt	ND	0.10	ug/L							
Uranium	ND	1.0	pCi/l							
LCS (AH14675-BS1)				Prepared: (08/27/21 A	analyzed: 08	8/30/21			
Cobalt	21.4	0.10	ug/L	20.0		107	85-115			
Uranium	13.3	1.0	pCi/l	13.4		99.1	85-115			
Duplicate (AH14675-DUP1)	Sou	rce: 21H226	1-01	Prepared: (08/27/21 A	analyzed: 08	8/30/21			
Cobalt	ND 0.40 ug/L ND 1.0 pCi/l				ND			16.9	20	R-01
Uranium	ND	1.0	pCi/l		ND				20	
Matrix Spike (AH14675-MS1)	Sou	rce: 21H226	1-01	Prepared: (08/27/21 A	analyzed: 08	8/30/21			
Cobalt	21.0	0.40	ug/L	20.0	ND	104	70-130			
Uranium	13.3	1.0	pCi/l	13.4	ND	99.3	70-130			
Matrix Spike (AH14675-MS2)	Sou	rce: 21H266	8-02	Prepared: (08/27/21 A	nalyzed: 08	3/30/21			
Cobalt	20.6	0.40	ug/L	20.0	ND	103	70-130			
Uranium	12.9	1.0	pCi/l	13.4	ND	96.1	70-130			
Matrix Spike Dup (AH14675-MSD1)	Sou	rce: 21H226	1-01	Prepared: (08/27/21 A	nalyzed: 08	3/30/21			
Cobalt	20.4	0.40	ug/L	20.0	ND	101	70-130	2.94	20	
Uranium	13.0	1.0	pCi/l	13.4	ND	97.4	70-130	1.94	20	

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501 Project Number: Round 3 ASR Water Quality Baseline

Reported: 09/24/21 14:03

Conventional Chemistry Parameters by APHA/EPA Methods - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AH14594 - General Prep										
Blank (AH14594-BLK1)				Prepared &	Analyzed:	08/31/21				
Total Organic Carbon	ND	1.00	mg/L							
LCS (AH14594-BS1)				Prepared &	Analyzed:	08/31/21				
Total Organic Carbon	9.27	1.00	mg/L	10.0		92.7	85-115			
LCS Dup (AH14594-BSD1)				Prepared &	z Analyzed:	08/31/21				
Total Organic Carbon	9.28	1.00	mg/L	10.0		92.8	85-115	0.141	20	
Duplicate (AH14594-DUP1)	Sour	ce: 21H242	8-02	Prepared &	Analyzed:	08/31/21				
Total Organic Carbon	ND	1.00	mg/L		ND			0.838	20	
Matrix Spike (AH14594-MS1)	Sour	ce: 21H242	8-02	Prepared &	Analyzed:	08/31/21				
Total Organic Carbon	10.1	1.00	mg/L	10.0	ND	92.0	70-130			
Matrix Spike Dup (AH14594-MSD1)	Sour	ce: 21H242	8-02	Prepared &	Analyzed:	08/31/21				
Total Organic Carbon	10.2	1.00	mg/L	10.0	ND	93.5	70-130	1.44	20	
Batch AH14650 - General Prep										
Blank (AH14650-BLK1)				Prepared & Analyzed: 08/27/21						
Phosphorus, total	ND	0.040	mg/L							
LCS (AH14650-BS1)				Prepared & Analyzed: 08/27/21						
Phosphorus, total	0.195	0.040	mg/L	0.200		97.5	85-115			
Duplicate (AH14650-DUP1)	Sour	ce: 21H232	6-01	Prepared & Analyzed: 08/27/21						
Phosphorus, total	ND	0.040	mg/L	/L ND				2.67	20	

Ammonia as NH3

11.7

0.50

mg/L

email: clientservices@alpha-labs.com

85-115

1.84

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215 Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501 Project Number: Round 3 ASR Water Quality Baseline 09/24/21 14:03

1 &		Spike	Source	%REC			RPD		
Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag	
e: 21H232	6-01	Prepared &	Analyzed:	08/27/21					
0.040	mg/L	0.200	ND	98.0	70-130				
e: 21H261	7-01	Prepared &	Analyzed:	08/27/21					
0.040	mg/L	0.200	0.0790	94.5	70-130				
e: 21H232	6-01	Prepared &	Analyzed:	08/27/21					
0.040	mg/L	0.200	ND	97.0	70-130	0.858	20		
		Prepared: 0	8/31/21 Ar	nalyzed: 09	/03/21				
5	mg/L								
		Prepared &	Analyzed:	09/07/21					
0.50	mg/L	6.10		101	90-110				
		Prepared &	Analyzed:	09/07/21					
0.50	mg/L	6.10		94.2	90-110	7.13	20		
e: 21H337	2-01	Prepared &	Analyzed:	09/07/21					
0.50	mg/L	12.2	ND	94.2	85-115				
	2-01	Prepared &	Analyzed	09/07/21					
		0.50 mg/L ce: 21H3372-01	Ü						

12.2

ND

96.0

Reported:

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501

Project Number: Round 3 ASR Water Quality Baseline

Reported: 09/24/21 14:03

Analyte(s)	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
• ` ` ` `	resur	Limit	Cints	Level	resurt	7 UTCLE	Limits	МЪ	Limit	0
atch AH14583 - VOAs in Water GCMS										
Blank (AH14583-BLK1)				Prepared &	k Analyzed:	08/26/21				
Acetone	ND	5.0	ug/L							
Acrylonitrile	ND	5.0	ug/L							
Benzene	ND	0.50	ug/L							
Bromobenzene	ND	0.50	ug/L							
Bromochloromethane	ND	0.50	ug/L							
Bromodichloromethane	ND	1.0	ug/L							
Bromoform	ND	1.0	ug/L							
Bromomethane	ND	0.50	ug/L							
n-Butylbenzene	ND	0.50	ug/L							
sec-Butylbenzene	ND	0.50	ug/L							
ert-Butylbenzene	ND	0.50	ug/L							
Carbon disulfide	ND	0.50	ug/L							
Carbon tetrachloride	ND	0.50	ug/L							
Chlorobenzene	ND	0.50	ug/L							
Chloroethane	ND	0.50	ug/L							
Chloroform	ND	1.0	ug/L							
Chloromethane	ND	0.50	ug/L							
-Chlorotoluene	ND	0.50	ug/L							
l-Chlorotoluene	ND	0.50	ug/L							
Dibromochloromethane	ND	1.0	ug/L							
Dibromomethane	ND	0.50	ug/L							
,2-Dichlorobenzene	ND	0.50	ug/L							
,3-Dichlorobenzene	ND	0.50	ug/L							
,4-Dichlorobenzene	ND	0.50	ug/L							
Dichlorodifluoromethane	ND	0.50	ug/L							
,1-Dichloroethane	ND	0.50	ug/L							
,2-Dichloroethane	ND	0.50	ug/L							
,1-Dichloroethene	ND	0.50	ug/L							
is-1,2-Dichloroethene	ND	0.50	ug/L							
rans-1,2-Dichloroethene	ND	0.50	ug/L							
,3-Dichloropropene (total)	ND	0.50	ug/L							
,2-Dichloropropane	ND	0.50	ug/L							
,3-Dichloropropane	ND	0.50	ug/L							
2,2-Dichloropropane	ND	0.50	ug/L							
,1-Dichloropropene	ND	0.50	ug/L							

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501 Project Number: Round 3 ASR Water Quality Baseline

Reported: 09/24/21 14:03

Analyte(s)	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
	Result	Limit	Cints	Level	Result	70KEC	Limits	МЪ	Liiiit	
Batch AH14583 - VOAs in Water GCMS										
Blank (AH14583-BLK1)				Prepared &	k Analyzed:	08/26/21				
cis-1,3-Dichloropropene	ND	0.50	ug/L							
trans-1,3-Dichloropropene	ND	0.50	ug/L							
Ethylbenzene	ND	0.50	ug/L							
Hexachlorobutadiene	ND	0.50	ug/L							
Isopropylbenzene	ND	0.50	ug/L							
p-Isopropyltoluene	ND	0.50	ug/L							
Methyl ethyl ketone	ND	5.0	ug/L							
Methyl tert-butyl ether	ND	3.0	ug/L							
Methyl isobutyl ketone	ND	5.0	ug/L							
Methylene chloride	ND	0.50	ug/L							
Naphthalene	ND	0.50	ug/L							
n-Propylbenzene	ND	0.50	ug/L							
Styrene	ND	0.50	ug/L							
1,1,1,2-Tetrachloroethane	ND	0.50	ug/L							
1,1,2,2-Tetrachloroethane	ND	0.50	ug/L							
Tetrachloroethene	ND	0.50	ug/L							
Toluene	ND	0.50	ug/L							
1,2,3-Trichlorobenzene	ND	0.50	ug/L							
1,2,4-Trichlorobenzene	ND	0.50	ug/L							
1,1,1-Trichloroethane	ND	0.50	ug/L							
1,1,2-Trichloroethane	ND	0.50	ug/L							
Trichloroethene	ND	0.50	ug/L							
Trichlorofluoromethane	ND	5.0	ug/L							
Trichlorotrifluoroethane	ND	10	ug/L							
1,2,4-Trimethylbenzene	ND	0.50	ug/L							
1,3,5-Trimethylbenzene	ND	0.50	ug/L							
Vinyl chloride	ND	0.50	ug/L							
m,p-Xylene	ND	0.50	ug/L							
o-Xylene	ND	0.50	ug/L							
Xylenes (total)	ND	0.50	ug/L							
Trihalomethanes (total)	ND	0.50	ug/L							
Surrogate: Bromofluorobenzene	27.6		ug/L	25.0		110	70-130			
Surrogate: Dibromofluoromethane	24.1		ug/L	25.0		96.6	70-130			
Surrogate: Toluene-d8	26.5		ug/L	25.0		106	70-130			

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501 Project Number: Round 3 ASR Water Quality Baseline

Reported: 09/24/21 14:03

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AH14583 - VOAs in Water GCMS										
LCS (AH14583-BS1)				Prepared &	Analyzed:	08/26/21				
Acetone	16.3	5.0	ug/L	20.0		81.4	70-130			
Acrylonitrile	4.31	5.0	ug/L	5.00		86.2	70-130			
Benzene	4.24	0.50	ug/L	5.00		84.8	70-130			
Bromobenzene	4.98	0.50	ug/L	5.00		99.6	70-130			
Bromochloromethane	4.71	0.50	ug/L	5.00		94.2	70-130			
Bromodichloromethane	4.33	1.0	ug/L	5.00		86.6	70-130			
Bromoform	4.67	1.0	ug/L	5.00		93.4	70-130			
Bromomethane	3.75	0.50	ug/L	5.00		75.0	70-130			
n-Butylbenzene	4.81	0.50	ug/L	5.00		96.2	70-130			
sec-Butylbenzene	4.77	0.50	ug/L	5.00		95.4	70-130			
tert-Butylbenzene	4.73	0.50	ug/L	5.00		94.6	70-130			
Carbon disulfide	3.77	0.50	ug/L	5.00		75.4	70-130			
Carbon tetrachloride	3.99	0.50	ug/L	5.00		79.8	70-130			
Chlorobenzene	4.53	0.50	ug/L	5.00		90.6	70-130			
Chloroethane	4.05	0.50	ug/L	5.00		81.0	70-130			
Chloroform	4.18	1.0	ug/L	5.00		83.6	70-130			
Chloromethane	5.00	0.50	ug/L	5.00		100	70-130			
2-Chlorotoluene	4.87	0.50	ug/L	5.00		97.4	70-130			
4-Chlorotoluene	4.75	0.50	ug/L	5.00		95.0	70-130			
Dibromochloromethane	4.53	1.0	ug/L	5.00		90.6	70-130			
Dibromomethane	4.41	0.50	ug/L	5.00		88.2	70-130			
1,2-Dichlorobenzene	4.33	0.50	ug/L	5.00		86.6	70-130			
1,3-Dichlorobenzene	4.89	0.50	ug/L	5.00		97.8	70-130			
1,4-Dichlorobenzene	4.30	0.50	ug/L	5.00		86.0	70-130			
Dichlorodifluoromethane	4.16	0.50	ug/L	5.00		83.2	70-130			
1,1-Dichloroethane	4.09	0.50	ug/L	5.00		81.8	70-130			
1,2-Dichloroethane	4.24	0.50	ug/L	5.00		84.8	70-130			
1,1-Dichloroethene	3.88	0.50	ug/L	5.00		77.6	70-130			
trans-1,2-Dichloroethene	4.13	0.50	ug/L	5.00		82.6	70-130			
cis-1,2-Dichloroethene	4.17	0.50	ug/L	5.00		83.4	70-130			
1,2-Dichloropropane	4.20	0.50	ug/L	5.00		84.0	70-130			
1,3-Dichloropropane	4.48	0.50	ug/L	5.00		89.6	70-130			
2,2-Dichloropropane	4.24	0.50	ug/L	5.00		84.8	70-130			
1,1-Dichloropropene	3.91	0.50	ug/L	5.00		78.2	70-130			
cis-1,3-Dichloropropene	3.89	0.50	ug/L	5.00		77.8	70-130			

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501

Project Number: Round 3 ASR Water Quality Baseline

Reported: 09/24/21 14:03

Analyte(s)	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AH14583 - VOAs in Water GCMS										
LCS (AH14583-BS1)				Prepared &	Analyzed:	08/26/21				
trans-1,3-Dichloropropene	3.94	0.50	ug/L	5.00		78.8	70-130			
Ethylbenzene	4.36	0.50	ug/L	5.00		87.2	70-130			
Hexachlorobutadiene	4.52	0.50	ug/L	5.00		90.4	70-130			
Isopropylbenzene	4.86	0.50	ug/L	5.00		97.2	70-130			
p-Isopropyltoluene	4.83	0.50	ug/L	5.00		96.6	70-130			
Methyl ethyl ketone	8.86	5.0	ug/L	10.0		88.6	70-130			
Methyl tert-butyl ether	4.29	3.0	ug/L	5.00		85.8	70-130			
Methyl isobutyl ketone	8.65	5.0	ug/L	10.0		86.5	70-130			
Methylene chloride	3.62	0.50	ug/L	5.00		72.4	70-130			
Naphthalene	4.23	0.50	ug/L	5.00		84.6	70-130			
n-Propylbenzene	4.70	0.50	ug/L	5.00		94.0	70-130			
Styrene	4.57	0.50	ug/L	5.00		91.4	70-130			
1,1,1,2-Tetrachloroethane	3.68	0.50	ug/L	5.00		73.6	70-130			
1,1,2,2-Tetrachloroethane	4.31	0.50	ug/L	5.00		86.2	70-130			
Tetrachloroethene	4.63	0.50	ug/L	5.00		92.6	70-130			
Toluene	4.50	0.50	ug/L	5.00		90.0	70-130			
1,2,3-Trichlorobenzene	4.73	0.50	ug/L	5.00		94.6	70-130			
1,2,4-Trichlorobenzene	4.53	0.50	ug/L	5.00		90.6	70-130			
1,1,1-Trichloroethane	3.95	0.50	ug/L	5.00		79.0	70-130			
1,1,2-Trichloroethane	4.43	0.50	ug/L	5.00		88.6	70-130			
Trichloroethene	4.20	0.50	ug/L	5.00		84.0	70-130			
Trichlorofluoromethane	4.02	5.0	ug/L	5.00		80.4	70-130			
Trichlorotrifluoroethane	4.12	10	ug/L	5.00		82.4	70-130			
1,2,4-Trimethylbenzene	5.08	0.50	ug/L	5.00		102	70-130			
1,3,5-Trimethylbenzene	4.83	0.50	ug/L	5.00		96.6	70-130			
Vinyl chloride	5.56	0.50	ug/L	5.00		111	70-130			
m,p-Xylene	9.18	0.50	ug/L	10.0		91.8	70-130			
o-Xylene	4.74	0.50	ug/L	5.00		94.8	70-130			
Xylenes (total)	13.9	0.50	ug/L	15.0		92.8	70-130			
Surrogate: Bromofluorobenzene	28.4		ug/L	25.0		114	70-130			
Surrogate: Dibromofluoromethane	24.5		ug/L	25.0		98.1	70-130			
Surrogate: Toluene-d8	26.3		ug/L	25.0		105	70-130			

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215 Alameda, CA 94501

Project: Round 3 ASR Water Quality Baseline

Project Number: Round 3 ASR Water Quality Baseline

Reported: 09/24/21 14:03

Analyte(s)	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
•		Limit	Omts	Level	Result	70KLC	Limits	KI D	Limit	
atch AH14583 - VOAs in Water GCMS										
LCS Dup (AH14583-BSD1)				Prepared &	Analyzed:	08/26/21				
Acetone	15.2	5.0	ug/L	20.0		76.0	70-130	6.92	30	
Acrylonitrile	4.32	5.0	ug/L	5.00		86.4	70-130	0.232	30	
Benzene	4.49	0.50	ug/L	5.00		89.8	70-130	5.73	30	
Bromobenzene	5.14	0.50	ug/L	5.00		103	70-130	3.16	30	
Bromochloromethane	4.71	0.50	ug/L	5.00		94.2	70-130	0.00	30	
Bromodichloromethane	4.67	1.0	ug/L	5.00		93.4	70-130	7.56	30	
Bromoform	4.71	1.0	ug/L	5.00		94.2	70-130	0.853	30	
Bromomethane	3.90	0.50	ug/L	5.00		78.0	70-130	3.92	30	
n-Butylbenzene	5.02	0.50	ug/L	5.00		100	70-130	4.27	30	
ec-Butylbenzene	4.92	0.50	ug/L	5.00		98.4	70-130	3.10	30	
ert-Butylbenzene	4.95	0.50	ug/L	5.00		99.0	70-130	4.55	30	
Carbon disulfide	3.95	0.50	ug/L	5.00		79.0	70-130	4.66	30	
Carbon tetrachloride	4.26	0.50	ug/L	5.00		85.2	70-130	6.55	30	
Chlorobenzene	4.72	0.50	ug/L	5.00		94.4	70-130	4.11	30	
Chloroethane	4.36	0.50	ug/L	5.00		87.2	70-130	7.37	30	
Chloroform	4.36	1.0	ug/L	5.00		87.2	70-130	4.22	30	
Chloromethane	4.95	0.50	ug/L	5.00		99.0	70-130	1.01	30	
-Chlorotoluene	4.98	0.50	ug/L	5.00		99.6	70-130	2.23	30	
-Chlorotoluene	4.90	0.50	ug/L	5.00		98.0	70-130	3.11	30	
Dibromochloromethane	4.53	1.0	ug/L	5.00		90.6	70-130	0.00	30	
Dibromomethane	4.54	0.50	ug/L	5.00		90.8	70-130	2.91	30	
,2-Dichlorobenzene	4.46	0.50	ug/L	5.00		89.2	70-130	2.96	30	
,3-Dichlorobenzene	4.87	0.50	ug/L	5.00		97.4	70-130	0.410	30	
,4-Dichlorobenzene	4.38	0.50	ug/L	5.00		87.6	70-130	1.84	30	
Dichlorodifluoromethane	4.78	0.50	ug/L	5.00		95.6	70-130	13.9	30	
,1-Dichloroethane	4.26	0.50	ug/L	5.00		85.2	70-130	4.07	30	
,2-Dichloroethane	4.48	0.50	ug/L	5.00		89.6	70-130	5.50	30	
,1-Dichloroethene	4.11	0.50	ug/L	5.00		82.2	70-130	5.76	30	
is-1,2-Dichloroethene	4.31	0.50	ug/L	5.00		86.2	70-130	3.30	30	
rans-1,2-Dichloroethene	4.21	0.50	ug/L	5.00		84.2	70-130	1.92	30	
,2-Dichloropropane	4.47	0.50	ug/L	5.00		89.4	70-130	6.23	30	
,3-Dichloropropane	4.74	0.50	ug/L	5.00		94.8	70-130	5.64	30	
,2-Dichloropropane	4.00	0.50	ug/L	5.00		80.0	70-130	5.83	30	
,1-Dichloropropene	4.24	0.50	ug/L	5.00		84.8	70-130	8.10	30	
sis-1,3-Dichloropropene	3.97	0.50	ug/L	5.00		79.4	70-130	2.04	30	

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501

Project Number: Round 3 ASR Water Quality Baseline

Reported: 09/24/21 14:03

Analyte(s)	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Analyte(s)	Result	LIIIII	Ullits	Level	Resuit	70KEC	Lillits	KPD	LIIIII	Tag
Batch AH14583 - VOAs in Water GCMS										
LCS Dup (AH14583-BSD1)				Prepared &	Analyzed:	08/26/21				
trans-1,3-Dichloropropene	4.04	0.50	ug/L	5.00		80.8	70-130	2.51	30	
Ethylbenzene	4.66	0.50	ug/L	5.00		93.2	70-130	6.65	30	
Hexachlorobutadiene	4.85	0.50	ug/L	5.00		97.0	70-130	7.04	30	
Isopropylbenzene	5.12	0.50	ug/L	5.00		102	70-130	5.21	30	
p-Isopropyltoluene	4.91	0.50	ug/L	5.00		98.2	70-130	1.64	30	
Methyl ethyl ketone	8.91	5.0	ug/L	10.0		89.1	70-130	0.563	30	
Methyl isobutyl ketone	8.97	5.0	ug/L	10.0		89.7	70-130	3.63	30	
Methyl tert-butyl ether	4.47	3.0	ug/L	5.00		89.4	70-130	4.11	30	
Methylene chloride	3.81	0.50	ug/L	5.00		76.2	70-130	5.11	30	
Naphthalene	4.33	0.50	ug/L	5.00		86.6	70-130	2.34	30	
n-Propylbenzene	4.96	0.50	ug/L	5.00		99.2	70-130	5.38	30	
Styrene	4.85	0.50	ug/L	5.00		97.0	70-130	5.94	30	
1,1,1,2-Tetrachloroethane	3.76	0.50	ug/L	5.00		75.2	70-130	2.15	30	
1,1,2,2-Tetrachloroethane	4.30	0.50	ug/L	5.00		86.0	70-130	0.232	30	
Tetrachloroethene	5.06	0.50	ug/L	5.00		101	70-130	8.88	30	
Toluene	4.76	0.50	ug/L	5.00		95.2	70-130	5.62	30	
1,2,3-Trichlorobenzene	4.89	0.50	ug/L	5.00		97.8	70-130	3.33	30	
1,2,4-Trichlorobenzene	4.69	0.50	ug/L	5.00		93.8	70-130	3.47	30	
1,1,1-Trichloroethane	4.27	0.50	ug/L	5.00		85.4	70-130	7.79	30	
1,1,2-Trichloroethane	4.59	0.50	ug/L	5.00		91.8	70-130	3.55	30	
Trichloroethene	4.40	0.50	ug/L	5.00		88.0	70-130	4.65	30	
Trichlorofluoromethane	4.22	5.0	ug/L	5.00		84.4	70-130	4.85	30	
Trichlorotrifluoroethane	4.45	10	ug/L	5.00		89.0	70-130	7.70	30	
1,2,4-Trimethylbenzene	5.15	0.50	ug/L	5.00		103	70-130	1.37	30	
1,3,5-Trimethylbenzene	4.95	0.50	ug/L	5.00		99.0	70-130	2.45	30	
Vinyl chloride	5.38	0.50	ug/L	5.00		108	70-130	3.29	30	
m,p-Xylene	9.67	0.50	ug/L	10.0		96.7	70-130	5.20	30	
o-Xylene	4.99	0.50	ug/L	5.00		99.8	70-130	5.14	30	
Xylenes (total)	14.7	0.50	ug/L	15.0		97.7	70-130	5.18	30	
Surrogate: Bromofluorobenzene	28.1		ug/L	25.0		112	70-130			
Surrogate: Dibromofluoromethane	24.0		ug/L	25.0		95.9	70-130			
Surrogate: Toluene-d8	26.3		ug/L	25.0		105	70-130			

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501 Project Number: Round 3 ASR Water Quality Baseline

Reported: 09/24/21 14:03

Analyte(s)	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AH14583 - VOAs in Water GCMS										
Matrix Spike (AH14583-MS1)	So	urce: 21H273	4-01	Prepared &	Analyzed:	08/26/21				QM-05
Acetone	16.7	5.0	ug/L	20.0	ND	83.5	70-130			
Acrylonitrile	4.54	5.0	ug/L	5.00	ND	90.8	70-130			
Benzene	5.52	0.50	ug/L	5.00	ND	110	70-130			
Bromobenzene	5.93	0.50	ug/L	5.00	ND	119	70-130			
Bromochloromethane	5.47	0.50	ug/L	5.00	ND	109	70-130			
Bromodichloromethane	4.94	1.0	ug/L	5.00	ND	98.8	70-130			
Bromoform	3.59	1.0	ug/L	5.00	ND	71.8	70-130			
Bromomethane	5.42	0.50	ug/L	5.00	ND	108	70-130			
n-Butylbenzene	6.70	0.50	ug/L	5.00	ND	134	70-130			
sec-Butylbenzene	6.89	0.50	ug/L	5.00	ND	138	70-130			
tert-Butylbenzene	6.70	0.50	ug/L	5.00	ND	134	70-130			
Carbon disulfide	5.54	0.50	ug/L	5.00	1.01	90.6	70-130			
Carbon tetrachloride	6.34	0.50	ug/L	5.00	ND	127	70-130			
Chlorobenzene	5.50	0.50	ug/L	5.00	ND	110	70-130			
Chloroethane	5.53	0.50	ug/L	5.00	ND	111	70-130			
Chloroform	5.28	1.0	ug/L	5.00	ND	106	70-130			
Chloromethane	6.01	0.50	ug/L	5.00	ND	120	70-130			
2-Chlorotoluene	6.23	0.50	ug/L	5.00	ND	125	70-130			
4-Chlorotoluene	6.02	0.50	ug/L	5.00	ND	120	70-130			
Dibromochloromethane	4.24	1.0	ug/L	5.00	ND	84.8	70-130			
Dibromomethane	5.56	0.50	ug/L	5.00	ND	111	70-130			
1,2-Dichlorobenzene	5.05	0.50	ug/L	5.00	ND	101	70-130			
1,3-Dichlorobenzene	5.79	0.50	ug/L	5.00	ND	116	70-130			
1,4-Dichlorobenzene	5.02	0.50	ug/L	5.00	ND	100	70-130			
Dichlorodifluoromethane	6.47	0.50	ug/L	5.00	ND	129	70-130			
1,1-Dichloroethane	5.35	0.50	ug/L	5.00	ND	107	70-130			
1,2-Dichloroethane	5.13	0.50	ug/L	5.00	ND	103	70-130			
1,1-Dichloroethene	6.16	0.50	ug/L	5.00	ND	123	70-130			
cis-1,2-Dichloroethene	5.30	0.50	ug/L	5.00	ND	106	70-130			
trans-1,2-Dichloroethene	5.64	0.50	ug/L	5.00	ND	113	70-130			
1,2-Dichloropropane	5.14	0.50	ug/L	5.00	ND	103	70-130			
1,3-Dichloropropane	5.08	0.50	ug/L	5.00	ND	102	70-130			
2,2-Dichloropropane	6.16	0.50	ug/L	5.00	ND	123	70-130			
1,1-Dichloropropene	6.25	0.50	ug/L	5.00	ND	125	70-130			
cis-1,3-Dichloropropene	4.06	0.50	ug/L	5.00	ND	81.2	70-130			

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501

Project Number: Round 3 ASR Water Quality Baseline

Reported: 09/24/21 14:03

Analyte(s)	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AH14583 - VOAs in Water GCMS										
Matrix Spike (AH14583-MS1)	So	urce: 21H273	4-01	Prepared &	ኔ Analyzed:	08/26/21				QM-05
trans-1,3-Dichloropropene	4.28	0.50	ug/L	5.00	ND	85.6	70-130			
Ethylbenzene	5.91	0.50	ug/L	5.00	ND	118	70-130			
Hexachlorobutadiene	6.23	0.50	ug/L	5.00	ND	125	70-130			
Isopropylbenzene	6.83	0.50	ug/L	5.00	ND	137	70-130			
p-Isopropyltoluene	6.68	0.50	ug/L	5.00	ND	134	70-130			
Methyl ethyl ketone	11.0	5.0	ug/L	10.0	ND	110	70-130			
Methyl isobutyl ketone	10.5	5.0	ug/L	10.0	ND	105	70-130			
Methyl tert-butyl ether	4.50	3.0	ug/L	5.00	ND	90.0	70-130			
Methylene chloride	4.63	0.50	ug/L	5.00	ND	92.6	70-130			
Naphthalene	4.50	0.50	ug/L	5.00	ND	90.0	70-130			
n-Propylbenzene	6.74	0.50	ug/L	5.00	ND	135	70-130			
Styrene	5.78	0.50	ug/L	5.00	ND	116	70-130			
1,1,1,2-Tetrachloroethane	4.45	0.50	ug/L	5.00	ND	89.0	70-130			
1,1,2,2-Tetrachloroethane	4.93	0.50	ug/L	5.00	ND	98.6	70-130			
Tetrachloroethene	7.12	0.50	ug/L	5.00	ND	142	70-130			
Toluene	5.95	0.50	ug/L	5.00	ND	119	70-130			
1,2,3-Trichlorobenzene	5.35	0.50	ug/L	5.00	ND	107	70-130			
1,2,4-Trichlorobenzene	5.13	0.50	ug/L	5.00	ND	103	70-130			
1,1,1-Trichloroethane	6.34	0.50	ug/L	5.00	ND	127	70-130			
1,1,2-Trichloroethane	5.05	0.50	ug/L	5.00	ND	101	70-130			
Trichloroethene	5.87	0.50	ug/L	5.00	ND	117	70-130			
Trichlorofluoromethane	6.41	5.0	ug/L	5.00	ND	128	70-130			
Trichlorotrifluoroethane	9.55	10	ug/L	5.00	ND	158	70-130			
1,2,4-Trimethylbenzene	6.42	0.50	ug/L	5.00	ND	128	70-130			
1,3,5-Trimethylbenzene	6.33	0.50	ug/L	5.00	ND	127	70-130			
Vinyl chloride	7.11	0.50	ug/L	5.00	ND	142	70-130			
m,p-Xylene	12.3	0.50	ug/L	10.0	ND	123	70-130			
o-Xylene	5.97	0.50	ug/L	5.00	ND	119	70-130			
Xylenes (total)	18.3	0.50	ug/L	15.0	ND	122	70-130			
Surrogate: Bromofluorobenzene	28.1		ug/L	25.0		112	70-130			
Surrogate: Dibromofluoromethane	24.1		ug/L	25.0		96.4	70-130			
Surrogate: Toluene-d8	25.9		ug/L	25.0		103	70-130			

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501

Project Number: Round 3 ASR Water Quality Baseline

Reported: 09/24/21 14:03

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AH14583 - VOAs in Water GCMS										
Matrix Spike (AH14583-MS2)	Sour	ce: 21H281	3-01	Prepared &	Analyzed:	08/26/21				
Acetone	17.3	5.0	ug/L	20.0	ND	86.3	70-130			
Acrylonitrile	4.76	5.0	ug/L	5.00	ND	95.2	70-130			
Benzene	5.27	0.50	ug/L	5.00	ND	105	70-130			
Bromobenzene	5.85	0.50	ug/L	5.00	ND	117	70-130			
Bromochloromethane	5.12	0.50	ug/L	5.00	ND	102	70-130			
Bromodichloromethane	4.99	1.0	ug/L	5.00	ND	99.8	70-130			
Bromoform	4.22	1.0	ug/L	5.00	ND	84.4	70-130			
Bromomethane	5.03	0.50	ug/L	5.00	ND	101	70-130			
n-Butylbenzene	6.35	0.50	ug/L	5.00	ND	127	70-130			
sec-Butylbenzene	6.37	0.50	ug/L	5.00	ND	127	70-130			
tert-Butylbenzene	6.46	0.50	ug/L	5.00	ND	129	70-130			
Carbon disulfide	5.35	0.50	ug/L	5.00	ND	107	70-130			
Carbon tetrachloride	6.31	0.50	ug/L	5.00	ND	126	70-130			
Chlorobenzene	5.35	0.50	ug/L	5.00	ND	107	70-130			
Chloroethane	5.07	0.50	ug/L	5.00	ND	101	70-130			
Chloroform	5.10	1.0	ug/L	5.00	ND	102	70-130			
Chloromethane	5.76	0.50	ug/L	5.00	ND	115	70-130			
2-Chlorotoluene	5.86	0.50	ug/L	5.00	ND	117	70-130			
4-Chlorotoluene	5.68	0.50	ug/L	5.00	ND	114	70-130			
Dibromochloromethane	4.40	1.0	ug/L	5.00	ND	88.0	70-130			
Dibromomethane	4.96	0.50	ug/L	5.00	ND	99.2	70-130			
1,2-Dichlorobenzene	4.80	0.50	ug/L	5.00	ND	96.0	70-130			
1,3-Dichlorobenzene	5.59	0.50	ug/L	5.00	ND	112	70-130			
1,4-Dichlorobenzene	4.90	0.50	ug/L	5.00	ND	98.0	70-130			
Dichlorodifluoromethane	6.48	0.50	ug/L	5.00	ND	130	70-130			
1,1-Dichloroethane	5.17	0.50	ug/L	5.00	ND	103	70-130			
1,2-Dichloroethane	4.82	0.50	ug/L	5.00	ND	96.4	70-130			
1,1-Dichloroethene	5.78	0.50	ug/L	5.00	ND	116	70-130			
trans-1,2-Dichloroethene	5.38	0.50	ug/L	5.00	ND	108	70-130			
cis-1,2-Dichloroethene	5.13	0.50	ug/L	5.00	ND	103	70-130			
1,2-Dichloropropane	4.84	0.50	ug/L	5.00	ND	96.8	70-130			
1,3-Dichloropropane	5.03	0.50	ug/L	5.00	ND	101	70-130			
2,2-Dichloropropane	6.25	0.50	ug/L	5.00	ND	125	70-130			
1,1-Dichloropropene	6.02	0.50	ug/L	5.00	ND	120	70-130			
cis-1,3-Dichloropropene	4.16	0.50	ug/L	5.00	ND	83.2	70-130			

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501

Project Number: Round 3 ASR Water Quality Baseline

Reported: 09/24/21 14:03

Analyte(s)	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AH14583 - VOAs in Water GCMS										
Matrix Spike (AH14583-MS2)	So	urce: 21H281	3-01	Prepared &	ኔ Analyzed:	08/26/21				
trans-1,3-Dichloropropene	4.31	0.50	ug/L	5.00	ND	86.2	70-130			
Ethylbenzene	5.79	0.50	ug/L	5.00	ND	116	70-130			
Hexachlorobutadiene	6.07	0.50	ug/L	5.00	ND	121	70-130			
Isopropylbenzene	6.50	0.50	ug/L	5.00	ND	130	70-130			
p-Isopropyltoluene	6.40	0.50	ug/L	5.00	ND	128	70-130			
Methyl ethyl ketone	9.74	5.0	ug/L	10.0	ND	97.4	70-130			
Methyl isobutyl ketone	10.0	5.0	ug/L	10.0	ND	100	70-130			
Methyl tert-butyl ether	4.59	3.0	ug/L	5.00	ND	91.8	70-130			
Methylene chloride	4.32	0.50	ug/L	5.00	ND	86.4	70-130			
Naphthalene	4.52	0.50	ug/L	5.00	ND	90.4	70-130			
n-Propylbenzene	6.47	0.50	ug/L	5.00	ND	129	70-130			
Styrene	5.77	0.50	ug/L	5.00	ND	115	70-130			
1,1,1,2-Tetrachloroethane	4.19	0.50	ug/L	5.00	ND	83.8	70-130			
1,1,2,2-Tetrachloroethane	4.84	0.50	ug/L	5.00	ND	96.8	70-130			
Tetrachloroethene	6.42	0.50	ug/L	5.00	ND	128	70-130			
Toluene	5.69	0.50	ug/L	5.00	ND	114	70-130			
1,2,3-Trichlorobenzene	5.16	0.50	ug/L	5.00	ND	103	70-130			
1,2,4-Trichlorobenzene	5.06	0.50	ug/L	5.00	ND	101	70-130			
1,1,1-Trichloroethane	6.07	0.50	ug/L	5.00	ND	121	70-130			
1,1,2-Trichloroethane	4.94	0.50	ug/L	5.00	ND	98.8	70-130			
Trichloroethene	5.60	0.50	ug/L	5.00	ND	112	70-130			
Trichlorofluoromethane	6.49	5.0	ug/L	5.00	ND	130	70-130			
Trichlorotrifluoroethane	7.01	10	ug/L	5.00	ND	140	70-130			QM-05
1,2,4-Trimethylbenzene	6.26	0.50	ug/L	5.00	ND	125	70-130			
1,3,5-Trimethylbenzene	6.16	0.50	ug/L	5.00	ND	123	70-130			
Vinyl chloride	7.20	0.50	ug/L	5.00	ND	144	70-130			QM-05
m,p-Xylene	12.0	0.50	ug/L	10.0	ND	120	70-130			
o-Xylene	5.84	0.50	ug/L	5.00	ND	117	70-130			
Xylenes (total)	17.9	0.50	ug/L	15.0	ND	119	70-130			
Surrogate: Bromofluorobenzene	28.0		ug/L	25.0		112	70-130			
Surrogate: Dibromofluoromethane	23.9		ug/L	25.0		95.5	70-130			
Surrogate: Toluene-d8	25.4		ug/L	25.0		102	70-130			

Alpha Analytical Laboratories, Inc.

email: clientservices@alpha-labs.com

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501

Project Number: Round 3 ASR Water Quality Baseline

Reported: 09/24/21 14:03

Notes and Definitions

QM-05 The spike recovery was outside acceptance limits for the MS and/or MSD due to matrix interference. The LCS and/or LCSD

were within acceptance limits showing that the laboratory is in control and the data is acceptable.

QM-07 The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS

recovery.

R-01 The Reporting Limit for this analyte has been raised to account for matrix interference.

ND Analyte NOT DETECTED at or above the reporting limit

dry Sample results reported on a dry weight basis

REC Recovery

RPD Relative Percent Difference

September 15, 2021

Vista Work Order No. 2108221

Mr. David S. Pingatore Alpha Analytical Laboratories, Inc 208 Mason Street Ukiah, CA 95482

Dear Mr. Pingatore,

Enclosed are the results for the sample set received at Vista Analytical Laboratory on August 24, 2021 under your Project Name '21H2617'.

Vista Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-673-1520 or by email at jfox@vista-analytical.com.

Thank you for choosing Vista as part of your analytical support team.

Sincerely,

Jamie Fox

Laboratory Director

Vista Analytical Laboratory certifies that the report herein meets all the requirements set forth by NELAP for those applicable test methods. Results relate only to the samples as received by the laboratory. This report should not be reproduced except in full without the written approval of Vista.

Vista Analytical Laboratory 1104 Windfield Way El Dorado Hills, CA 95762 ph: 916-673-1520 fx: 916-673-0106 www.vista-analytical.com

Work Order 2108221 Page 1 of 16

Vista Work Order No. 2108221 Case Narrative

Sample Condition on Receipt:

Two drinking water samples were received and stored securely in accordance with Vista standard operating procedures and EPA methodology. The samples were received in good condition and within the method temperature requirements.

Analytical Notes:

EPA Method 537.1

The samples were extracted and analyzed for a selected list of PFAS using EPA Method 537.1.

Holding Times

The samples were extracted and analyzed within the method hold times.

Quality Control

The Initial Calibration and Continuing Calibration Verifications met the method acceptance criteria.

A Laboratory Fortified Blank (LFB) and Laboratory Reagent Blank (LRB) were extracted and analyzed with the preparation batch. No analytes were detected in the LRB above the method specified limits. The LFB recoveries were within the method acceptance criteria.

The surrogate recoveries for all QC and field samples were within the acceptance criteria.

Work Order 2108221 Page 2 of 16

TABLE OF CONTENTS

Case Narrative	1
Table of Contents	3
Sample Inventory	4
Analytical Results	5
Qualifiers	10
Certifications	11
Sample Receipt	14

Work Order 2108221 Page 3 of 16

Sample Inventory Report

Vista Client Sample ID Sample ID

2108221-01 3121

Sampled Received

Components/Containers

Vista Project: 2108221 Client Project: 21H2617

Work Order 2108221 Page 4 of 16

ANALYTICAL RESULTS

Work Order 2108221 Page 5 of 16

Sample ID: L	RB									EPA Metho	d 537.1
Client Data					Lab	oratory Data					
Name: Project:	Alpha Analytical Laboratories, Inc 21H2617	Matrix:	Aqueous		Lab	Lab Sample: B1H0212-BLK1		Column: BEH C18			
Analyte	CAS Number	Conc. (ng/L)	MDL		RL	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
PFBS	375-73-5	ND	0.704	2	.00		B1H0212	27-Aug-21	0.250 L	29-Aug-21 05:55	1
PFHxA	307-24-4	ND	0.961	2	.00		B1H0212	27-Aug-21	0.250 L	29-Aug-21 05:55	1
HFPO-DA	13252-13-6	ND	0.847	2	.00		B1H0212	27-Aug-21	0.250 L	29-Aug-21 05:55	1
PFHpA	375-85-9	ND	0.790	2	.00		B1H0212	27-Aug-21	0.250 L	29-Aug-21 05:55	1
ADONA	919005-14-4	ND	0.762	2	.00		B1H0212	27-Aug-21	0.250 L	29-Aug-21 05:55	1
PFHxS	355-46-4	ND	0.803	2	.00		B1H0212	27-Aug-21	0.250 L	29-Aug-21 05:55	1
PFOA	335-67-1	ND	0.745	2	.00		B1H0212	27-Aug-21	0.250 L	29-Aug-21 05:55	1
PFNA	375-95-1	ND	0.878	2	.00		B1H0212	27-Aug-21	0.250 L	29-Aug-21 05:55	1
PFOS	1763-23-1	ND	1.31	2	.00		B1H0212	27-Aug-21	0.250 L	29-Aug-21 05:55	1
9C1-PF3ONS	756426-58-1	ND	0.866	2	.00		B1H0212	27-Aug-21	0.250 L	29-Aug-21 05:55	1
PFDA	335-76-2	ND	0.629	2	.00		B1H0212	27-Aug-21	0.250 L	29-Aug-21 05:55	1
MeFOSAA	2355-31-9	ND	0.483	2	.00		B1H0212	27-Aug-21	0.250 L	29-Aug-21 05:55	1
EtFOSAA	2991-50-6	ND	0.902	2	.00		B1H0212	27-Aug-21	0.250 L	29-Aug-21 05:55	1
PFUnA	2058-94-8	ND	0.682	2	.00		B1H0212	27-Aug-21	0.250 L	29-Aug-21 05:55	1
PFDoA	307-55-1	ND	0.727	2	.00		B1H0212	27-Aug-21	0.250 L	29-Aug-21 05:55	1
PFTrDA	72629-94-8	ND	0.766	2	.00		B1H0212	27-Aug-21	0.250 L	29-Aug-21 05:55	1
11Cl-PF3OUdS	763051-92-9	ND	1.18	2	.00		B1H0212	27-Aug-21	0.250 L	29-Aug-21 05:55	1
PFTeDA	376-06-7	ND	0.781	2	.00		B1H0212	27-Aug-21	0.250 L	29-Aug-21 05:55	1
Labeled Standar	rds Type	% Recovery		Limits		Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
13C2-PFHxA	SURR	107		70 - 130			B1H0212	27-Aug-21	0.250 L	29-Aug-21 05:55	1
13C2-PFDA	SURR	101		70 - 130			B1H0212	27-Aug-21	0.250 L	29-Aug-21 05:55	1
d5-EtFOSAA	SURR	88.6		70 - 130			B1H0212	27-Aug-21	0.250 L	29-Aug-21 05:55	1
13C3-HFPO-DA	SURR	100		70 - 130			B1H0212	27-Aug-21	0.250 L	29-Aug-21 05:55	1

MDL - Method Detection Limit

RL - Reporting limit

Results reported to MDL.

When reported, PFHxS, PFOA, PFOS, MeFOSAA and EtFOSAA include both linear and branched isomers. Only the linear isomer is reported for all other analytes.

Work Order 2108221 Page 6 of 16

Sample ID: LFB EPA Method 537.1

Client Data Laboratory Data

Alpha Analytical Laboratories, Inc 21H2617 Name: B1H0212-BS1 Column: BEH C18 Matrix: Aqueous Lab Sample:

Project:

F10ject. 21112017											
Analyte	CAS Number	Amt Found (ng/L)	Spike Amt	% Rec	Limits	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
PFBS	375-73-5	15.4	14.2	109	50 - 150		B1H0212	27-Aug-21	0.250 L	29-Aug-21 06:06	1
PFHxA	307-24-4	16.4	16.0	103	50 - 150		B1H0212	27-Aug-21	$0.250~\mathrm{L}$	29-Aug-21 06:06	1
HFPO-DA	13252-13-6	16.7	16.0	104	50 - 150		B1H0212	27-Aug-21	$0.250~\mathrm{L}$	29-Aug-21 06:06	1
PFHpA	375-85-9	17.5	16.0	109	50 - 150		B1H0212	27-Aug-21	$0.250~\mathrm{L}$	29-Aug-21 06:06	1
ADONA	919005-14-4	15.1	15.1	99.6	50 - 150		B1H0212	27-Aug-21	$0.250~\mathrm{L}$	29-Aug-21 06:06	1
PFHxS	355-46-4	15.2	14.6	105	50 - 150		B1H0212	27-Aug-21	$0.250~\mathrm{L}$	29-Aug-21 06:06	1
PFOA	335-67-1	16.3	16.0	102	50 - 150		B1H0212	27-Aug-21	$0.250~\mathrm{L}$	29-Aug-21 06:06	1
PFNA	375-95-1	15.1	16.0	94.5	50 - 150		B1H0212	27-Aug-21	$0.250~\mathrm{L}$	29-Aug-21 06:06	1
PFOS	1763-23-1	15.3	14.8	103	50 - 150		B1H0212	27-Aug-21	$0.250~\mathrm{L}$	29-Aug-21 06:06	1
9CI-PF3ONS	756426-58-1	14.6	14.9	98.3	50 - 150		B1H0212	27-Aug-21	$0.250~\mathrm{L}$	29-Aug-21 06:06	1
PFDA	335-76-2	17.1	16.0	107	50 - 150		B1H0212	27-Aug-21	$0.250~\mathrm{L}$	29-Aug-21 06:06	1
MeFOSAA	2355-31-9	16.8	16.0	105	50 - 150		B1H0212	27-Aug-21	$0.250~\mathrm{L}$	29-Aug-21 06:06	1
EtFOSAA	2991-50-6	13.9	16.0	86.9	50 - 150		B1H0212	27-Aug-21	$0.250~\mathrm{L}$	29-Aug-21 06:06	1
PFUnA	2058-94-8	15.4	16.0	96.4	50 - 150		B1H0212	27-Aug-21	$0.250~\mathrm{L}$	29-Aug-21 06:06	1
PFDoA	307-55-1	15.4	16.0	96.2	50 - 150		B1H0212	27-Aug-21	$0.250~\mathrm{L}$	29-Aug-21 06:06	1
PFTrDA	72629-94-8	14.2	16.0	88.6	50 - 150		B1H0212	27-Aug-21	$0.250~\mathrm{L}$	29-Aug-21 06:06	1
11Cl-PF3OUdS	763051-92-9	15.2	15.0	101	50 - 150		B1H0212	27-Aug-21	$0.250~\mathrm{L}$	29-Aug-21 06:06	1
PFTeDA	376-06-7	14.3	16.0	89.4	50 - 150		B1H0212	27-Aug-21	0.250 L	29-Aug-21 06:06	1
Labeled Standards		Type		% Rec	Limits	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
13C2-PFHxA		SURR		105	70 - 130		B1H0212	27-Aug-21	0.250 L	29-Aug-21 06:06	1
13C2-PFDA		SURR		99.7	70 - 130		B1H0212	27-Aug-21	0.250 L	29-Aug-21 06:06	1
d5-EtFOSAA		SURR		87.5	70 - 130		B1H0212	27-Aug-21	$0.250~\mathrm{L}$	29-Aug-21 06:06	1
13C3-HFPO-DA		SURR		94.9	70 - 130		B1H0212	27-Aug-21	0.250 L	29-Aug-21 06:06	1

Page 7 of 16 Work Order 2108221

Sample ID: 3	121										EPA Metho	d 537.1
Client Data Name: Alpha Analytical Laboratories Project: 21H2617 Location: 21H2617-01		boratories, Inc	Matrix: Drinking Date Collected: 18-Aug-2		g Water La		oratory Data Sample: Received:	2108221-01 24-Aug-21 11:19		Column	BEH C18	
Analyte		CAS Number	Conc. (ng/L)	MDL		RL	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
PFBS		375-73-5	ND	0.703		2.00		B1H0212	27-Aug-21	0.250 L	29-Aug-21 09:58	1
PFHxA		307-24-4	ND	0.959		2.00		B1H0212	27-Aug-21	0.250 L	29-Aug-21 09:58	1
HFPO-DA		13252-13-6	ND	0.846		2.00		B1H0212	27-Aug-21	$0.250\mathrm{L}$	29-Aug-21 09:58	1
PFHpA		375-85-9	ND	0.789		2.00		B1H0212	27-Aug-21	$0.250\mathrm{L}$	29-Aug-21 09:58	1
ADONA		919005-14-4	ND	0.761		2.00		B1H0212	27-Aug-21	0.250 L	29-Aug-21 09:58	1
PFHxS		355-46-4	ND	0.802		2.00		B1H0212	27-Aug-21	$0.250\mathrm{L}$	29-Aug-21 09:58	1
PFOA		335-67-1	ND	0.744		2.00		B1H0212	27-Aug-21	0.250 L	29-Aug-21 09:58	1
PFNA		375-95-1	ND	0.877		2.00		B1H0212	27-Aug-21	$0.250\mathrm{L}$	29-Aug-21 09:58	1
PFOS		1763-23-1	ND	1.31		2.00		B1H0212	27-Aug-21	$0.250\mathrm{L}$	29-Aug-21 09:58	1
9Cl-PF3ONS		756426-58-1	ND	0.865		2.00		B1H0212	27-Aug-21	$0.250\mathrm{L}$	29-Aug-21 09:58	1
PFDA		335-76-2	ND	0.628		2.00		B1H0212	27-Aug-21	0.250 L	29-Aug-21 09:58	1
MeFOSAA		2355-31-9	ND	0.482		2.00		B1H0212	27-Aug-21	$0.250\mathrm{L}$	29-Aug-21 09:58	1
EtFOSAA		2991-50-6	ND	0.901		2.00		B1H0212	27-Aug-21	0.250 L	29-Aug-21 09:58	1
PFUnA		2058-94-8	ND	0.681		2.00		B1H0212	27-Aug-21	0.250 L	29-Aug-21 09:58	1
PFDoA		307-55-1	ND	0.726		2.00		B1H0212	27-Aug-21	0.250 L	29-Aug-21 09:58	1
PFTrDA		72629-94-8	ND	0.765		2.00		B1H0212	27-Aug-21	$0.250\mathrm{L}$	29-Aug-21 09:58	1
11Cl-PF3OUdS		763051-92-9	ND	1.18		2.00		B1H0212	27-Aug-21	$0.250\mathrm{L}$	29-Aug-21 09:58	1
PFTeDA		376-06-7	ND	0.780		2.00		B1H0212	27-Aug-21	$0.250\mathrm{L}$	29-Aug-21 09:58	1
Labeled Standa	rds	Type	% Recovery		Limits		Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
13C2-PFHxA		SURR	107		70 - 130			B1H0212	27-Aug-21	0.250 L	29-Aug-21 09:58	1
13C2-PFDA		SURR	97.9		70 - 130			B1H0212	27-Aug-21	$0.250\mathrm{L}$	29-Aug-21 09:58	1
d5-EtFOSAA		SURR	85.8		70 - 130			B1H0212	27-Aug-21	$0.250\mathrm{L}$	29-Aug-21 09:58	1
13C3-HFPO-DA		SURR	97.2		70 - 130			B1H0212	27-Aug-21	$0.250~\mathrm{L}$	29-Aug-21 09:58	1

MDL - Method Detection Limit

RL - Reporting limit

Results reported to MDL.

When reported, PFHxS, PFOA, PFOS, MeFOSAA and EtFOSAA **include both** linear and branched isomers. Only the linear isomer is reported for all other **analytes**.

Work Order 2108221 Page 8 of 16

Results reported to MDL. When reported, PFHxS, PFOA, PFOS, MeFOSAA and EtFOSAA include both MDL - Method Detection Limit RL - Reporting limit linear and branched isomers. Only the linear isomer is reported for all other analytes.

Work Order 2108221 Page 9 of 16

B This compound was also detected in the method blank

Conc. Concentration

CRS Cleanup Recovery Standard

D Dilution

DL Detection Limit

E The associated compound concentration exceeded the calibration range of the

instrument

H Recovery and/or RPD was outside laboratory acceptance limits

I Chemical Interference

IS Internal Standard

J The amount detected is below the Reporting Limit/LOQ

LOD Limit of Detection

LOQ Limit of Quantitation

M Estimated Maximum Possible Concentration (CA Region 2 projects only)

MDL Method Detection Limit

NA Not applicable

ND Not Detected

OPR Ongoing Precision and Recovery sample

P The reported concentration may include contribution from chlorinated diphenyl ether(s).

Q The ion transition ratio is outside of the acceptance criteria.

RL Reporting Limit

RL For 537.1, the reported RLs are the MRLs.

TEQ Toxic Equivalency, sum of the toxic equivalency factors (TEF) multiplied by the

sample concentrations.

TEQMax TEQ calculation that uses the detection limit as the concentration for non-detects

TEQMin TEQ calculation that uses zero as the concentration for non-detects

TEQRisk TEQ calculation that uses ½ the detection limit as the concentration for non-

detects

U Not Detected (specific projects only)

* See Cover Letter

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

Work Order 2108221 Page 10 of 16

Vista Analytical Laboratory Certifications

Accrediting Authority	Certificate Number
Alaska Department of Environmental Conservation	17-013
Arkansas Department of Environmental Quality	21-023-0
California Department of Health – ELAP	2892
DoD ELAP - A2LA Accredited - ISO/IEC 17025:2005	3091.01
Florida Department of Health	E87777-26
Hawaii Department of Health	N/A
Louisiana Department of Environmental Quality	01977
Maine Department of Health	2020018
Massachusetts Department of Environmental Protection	M-CA413
Michigan Department of Environmental Quality	9932
Minnesota Department of Health	1980678
New Hampshire Environmental Accreditation Program	207720
New Jersey Department of Environmental Protection	CA003
New York Department of Health	11411
Ohio Environmental Protection Agency	87778
Oregon Laboratory Accreditation Program	4042-016
Pennsylvania Department of Environmental Protection	017
Texas Commission on Environmental Quality	T104704189-21-12
Vermont Department of Health	VT-4042
Virginia Department of General Services	10769
Washington Department of Ecology	C584
Wisconsin Department of Natural Resources	998036160

Current certificates and lists of licensed parameters are located in the Quality Assurance office and are available upon request.

Work Order 2108221 Page 11 of 16

NELAP Accredited Test Methods

MATRIX: Air	
Description of Test	Method
Determination of Polychlorinated p- Dioxins & Polychlorinated Dibenzofurans	EPA 23
Polychlorinated Dibenzodioxins in Ambient Air by GC/HRMS	EPA TO-9A

MATRIX: Biological Tissue	
Description of Test	Method
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution	EPA 1613B
GC/HRMS	
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue	EPA 1668A/C
by GC/HRMS	
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by	EPA 1699
HRGC/HRMS	
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans by	EPA 8280A/B
GC/HRMS	
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated	EPA
Dibenzofurans (PCDFs) by GC/HRMS	8290/8290A

MATRIX: Drinking Water	
Description of Test	Method
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution	EPA
GC/HRMS	1613/1613B
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537.1
Determination of Per- and Polyfluoroalkyl Substances in Drinking Water by	EPA 533
Isotope Dilution Anion Exchange Solid Phase Extraction and Liquid	
Chromatography/Tandem Mass Spectrometry	
Perfluorooctanesulonate (PFOS) and Perfluorooctanoate (PFOA) - Method	ISO 25101
for Unfiltered Samples Using Solid Phase Extraction and Liquid	2009
Chromatography/Mass Spectrometry	

Work Order 2108221 Page 12 of 16

MATRIX: Non-Potable Water	
Description of Test	Method
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope	EPA 1613B
Dilution GC/HRMS	
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue	EPA 1668A/C
by GC/HRMS	
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS	EPA 1699
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537
D' ' 1 OCATIONA	ED 4 612
Dioxin by GC/HRMS	EPA 613
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated	EPA 8280A/B
1 -	EFA 828UA/B
Dibenzofurans by GC/HRMS	ED.
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated	EPA
Dibenzofurans (PCDFs) by GC/HRMS	8290/8290A

MATRIX: Solids	
Description of Test	Method
Tetra-Octa Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS	EPA 1613
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS	EPA 1613B
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue by GC/HRMS	EPA 1668A/C
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS	EPA 1699
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans by GC/HRMS	EPA 8280A/B
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated Dibenzofurans (PCDFs) by GC/HRMS	EPA 8290/8290A

Work Order 2108221 Page 13 of 16

SUBCONTRACT ORDER

Alpha Analytical Laboratories, Inc.

21H2617

RECEIVING LABORATORY:

El Dorado Hills, CA 95762

Vista Analytical

1104 Windfield Way

2106221 3.3°C

Phone: (707)468-0401		Pho	one :(916) 673-1	520		
Fax: (707)468-5267		Fax				
Project Manager: David S. Pingatore		Ter	ms: Net 30			
Analysis	Due		Expires	Comments		
21H2617-01 3121 [Water] Sample	d 08/18/21 08:38					
537.1 Perfluorochemicals x 18 w/GenX	09/0	02/21 15:00	09/01/21 08:38	3		
Containers Supplied:	DD 1 (T)					
500mL PP Poly (Trizma) (500mL P	P Poly (I <u>rizma)</u> (
Report to State						
System Name:	Етр	loyed by:				
User ID:	Sam	pler:				
System Number:						
		100				
		TOU				
AH	8-19-21		8	0/19/21		14:15
Réleased By	Date		ceived By	-1	Date	. I Tu
Released By	Date	18 5/8 Rec	ceived By	Not interest	Date	08 24 21 1119
Released By	Date	Rec	ceived By		Date	
Released By	Date	Rec	ceived By		Date	
Released By	Date	Rec	eived By		Date	Page 1 of 1

SENDING LABORATORY:

208 Mason St.

Ukiah, CA 95482

Alpha Analytical Laboratories, Inc.

Sample Log-In Checklist

Vista Work Orde	r#:	21062	121					age # _		of	_
Samples Arrival:	Date/Tim	ne			Initials:		Loca	ation: (WY-2		
Delivered By:	OS/QY/ FedEx	UPS		On Trac	: GLS	DHI		f/Rack Hand Deliver	d	Oth	ner
Preservation:	lo	e		Blu	e ice		chni ce	Dry	Ice	No	ne
Temp °C: 3.4 (uncorrected) Temp °C: 3.3 (corrected) Probe used: Y (N) Thermometer ID: F2-3) 2					
		A A							YES	NO	NA
Shipping Contain	ner(s) Intac	t?									
Shipping Custody Seals Intact?								1	/		
Airbill	Trk	#564	138	52921							
Shipping Docum						_			/		
Shipping Contain	ner		Vi	sta	Client	R	etain	Re	eturn	Dis	ose
Chain of Custody	/ / Sample	Docum	nent	ation Pre	esent?				~		
Chain of Custody	/ / Sample	Docum	nent	ation Co	mplete?				\ \		
Holding Time Ac	ceptable?									<u></u>	
Logged In:	Date/Tin	ne		:	Initials:		Loc	ation:	12-13	MY	-2
	08/24/2	LI I	12:	.00	U)	She	lf/Rack	: A-4	b	4
COC Anomaly/S	ample Acc	eptanc	e Fo	orm com	oleted?					-	

Comments:

ID.: LR - SLC

Rev No.: 6

Rev Date: 07/16/2020

Page: 1 of 1

CoC/Label Reconciliation Report WO# 2108221

LabNumber CoC Sample ID		SampleAlias	Sample Date/Time	Container	BaseMatrix	Sample Comments
2108221-01 A 3121	Ø	21H2617-01	18-Aug-21 08:38	Polypropylene, 250mL	Aqueous	
2108221-01 B 3121	ď	21H2617-01	18-Aug-21 08:38	Polypropylene, 250mL	Aqueous	
						12 88 - 14 B

Checkmarks indicate that information on the COC reconciled with the sample label. Any discrepancies are noted in the following columns.

	Yes	No	NA	Comments:
Sample Container Intact?	J			
Sample Custody Seals Intact?		~	V	
Adequate Sample Volume?	J			
Container Type Appropriate for Analysis(es)				

Preservation Documented: Na2S2O3

NH4CH3CO2

Other None

Printed: 8/24/2021 12:06:47PM Page I of 1 2108221

September 17, 2021

Lab ID Alpha Analytical Laboratories, Inc. : SP 2111724 Attn: Leslie Quinn Customer : 2-20626

208 Mason St. Ukiah, CA 95482

Laboratory Report

Introduction: This report package contains total of 4 pages divided into 3 sections:

Case Narrative (1 pages): An overview of the work performed at FGL.

Sample Results (2 pages): Results for each sample submitted.

Quality Control (1 page): Supporting Quality Control (QC) results.

Case Narrative

This Case Narrative pertains to the following samples:

Sample Description	Date Sampled	Date Received	FGL Lab ID#	Matrix
21H2617-01	08/18/2021	08/24/2021	SP 2111724-001	W

Sampling and Receipt Information: All samples were received in acceptable condition and within temperature requirements, unless noted on the Condition Upon Receipt (CUR) form. All samples arrived at 19 °C. All samples were prepared and analyzed within the method specified hold time. All samples were checked for pH if acid or base preservation is required (except for VOAs). For details of sample receipt information, please see the attached Chain of Custody and Condition Upon Receipt Form.

Quality Control: All samples were prepared and analyzed according to the following tables:

Radio QC

900.0	09/15/2021:214382 All analysis quality controls are within established criteria
II .	08/27/2021:209898 All preparation quality controls are within established criteria (performed at FGL-SP ELAP# 1573)

Certification:: I certify that this data package is in compliance with ELAP standards, both technically and for completeness, except for any conditions listed above. Release of the data contained in this data package is authorized by the Laboratory Director or his designee, as verified by the following electronic signature.

KD:MKH

Reviewed and Account By Kelly A. Dunnahoo, B.S. Digitally signed by Kelly A. Dunnahoo, B.S. Title: Laboratory Director Date: 2021-09-17

Page 1 of 4

Analytical Chemists

Lab ID September 17, 2021 : SP 2111724-001

Customer ID : 2-20626

Alpha Analytical Laboratories, Inc.

Attn: Leslie Quinn Sampled On : August 18, 2021-08:38 208 Mason St. Sampled By : Not Available

Ukiah, CA 95482 Received On : August 24, 2021-10:15

> : Water Matrix

Description : 21H2617-01 Project : 21H2617

Sample Result - Radio

Constituent	Result ± Error	MDA	Units	MCL/AL	Sample	Preparation	Sampl	e Analysis
Constituent	Result ± Ellor	WIDA	Omis	WICL/AL	Method Date/ID		Method	Date/ID
Radio Chemistry								
Gross Alpha	3.20 ± 1.88	2.50	pCi/L	15/5	900.0	08/27/21-07:30 2P2109898	900.0	09/15/21-13:11 2A2114382
Gross Beta	2.38 ± 1.23	1.44	pCi/L	50	900.0	08/27/21-07:30 2P2109898	900.0	09/15/21-13:11 2A2114382

ND=Non-Detected. PQL=Practical Quantitation Limit. * PQL adjusted for dilution.

MDA = Minimum Detectable Activity (Calculated at the 95% confidence level) = Data utilized by DHS to determine matrix interference. MCL / AL = Maximum Contamination Level / Action Level. Alpha's Action Level of 5 pCi/L is based on the Assigned Value (AV). AV = Assigned Value(Gross Alpha Result + (0.84 x Error)). CCR Section 64442: Drinking Water Compliance Note: Do the following If Gross Alpha's (AV) exceeds 5 pCi/L run Uranium. If Gross Alpha's (AV) minus Uranium exceeds 5 pCi/L run Radium 226.

Drinking Water Compliance:

Gross Alpha (AV) minus Uranium is less than or equal to 15 pCi/L Uranium is less than or equal to 20 pCi/L Radium 226 + Radium 228 is less than or equal to 5 pCi/L

Note: Samples are held for 3-6 months prior to disposal.

Analytical Chemists

September 17, 2021 Lab ID : SP 2111724-002

Customer ID : 2-20626

Alpha Analytical Laboratories, Inc.

Attn: Leslie Quinn Sampled On : August 18, 2021-12:00 208 Mason St. Sampled By : Not Available

Ukiah, CA 95482 Received On : August 24, 2021-10:15

> : Water Matrix

MDA = Minimum Detectable Activity (Calculated at the 95% confidence level) = Data utilized by DHS to determine matrix interference. MCL / AL = Maximum Contamination Level / Action Level. Alpha's Action Level of 5 pCi/L is based on the Assigned Value (AV). AV = Assigned Value(Gross Alpha Result + (0.84 x Error)). CCR Section 64442: Drinking Water Compliance Note: Do the following If Gross Alpha's (AV) exceeds 5 pCi/L run Uranium. If Gross Alpha's (AV) minus Uranium exceeds 5 pCi/L run Radium 226.

Drinking Water Compliance:

Gross Alpha (AV) minus Uranium is less than or equal to 15 pCi/L Uranium is less than or equal to 20 pCi/L Radium 226 + Radium 228 is less than or equal to 5 pCi/L

Note: Samples are held for 3-6 months prior to disposal.

September 17, 2021 Lab ID : SP 2111724 Alpha Analytical Laboratories, Inc. : 2-20626 Customer

Quality Control - Radio

Constituent		Method	Date/ID	Туре	Units	Conc.	QC Data	DQO	Note
Radio									
Alpha		900.0	09/15/21:214382JCA	CCV CCB	cpm cpm	7347	41.9 % 0.1200	35-47 0.15	
Beta		900.0	09/15/21:214382JCA	CCV CCB	cpm cpm	7347	94.4 % 0.460	83-94 0.5	
Gross Alpha		900.0	08/27/21:209898jca (SP 2111724-001)	Blank LCS MS MSD	pCi/L pCi/L pCi/L pCi/L	201.1 201.1 201.1	0.26 78.6 % 114 % 115 %	3 75-125 60-140 60-140	
			,	MSRPD	pCi/L	201.1	0.7%	≤30	
Gross Beta		900.0	08/27/21:209898jca (SP 2111724-001)	Blank LCS MS MSD MSRPD	pCi/L pCi/L pCi/L pCi/L pCi/L	35.25 35.25 35.25 201.1	0.63 110 % 93.6 % 90.2 % 3.4%	4 84-160 80-130 80-130 ≤30	
Definition CCV CCB Blank LCS	: Continuing Calil : Method Blank -	oration Blank - Prepared to ver	tion - Analyzed to verify Analyzed to verify the ify that the preparation ample - Prepared to veri	instrument b process is no	aseline is with ot contributing	hin criteria. g contaminat	tion to the sam	•	

: Matrix Spikes - A random sample is spiked with a known amount of analyte. The recoveries are an indication of how that sample MS

matrix affects analyte recovery. : Matrix Spike Duplicate of MS/MSD pair - A random sample duplicate is spiked with a known amount of analyte. The recoveries

MSD are an indication of how that sample matrix affects analyte recovery.

: MS/MSD Relative Percent Difference (RPD) - The MS relative percent difference is an indication of precision for the preparation MSRPD

and analysis.

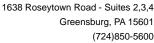
DQO Data Quality Objective - This is the criteria against which the quality control data is compared. September 17, 2021

Alpha Analytical Laboratories, Inc. Attn: Leslie Quinn 208 Mason St. Ukiah, CA 95482

Subject: Subcontract Analysis for FGL Lab No. SP 2111724

Enclosed please find results for the following sample(s) which were received by FGL.

• Sub Contracted-Strontium 90


Please note that this analysis was performed by Pace Analytical (ELAP Certified Laboratory)

Thank you for using FGL Environmental.

Sincerely,

Digitally signed by Tracy Pro Title: Customer Service Rep Date: 2021-09-17 Tracy Proefrock @

Enclosure

September 15, 2021

Cindy Aguirre FGL Environmental, Inc. 853 Corporation St. Santa Paula, CA 930603005

RE: Project: SP 2111724

Pace Project No.: 30437814

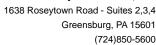
Dear Cindy Aguirre:

Enclosed are the analytical results for sample(s) received by the laboratory on August 26, 2021. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Greensburg

If you have any questions concerning this report, please feel free to contact me.


Sincerely,

Karen L. Smetanka karen.smetanka@pacelabs.com (724)850-5600 Project Manager

Jour Drutos

Enclosures

CERTIFICATIONS

Project: SP 2111724 Pace Project No.: 30437814

Pace Analytical Services Pennsylvania

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601

ANAB DOD-ELAP Rad Accreditation #: L2417

Alabama Certification #: 41590 Arizona Certification #: AZ0734

Arkansas Certification

California Certification #: 04222CA Colorado Certification #: PA01547 Connecticut Certification #: PH-0694

Delaware Certification EPA Region 4 DW Rad

Florida/TNI Certification #: E87683 Georgia Certification #: C040 Florida: Cert E871149 SEKS WET

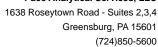
Guam Certification Hawaii Certification Idaho Certification Illinois Certification Indiana Certification Iowa Certification #: 391

Kansas/TNI Certification #: E-10358 Kentucky Certification #: KY90133 KY WW Permit #: KY0098221 KY WW Permit #: KY0000221

Louisiana DHH/TNI Certification #: LA180012 Louisiana DEQ/TNI Certification #: 4086

Maine Certification #: 2017020 Maryland Certification #: 308

Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991 Missouri Certification #: 235
Montana Certification #: Cert0082
Nebraska Certification #: NE-OS-29-14
Nevada Certification #: PA014572018-1
New Hampshire/TNI Certification #: 297617
New Jersey/TNI Certification #: PA051
New Mexico Certification #: PA01457
New York/TNI Certification #: 10888
North Carolina Certification #: 42706
North Dakota Certification #: R-190

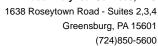

Oregon/TNI Certification #: PA200002-010 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282

South Dakota Certification
Tennessee Certification #: 02867

Ohio EPA Rad Approval: #41249

Texas/TNI Certification #: T104704188-17-3 Utah/TNI Certification #: PA014572017-9 USDA Soil Permit #: P330-17-00091 Vermont Dept. of Health: ID# VT-0282 Virgin Island/PADEP Certification Virginia/VELAP Certification #: 9526 Washington Certification #: C868 West Virginia DEP Certification #: 143 West Virginia DHHR Certification #: 9964C

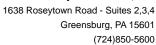
Wisconsin Approve List for Rad Wyoming Certification #: 8TMS-L



SAMPLE SUMMARY

Project: SP 2111724
Pace Project No.: 30437814

Lab ID	Sample ID	Matrix	Date Collected	Date Received
30437814001	21H2617-01	Water	08/18/21 08:38	08/26/21 10:30
30437814002	21H2617-02	Water	08/18/21 12:00	08/26/21 10:30



SAMPLE ANALYTE COUNT

Project: SP 2111724
Pace Project No.: 30437814

Sample ID	Method	Analysts	Analytes Reported
21H2617-01	EPA 905.0	JJY	1
21H2617-02	EPA 905.0	JJY	1
	21H2617-01	21H2617-01 EPA 905.0	21H2617-01 EPA 905.0 JJY

PASI-PA = Pace Analytical Services - Greensburg

ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: SP 2111724
Pace Project No.: 30437814

Sample: 21H2617-01 Lab ID: 30437814001 Collected: 08/18/21 08:38 Received: 08/26/21 10:30 Matrix: Water

PWS: Site ID: Sample Type:

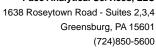
Parameters Method Act ± Unc (MDC) Carr Trac Units Analyzed CAS No. Qual

Pace Analytical Services - Greensburg

Strontium-90 EPA 905.0 **-0.183 ± 0.353 (0.700)** pCi/L 09/14/21 17:14 10098-97-2

C:101% T:NA

Sample: 21H2617-02 Lab ID: 30437814002 Collected: 08/18/21 12:00 Received: 08/26/21 10:30 Matrix: Water


PWS: Site ID: Sample Type:

Parameters Method Act ± Unc (MDC) Carr Trac Units Analyzed CAS No. Qual

Pace Analytical Services - Greensburg

Strontium-90 EPA 905.0 **-0.0380 ± 0.404 (0.784)** pCi/L 09/14/21 17:14 10098-97-2

C:98% T:NA

QUALITY CONTROL - RADIOCHEMISTRY

Project: SP 2111724
Pace Project No.: 30437814

QC Batch: 462847 Analysis Method: EPA 905.0

QC Batch Method: EPA 905.0 Analysis Description: 905.0 Strontium 89/90

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 30437814001, 30437814002

METHOD BLANK: 2234496 Matrix: Water

Associated Lab Samples: 30437814001, 30437814002

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Strontium-90
 -0.0231 ± 0.0704 (0.139) C:94% T:NA
 pCi/L
 09/14/21 17:15

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

1638 Roseytown Road - Suites 2,3,4 Greensburg, PA 15601 (724)850-5600

QUALIFIERS

Project: SP 2111724
Pace Project No.: 30437814

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Act - Activity

Unc - Uncertainty: For Safe Drinking Water Act (SDWA) analyses, the reported Unc. Is the calculated Count Uncertainty (95% confidence interval) using a coverage factor of 1.96. For all other matrices (non-SDWA), the reported Unc. is the calculated Expanded Uncertainty (aka Combined Standard Uncertainty, CSU), reported at the 95% confidence interval using a coverage factor of 1.96.

Gamma Spec: The Unc. reported for all gamma-spectroscopy analyses (EPA 901.1), is the calculated Expanded Uncertainty (CSU) at the 95.4% confidence interval, using a coverage factor of 2.0.

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

Date: 09/15/2021 03:27 PM

Subcontract to Pace Analytical

LTact to

AND ANALYSES REQUEST FORM
Alvical

						······································				 				w w	a)	2810
							B	8						Time	Time	Office & Laboratory Usalia, CA 93291 TEL. (559)734-9473 FAX: (559)734-8435 CA ELAP Certification No. 2810
														at at	te te	Office & Laboratory Missila, CA 93291 TEL. (559)734-9473 FAX: (559)734-8435 CA ELAP Certification No
		4												Date	Date	ice & L 15 W. G alia, CA 1: (559) Y: (559) ELAP C
	<u>,</u>	_8											<u> </u>			OH Vis: TEL FA)
		37														
Test Description(s)	••••	30437814												peq	By:	Office & Laboratory 3442 Empersa Drive, Suite D 340 Luis Obispo, CA 93401 TEL. (805)783-2940 FAX. (805)783-2912 CA ELAP Certification No. 2775
script		·												Relinquished	Received By	rive. St. CA 93. 940 912 sation N
est De		MO#:												Time	Time Rece	office & Laboratory 3442 Empresa Drive, San Luis Obispo, CA TEL. (805)783-2940 FAX. (805)783-2912 CA ELAP Certification
F.		3 1 2 2 3 3 3 3 3 3 3 3 3 3			·									Ë	177	ffice & 442 Em; an Luis EL: (809 4X: (804 A ELAP
														Date	Pate 7-2	0 9 9 E F C
	,		······································	\$17.000000 (systems and systems and systems)			270,700,274440quun 1	***************************************	************************************	 	***************************************	 ,	 	Ã	la S	
				EM	(4)z	oze									2	70
				-	600707:		1								By:	No. 26
			oc iun	11111A 111C-1121	רטזווזמר	me								shed	1 2	ratory venue 26 -5818 -3807 fication
			Special(SPL)	Other(O) S										Relinquished	Received By:	Office & Laboratory Sos E. Lindo Avenue Chico, CA 95926 TEL: (530)343-5818 FAX: (530)343-3807 CA ELAP Certification No. 2670
UB		(RPT)	ouT) Repea	: Routine(R	і Кеазоп	Bact								Time	Time	Office 563 E. Chico, TEL: (6 FAX: (6 CA ELJ
rmati		ource(SR) Waste(W)	stem(SYS) So	ther(O) Sys	O :əqvT i	Bact		····		 			 	<u> </u>		
e Info		(WgA) 19	visW gA (9V	ou-Potable(pJe(P) No	Pota								Date 2	ate	
Sample Information				əje	imeS io	Type	M	W						74		Office & Laboratory 2500 Stageorach Road Stockton, CA 95215 TEL: (209)942-0182 FAX: (209)942-0423 CA ELAP Certification No. 1563
		erab(G)	(C) etisodue	unbring: Co	es to bot	ijəm	G	9						M		ory Road 15 32 23 23 tton No
				<u> </u>			38	90		 		 	 		3	Office & Laboratory 2500 Stageocach Ro Stockton, CA 95216 TEL: (209)942-0182 FAX: (209)942-0423 CA ELAP Certificatio
						Time Sampled	08:38	12:00						ish gar		ice & L 30 Stag. okton, (1: (209) X: (209) ELAP (
						-	/2021	/2021						Relinquished	Received By	Sto Sto CA
ation					Time:	Date Sampled	08/18/2021	08/18/2021								V
nform		ry -3005														-2063
Chain of Custody Information		Laborato on St. A 93060.												State!		305)392
of Cus		ers La ration la, CA Fa	724	elo elo										end to		Itory FAX: (E 73
hain		Fruit Growers Laboratory 853 Corporation St. Santa Paula, CA 93060-3005 Fax:	SP 2111724	Sampler(s): Not Available	Compositor Setup Date:	tion								Remarks «:Report Note:»Do not send to State! QC		© Corporate Offices & Laboratory © Corporation Street © Santa Paula. CA 93060 IEL: (805)392-2000 Env FAX: (805)525-4172 / Ag FAX: (805)392-2063 CA ELAP Certification No. 1573
)	ü	Fruit 853 Sani	SP rder:	Not	. Setup	Descrip	21H2617-01							ıte:»D(fices & on Stree 2A 9306 -2000 525-41
	Lab Number	ess:	Contact: Project: SP Purchase Order:	oler(s):	positor	Location Description	21H2(arks oort Ne		rate Off orporatic Paula, C 305)392 X: (805 4P Cert)
	Lab 1	Client: Address: Phone:	Contact: Project: Purchas	Samī	Com	Samp		. 4						Remarks «:Report QC		George Ge

Pittsburgh Lab Sample Cond	ition	upo	n Ke	ceibi	
Pace Analytical Client Name:		f	G	<u></u>	Project #
Courier: Fed Ex TUPS USPS Clier Tracking #: 17 92 03 613 6				Pace Other	Label ME
Custody Seal on Cooler/Box Present: yes		•		intact: yes (no
Thermometer Used	Туре	of ice:	We	Blue (None)	
Cooler Temperature Observed Temp	_	. C	Corr	ection Factor:	°C Final Temp: C
Temp should be above freezing to 6°C		_			
				pH paper Lot#	Date and Initials of person examining contents:
Comments:	Yes	No	N/A	lovani	Jn 8-27.21
Chain of Custody Present:		<u> </u>		1.	
Chain of Custody Filled Out:	<u> </u>	<u> </u>	<u> </u>	2.	
Chain of Custody Relinquished:			<u> </u>	3.	
Sampler Name & Signature on COC:				4.	
Sample Labels match COC:] 5.	
-Includes date/time/ID Matrix:	w	<u> </u>	T		
Samples Arrived within Hold Time:				6.	
Short Hold Time Analysis (<72hr remaining):		_		7.	
Rush Turn Around Time Requested:		-	L	8.	
Sufficient Volume:				9.	
Correct Containers Used:	_			10,	
-Pace Containers Used:					
Containers Intact:	_			11.	
Orthophosphate field filtered			_	12.	
Hex Cr Aqueous sample field filtered				13.	
Organic Samples checked for dechlorination:				14.	
Filtered volume received for Dissolved tests			-	15.	
ill containers have been checked for preservation.				16.	
exceptions: VOA, coliform, TOC, O&G, Phenolics, Non-aqueous matrix	Radon	,		PHLA	
All containers meet method preservation	_			Initial when	Date/time of
equirements.				completed // Completed	preservation
			r		
feadspace in VOA Vials (>6mm):			-	17.	
rip Blank Present:			-	18.	
rip Blank Custody Seals Present			_		
Rad Samples Screened < 0.5 mrem/hr	-			Initial when completed:	Date: (~)7~)1 Survey Meter
Client Notification/ Resolution:					
			Date/	Fime:	Contacted By:
Person Contacted:					

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

 $\ \square$ A check in this box indicates that additional information has been stored in ereports.

*PM review is documented electronically in LIMS. When the Project Manager closes the SRF Review schedule in LIMS. The review is in the Status section of the Workorder Edit Screen.

-	unt
	ပိ
	Container Cour
	nta
	-
	sample
	-
	Lab
	urg
	0
	sus
	ee ee
	σ
	ace
	Pac

Profile Number

Notes

BP2S UMB

BP3U BP32 ВРЗИ **Bb3C** USAB

SPLC

MCKN

WGFU

NOAK

U69V

T65V

H69A

CCUB

DG92

BP1N

BGSN

Bein

T&DA

USDA **NEDA**

SEDY

NZSA

TrəA

SIDA

HIDA

Sample

Line Item 圣

 $^{\circ}$

Ω ဖ

HELINE US

Client

Pace Analytical ®

Plastic / Misc.

익홍 S 120mL Coliform Na Thiosulfate 500mL plastic unpreserved 250mL plastic unpreserved 1/2 Gallon Cubitainer 1L plastic unpreserved 250mL plastic H2SO4 500mL plastic H2SO4 250ml plastic NAOH 250mL plastic HNO3 GCUB 1 Gallon Cubitainer 1L plastic HNO3 12GN BP1N 3P1U P3N SP5T 3P3S SP3C 323 3P2S

500mL amber glass unpreserved

8oz wide jar unpreserved

WGKU

250mL amber glass unpreserved

250mL amber glass H2SO4 L clear glass unpreserved

AG2U

500mL clear glass unpreserved

4oz wide jar unpreserved

WGFU

BG2U

L amber glass Na Thiosulfate

40mL clear VOA vial Na Thiosul

40mL clear VOA vial HCI

VG9H

VG9T

00mL amber glass Na Thiosulfate

100mL amber glass unprserved

AGSU AGST

Gallon Jug with HNO3

4oz amber wide jar

JGFU

L amber glass H2SO4

Gallon Jug

S

L amber glass HCI

AG1H

AG1T BG1U AG3S AG3U

AG1S

40mL amber VOA vial H2SO4

40mL clear VOA vial

VG9U

DG9S

Glass

Container Codes

9 7

ω တ

Non-aqueous liquid

Solid

FNV-FRM-GRIIR-0079 00 290-0000

FINAL REPORT

Page 1 of 7

Work Orders: 1H24035

Report Date: 9/15/2021

Received Date: 8/24/2021

Turnaround Time: Normal

Phones: (925) 872-9637

Fax: (707) 468-5267

P.O. #:

Billing Code:

Project: 21H2617

Attn: David Pingatore

Client: Alpha Analytical Laboratories - Ukiah CA

208 Mason St Ukiah, CA 95482

Dear David Pingatore,

1H24035

Enclosed are the results of analyses for samples received 8/24/21 with the Chain-of-Custody document. The samples were received in good condition, at 2.9 °C and on ice. All analyses met the method criteria except as noted in the case narrative or in the report with data qualifiers.

Sample Results

Sample:	21H2617-01				Sa	ampled: 08/18/21 8	:38 by Client
·	1H24035-01 (Water)						,
Analyte	,	Result	MRL	Units	Dil	Analyzed	Qualifier
Method: EPA	525.2		Instr: GCMS16	,			
Batch ID: W	V1I0028	Preparation: EPA 525.2/SPE	Prepared: 09/	01/21 09:56			Analyst: rmr
Alachlor		ND	0.10	ug/l	1	09/10/21	
Atrazine		ND	0.10	ug/l	1	09/10/21	A-01
Benzo (a) p	pyrene	ND	0.10	ug/l	1	09/10/21	
Bis(2-ethyll	hexyl)adipate	ND	5.0	ug/l	1	09/10/21	
Bis(2-ethyll	hexyl)phthalate	ND	3.0	ug/l	1	09/10/21	
Bromacil		ND	0.50	ug/l	1	09/10/21	
Butachlor		ND	0.10	ug/l	1	09/10/21	
Captan -		ND	1.0	ug/l	1	09/10/21	
Chlorproph	nam	ND	0.10	ug/l	1	09/10/21	A-01
Cyanazine		ND	0.10	ug/l	1	09/10/21	
Diazinon		ND	0.10	ug/l	1	09/10/21	
Dimethoate	e	ND	0.20	ug/l	1	09/10/21	A-01
Diphenami	d	ND	0.10	ug/l	1	09/10/21	
Disulfoton		ND	0.10	ug/l	1	09/10/21	
EPTC		ND	0.10	ug/l	1	09/10/21	A-01
Metolachlo	or	ND	0.10	ug/l	1	09/10/21	
Metribuzin		ND	0.10	ug/l	1	09/10/21	
Molinate		ND	0.10	ug/l	1	09/10/21	A-01
Prometon		ND	0.10	ug/l	1	09/10/21	
Prometryn		ND	0.10	ug/l	1	09/10/21	

FINAL REPORT

Sample Results

(Continued)

Sample:	21H2617-01				S	ampled: 08/18/21	8:38 by Client
	1H24035-01 (Water)					(Continued)
Analyte		Result	MRL	Units	Dil	Analyzed	Qualifier
Method: EPA	. 525.2		Instr: GCMS16	5			
Batch ID: V	V1I0028	Preparation: EPA 525.2/SPE	Prepared: 09/	01/21 09:56			Analyst: rmr
Simazine		ND	0.10	ug/l	1	09/10/21	
Terbacil			2.0	ug/l	1	09/10/21	
Thiobenca	rb	ND	0.10	ug/l	1	09/10/21	
Trithion		ND	0.10	ug/l	1	09/10/21	
Surrogate(s)							
1,3-Dimeth	nyl-2-nitrobenzene	77%	70-130	Conc:	3.97	09/10/21	
Perylene-d	112	100%	50-120	Conc:	5.12	09/10/21	
Triphenyl p	phosphate	270%	70-130	Conc:	13.9	09/10/21	S-11

1H24035 Page 2 of 7

FINAL REPORT

Sample Results (Continued) 1H24035-02 (Water)

FINAL REPORT

Quality Control Results

Analyte tch: W110028 - EPA 525.2/SPE Blank (W110028-BLK1)	Result			Spike	Source		%REC		RPD	
tch: W110028 - EPA 525.2/SPE	Result					0/ DEC				0 110
		MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifie
Slank (W110028-BLK1)				D	24 4	0 (10 (21				
Alachlor	ND	0.10	ug/l	Prepared: 09/01/	21 Analyzed: C	19/10/21				
Atrazine		0.10	ug/l							A-0
Benzo (a) pyrene		0.10	ug/l							7.0
Bis(2-ethylhexyl)adipate		2.0	ug/l							
Bis(2-ethylhexyl)phthalate		2.0	ug/l							
Bromacil		0.50	ug/l							
Butachlor		0.10	ug/l							
Captan		1.0	ug/l							
•		0.10	_							A-0
- 1 1			ug/l							A-0
-,		0.10	ug/l							
Diazinon		0.10	ug/l							
Dimethoate		0.20	ug/l							A-0
Diphenamid		0.10	ug/l							
Disulfoton		0.10	ug/l							
EPTC		0.10	ug/l							A-0
Metolachlor	2	0.10	ug/l							
Metribuzin	ND	0.10	ug/l							
Molinate	ND	0.10	ug/l							A-0
Prometon	ND	0.10	ug/l							
Prometryn	ND	0.10	ug/l							
Propachlor	0.00		ug/l							
Simazine	ND	0.10	ug/l							
Terbacil	ND	2.0	ug/l							
Thiobencarb	ND	0.10	ug/l							
Trithion	ND	0.10	ug/l							
Surrogate(s) 1,3-Dimethyl-2-nitrobenzene	3.60			5.00		72	70-130			
•			ug/l			97				
· oryreme a.e			ug/l	5.00			50-120			0.4
Triphenyl phosphate	10.9		ug/l	5.00		217	70-130			S-1
LCS (W110028-BS1)				Prepared: 09/01/	21 Analyzed: 0					
Alachlor		0.10	ug/l	5.00		120	70-130			
Atrazine		0.10	ug/l	5.00		209	70-130			Q-0
Benzo (a) pyrene		0.10	ug/l	5.00		108	60-130			
Bis(2-ethylhexyl)adipate	8.09	2.0	ug/l	5.00		162	70-130			Q-0
Bis(2-ethylhexyl)phthalate	8.02	2.0	ug/l	5.00		160	70-130			Q-0
Bromacil	5.10	0.50	ug/l	5.00		102	70-130			
Butachlor	5.49	0.10	ug/l	5.00		110	70-130			
Captan	7.04	1.0	ug/l	5.00		141	70-130			Q-0
Chlorpropham	9.59	0.10	ug/l	5.00		192	70-130			Q-0
Cyanazine	6.05	0.10	ug/l	5.00		121	70-130			
Diazinon	3.65	0.10	ug/l	5.00		73	50-120			
Dimethoate	7.37	0.20	ug/l	5.00		147	50-120			Q-0
Diphenamid	7.11	0.10	ug/l	5.00		142	70-130			Q-0

FINAL REPORT

Quality Control Results

(Continued)

				Spike	Source	%REC		RPD	
Analyte	Result	MRL	Units	Level	Result %	REC Limits	RPD	Limit	Qualifie
ch: W110028 - EPA 525.2/SPE (Continued)									
CS (W110028-BS1)			P	repared: 09/01/2	21 Analyzed: 09/10	/21			
Disulfoton	4.73	0.10	ug/l	5.00	ę	50-12)		
EPTC	5.44	0.10	ug/l	5.00	1	09 70-13)		
Metolachlor	5.58	0.10	ug/l	5.00	1	12 60-13)		
Metribuzin	4.20	0.10	ug/l	5.00	8	34 50-12)		
Molinate	7.47	0.10	ug/l	5.00	1	49 70-13)		Q-0
Prometon	1.00	0.10	ug/l	5.00	2	20 15-12)		
Prometryn	4.26	0.10	ug/l	5.00	8	30-12)		
Simazine	4.99	0.10	ug/l	5.00	1	00 60-13)		
Terbacil	6.44	2.0	ug/l	5.00	1	29 70-13)		
Thiobencarb	4.32	0.10	ug/l	5.00	8	36 70-13)		
Trithion	4.82	0.10	ug/l	5.00	(96 70-13)		
ırrogate(s)									
1,3-Dimethyl-2-nitrobenzene	4.32		ug/l	5.00	ė	36 70-13	0		
Perylene-d12	5.26		ug/l	5.00	1	05 50-12	0		
Triphenyl phosphate	7.68		ug/l	5.00	1	54 70-13	0		S-
CS Dup (W110028-BSD1)			P	repared: 09/01/2	21 Analyzed: 09/09	/21			
Alachlor	6.15	0.10	ug/l	5.00	1	23 70-13	3	30	
Atrazine	7.62	0.10	ug/l	5.00	1	52 70-13	31	30	Q-0
Benzo (a) pyrene	5.45	0.10	ug/l	5.00	1	09 60-13	0 1	30	
Bis(2-ethylhexyl)adipate	7.03	2.0	ug/l	5.00	1	41 70-13	0 14	30	Q-0
Bis(2-ethylhexyl)phthalate	7.27	2.0	ug/l	5.00	1	45 70-13	0 10	30	Q-0
Bromacil	5.31	0.50	ug/l	5.00	1	06 70-13	0 4	30	
Butachlor	5.56	0.10	ug/l	5.00	1	11 70-13	0 1	30	
Captan	7.02	1.0	ug/l	5.00	1	40 70-13	0.2	30	Q-0
Chlorpropham	7.33	0.10	ug/l	5.00	1	47 70-13	0 27	30	Q-0
Cyanazine	5.56	0.10	ug/l	5.00	1	11 70-13	0 8	30	
Diazinon	4.18	0.10	ug/l	5.00		34 50-12	0 14	30	
Dimethoate	6.24	0.20	ug/l	5.00	1	25 50-12		30	Q-0
Diphenamid	6.53	0.10	ug/l	5.00	1	31 70-13		30	Q-0
Disulfoton		0.10	ug/l	5.00		98 50-12		30	
EPTC	5.64	0.10	ug/l	5.00		13 70-13		30	
Metolachlor		0.10	ug/l	5.00		15 60-13		30	
Metribuzin		0.10	ug/l	5.00		95 50-12		30	
Molinate		0.10	ug/l	5.00		41 70-13		30	Q-(
Prometon		0.10	ug/l	5.00		27 15-12		30	Q-C
Prometryn		0.10	_	5.00		93 30-12		30	
•			ug/l						
Simazine Terbacil		0.10	ug/l	5.00		14 60-13		30	0.7
10124011	 .	2.0	ug/l	5.00		34 70-13		30	Q-0
Thiobencarb		0.10	ug/l	5.00		92 70-13		30	
Trithion		0.10	ug/l	5.00	(96 70-13	0.004	30	
urrogate(s) 1,3-Dimethyl-2-nitrobenzene			ug/l	5.00		90 70-13	0		
Perylene-d12			ug/l	5.00		06 50-12			

FINAL REPORT

Quality Control Results

(Continued)

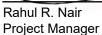
/ District										
Semivolatile Organic Compounds by GC/	MS (Continued)									
				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
Batch: W110028 - EPA 525.2/SPE (Continued)										
LCS Dup (W110028-BSD1)			Pr	repared: 09/01/2	21 Analyzed: 0	9/09/21				
Surrogate(s) Triphenyl phosphate	6.77		ug/l	5.00		135	70-130			S-11

1H24035 Page 6 of 7

FINAL REPORT

Notes and Definitions

A-01	Low recovery of associated IS. Analyte was judged ND based on standard below reporting limit.
Q-08	High bias in the QC sample does not affect sample result since analyte was not detected or below the reporting limit.
S-11	Surrogate recovery outside of control limits. The data was accepted based on valid recovery of the remaining surrogate.
S-GC	Surrogate recovery outside of control limits due to a possible matrix effect . The data was accepted based on valid recovery of the remaining surrogate.
%REC	Percent Recovery
Dil	Dilution
MRL	The minimum levels, concentrations, or quantities of a target variable (e.g., target analyte) that can be reported with a specified degree of confidence. The MRL is also known as Limit of Quantitation (LOQ)
ND	NOT DETECTED at or above the Method Reporting Limit (MRL). If Method Detection Limit (MDL) is reported, then ND means not detected at or above the MDL.
RPD	Relative Percent Difference


Any remaining sample(s) will be disposed of one month from the final report date unless other arrangements are made in advance.

All results are expressed on wet weight basis unless otherwise specified.

All samples collected by Weck Laboratories have been sampled in accordance to laboratory SOP Number MIS002.

Reviewed by:

Rahul R. Nair

DoD-ELAP ANAB #ADE-2882 • DoD-ISO ANAB # • ELAP-CA #1132 • EPA-UCMR #CA00211 • Guam-EPA #17-008R • HW-DOH #4047 • ISO17025 ANAB #L2457.01 • LACSD #10143 • NELAP-OR #4047 • NJ-DEP #CA015 • SCAQMD #93LA1006

This is a complete final report. The information in this report applies to the samples analyzed in accordance with the chain-of-custody document. Weck Laboratories certifies that the test results meet all requirements of TNI unless noted by qualifiers or written in the Case Narrative. This analytical report must be reproduced in its entirety.

Corporate Laboratory (1551) 707-468-0401 208 Mason Street, Ukiah CA 95482

Los Angeles (Service Center) 310-743-5711 1230 E 233rd St #205, Carson CA 90745

San Diego Laboratory (3055) 760-930-2555 2722 Loker Ave West, Ste A, Carlsbad CA 92010 North Bay Laboratory (2303) 707-769-3128 110 Liberty Street, Petaluma CA 94952

Bay Area Laboratory (2728) 925-828-6226 262 Rickenbacker Circle, Livermore CA 94551

Central Valley Laboratory (2922) 916-686-5190 9090 Union Park Way #113, Elk Grove CA 95624

Chain of Custody Record

Reports and Invoices delivered by email as PDF files

clientservices@alpha-labs.com

ab No. <u>2142617</u> Pg_	
---------------------------	--

Report to	// Invo	ce to (if different)	C Was BROKE	roject l	ifo	- EA		. J	. 		-23 TY	no i	sis R	eque	st							Ţ/	AT	•	Temp *C
Company:	Contact:	3 3 30 30 30 30 30 30 30 30 30 30 30 30	Project Na	ne:		2	7.2		-	1		uiç '				Т			1				idard	1	Ukiah
Todd Groundwater			Round 3	ASR Wa Baselin		ality	ert. Seg.]		ì						ļ			1	10-	-day)	ļ	3.0
Attn:	Email Address:	· -	Project Nu	mber:		-			1		1 1									ı	\vdash		SH:		Livermore
Nicole Grimm								SSS] .									sub Weck					у 25%	6	
Phone:	Phone:		PO Numbe	rr.			œ,	휼				- 1			1			á				Ç)	- 1	Elk Grove
510-747-6920			÷				Sample :D	Co Total 200.8 / U DW 200.8 / Total Hardness NB Silica as SiO2 200.7									_ ا	ist - s			2.	_	y 75%	6	
Physical Address:		•	Frequency				S	린	İ		;						Sist	bu	,	1		\mathbf{C})	ı	Petaluma
2490 Mariner Square Loop, Suite 215, Alag	meda CA 94501		- Add-or				Containers per	200.8			<u> </u>						537.1 PFAS List of 18 - sub Vista	525.2 Nonregulated SVOC long list -			\vdash	Ot		7	
Email address:			Container Pre	servation	: Ma	atrix-v.	<u>;</u> = _	≩ g	1 2	li		13	ا "		-		₩.	હ				C)		Carlsbad
ngrimm@toddgroundwater.com							Ş	Co Total 200.8 / U DW 2	Ammonia / Phosphorus]	ì	524.2 Votatiles Full List	& Beta	228			istof	ulated				•	_days	,	
Field Sampler - Printed Name and Signature:			1		ig _	/ ! I	i i	8.08	<u> </u>	[8]	il	ije ije	g i	စ္ကို (<u> </u>	- (15	l g	<u>'</u>		Ļ				Los Angeles
Micale Grimm			vial bottle	/	mg W		Number of (otal 2	onia	Cr6 218.6 DW		% %	Gross Alpha	Radium 226 &	Strongum 90	E 9	. <u>1</u>	No			\mathbf{r}	Т	/ size		
Sample Identification	San Time	npledion :	40mL vial Glass bottle Poly bottle Glass Jar Other Na2S2O3	HNO3	Drinking Water Wastewater	Soil	Total	3 8	Amr	Š	ğ	524.	Gros	Rad	מנס		537	525.			250m		ı. Half G	bacti	Source Code
	8:38	8/18/21		×	I		2	×	:			ا ا		_							×				
	0.50	0,70,2	×	x	\prod		1		×														х	П	
				x	11	1	1	_ _	\top	×		Т		ب ۱۰	~;	\top	1		T	1	×	\dagger	\forall	H	
		1	×	x	$\dagger \dagger$	Ħ	2		T		×			\top	٦ <u>'</u> -	\dagger	†	\dagger	\dagger	\dagger	Ħ	†	\forall	H	
			x ,	,	$\dagger \dagger$	$\dagger \dagger$	4	+	十		H	×	1	┪	†-	+	+	\dagger	+	 	H	\dagger	+	H	
3121				1 1	+	+	1	+	\dagger			7	×	┪	_	+	+	+	+	+	H	+	×	╁	
3121				╁╁┼	+	╁┼	4	\dashv	+-	十	\vdash	\dagger		×	xį (┰╃╶	+	+	+	+	Н	+	}	╂	
				┼┼┼	╫	╁╂╌	₽	\dashv	+	╁	╁	<u> </u>		-		× -	╁╴	╁	\vdash	╀	╂┼	+	` -	H	
			×	111	<u> </u>		2		- -	-		\dashv	\dashv	4	+		╁-	+-	╁	ا ا _	Ц	⊥	\perp	Ц	
			х	\coprod	×	Ш	2	Ц.	\perp	L	Ш	_	4	1	4	1,	<u> </u>	\downarrow	_	\downarrow	Ц				
			x	×			2						_	\downarrow			×	ļ.,	_		Į×				
			x				2											x			Ľ	Ţ	\prod		
Relinquished by		Received	by		Time	11/1/18	4	∵i, \`Da	ate 🥎	, i, i	100	は、電視	ign d	y = 120	44. g	S . J . 35	Add	ition	al R	equir	emen	its.	rést.		
ng		21		16	05			8/12	,			` '	CA E Write	DW	•					tem N			_		
0 27		<u>\(\(\(\) \)</u>		19	100	·	<u> </u>	//8	<u>//</u> 2	4			CA		_		- - -	v Gio	hal!	D No:			_		:
ZB		<u>93</u>	 	22	18		8	1/2	8/2	1	() ,	Geoʻ EDF							iny Lo		de:			 i
				1			1				1														

WORK ORDER

Printed: 8/19/2021 9:58:39AM

21H2617

	Alpha Analytical	l Laboratories Ukia	ah to North Bay Cha	ain of Custo	dy
Client: Todd Groundwa Project: Round 3 ASR V	~~~	Client Code: I Project Number: F	OP_TODENG Round 3 ASR Water	Bio Qualit PO	
Received By: Jame	2/21 15:00 (10 day TAT) s Bixler Foley		ived: 08/18/21 22:15 ed 08/19/21 08:32		
Samples Received at:	deg C	All containers	received and intact:	YES	NO
Analysis	Department	Expires	Comments		
21H2617-01 3121 [Water] NB Silica as SiO2 ICP 200.7		8 02/14/22 08:	:38		
21H2617-02 3123 [Water] NB Silica as SiO2 ICP 200.7		0 02/14/22 12:	:00		
Containers Supplied: 250mL Poly HNO3 (J) 250mL Poly HNO3 (J)					

Alpha Analytical Laboratories, Inc.

email: clientservices@alpha-labs.com

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

24 September 2021

Todd Groundwater

Attn: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Alameda, CA 94501

RE: Round 3 ASR Water Quality Baseline

Work Order: 21H2633

Enclosed are the results of analyses for samples received by the laboratory on 08/18/21 22:15. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Alisabeth J. Wilcox For David S. Pingatore

Project Manager

Alpha Analytical Laboratories, Inc.

email: clientservices@alpha-labs.com

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501

Project Number: Round 3 ASR Water Quality Baseline

Reported:

09/24/21 16:57

Bay Area: 262 Rickenbacker Circle | Livermore, CA 94551 | T: 925-828-6226 | F: 925-828-6309 | ELAP# 2728 Central Valley: 9090 Union Park Way Suite 113 | Elk Grove, CA 95624 | T: 916-686-5190 | F: 916-686-5192 | ELAP# 2922 North Bay: 110 Liberty Street | Petaluma, CA 94952 | T: 707-769-3128 | F: 707-769-8093 | ELAP# 2303 San Diego: 2722 Loker Avenue West Suite A | Carlsbad, CA 92010 | T: 760-930-2555 | F: 760-930-2510 | ELAP# 3055

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
3121	21H2633-01	Water	08/18/21 09:10	08/18/21 22:15

email: clientservices@alpha-labs.com

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501

Project Number: Round 3 ASR Water Quality Baseline

Reported: 09/24/21 16:57

	Result	Reporting Limit	Dilution	Batch	Prepared	Analyzed	ELAP#	Method	Note
3121 (21H2633-01)		Sample Type:	Water		Sampled	l: 08/18/21 09:1	10		
Metals (Dissolved) by EPA 200 Series Methods									FILT
Mercury, dissolved	ND ug/L	0 20	1	AI13118	09/02/21 08:47	09/03/21 09:0	2 1551	EPA 245 1	
Calcium, dissolved	54 mg/L	1.0	1	AH14872	09/01/21 13:35	09/03/21 17:0	4 1551	EPA 200 7	
Iron, dissolved	ND mg/L	0 10	1	AH14872	09/01/21 13 35	09/03/21 17 0	4 1551	EPA 200 7	
Magnesium, dissolved	61 mg/L	1.0	1	AH14872	09/01/21 13:35	09/03/21 17:0	4 1551	EPA 200 7	
Potassium, dissolved	3.2 mg/L	1.0	1	AH14872	09/01/21 13:35	09/03/21 17:0	4 1551	EPA 200 7	
Sodium, dissolved	180 mg/L	1.0	1	AH14872	09/01/21 13:35	09/03/21 17:0	4 1551	EPA 200 7	
Metals (Dissolved) by EPA Method 200.8 ICP/MS									FILT
Aluminum, dissolved	ND ug/L	100	10	AH14197	08/24/21 17:10	08/27/21 14:0	3 1551	EPA 200 8	R-01
Antimony, dissolved	ND ug/L	0 50	1	AH14197	08/24/21 17:10	08/26/21 02:0	3 1551	EPA 200 8	
Arsenic, dissolved	4.9 ug/L	0.50	1	AH14197	08/24/21 17:10	08/26/21 02:0	3 1551	EPA 200 8	
Barium, dissolved	41 ug/L	0.50	1	AH14197	08/24/21 17:10	08/26/21 02:0	3 1551	EPA 200 8	
Beryllium, dissolved	ND ug/L	0 10	1	AH14197	08/24/21 17:10	08/26/21 02:0	3 1551	EPA 200 8	
Boron, dissolved	1900 ug/L	500	10	AH14197	08/24/21 17:10	08/27/21 14:0	3 1551	EPA 200 8	
Cadmium, dissolved	ND ug/L	0 10	1	AH14197	08/24/21 17:10	08/26/21 02:0	3 1551	EPA 200 8	
Chromium, dissolved	12 ug/L	0.50	1	AH14197	08/24/21 17 10	08/26/21 02 0	3 1551	EPA 200 8	
Copper, dissolved	24 ug/L	0.50	1	AH14197	08/24/21 17 10	08/26/21 02 0	3 1551	EPA 200 8	
Lead, dissolved	0.30 ug/L	0.25	1	AH14197	08/24/21 17 10	08/26/21 02 0	3 1551	EPA 200 8	
Manganese, dissolved	ND ug/L	5 0	1	AH14197	08/24/21 17:10	08/26/21 02:0	3 1551	EPA 200 8	
Molybdenum, dissolved	5.4 ug/L	0.25	1	AH14197	08/24/21 17:10	08/26/21 02:0	3 1551	EPA 200 8	
Nickel, dissolved	1.2 ug/L	0.50	1	AH14197	08/24/21 17:10	08/26/21 02:0	3 1551	EPA 200 8	
Selenium, dissolved	5.4 ug/L	2.0	1	AH14197	08/24/21 17:10	08/26/21 02:0	3 1551	EPA 200 8	
Silver, dissolved	ND ug/L	1 0	10	AH14197	08/24/21 17:10	08/27/21 14:0	3 1551	EPA 200 8	R-01
Thallium, dissolved	ND ug/L	0 10	1	AH14197	08/24/21 17:10	08/26/21 02:0	3 1551	EPA 200 8	
Vanadium, dissolved	6.5 ug/L	1.0	1	AH14197	08/24/21 17:10	08/26/21 02:0	3 1551	EPA 200 8	
Zinc, dissolved	13 ug/L	5.0	1	AH14197	08/24/21 17:10	08/26/21 02:0	3 1551	EPA 200 8	

email: clientservices@alpha-labs.com

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501

Reported: 09/24/21 16:57 Project Number: Round 3 ASR Water Quality Baseline

	Result	Reporting Limit	Dilution	Batch	Prepared	Analyzed	ELAP#	Method	Note
3121 (21H2633-01)		Sample Type: V	Vater		Sampled	l: 08/18/21 09:1	0		
Conventional Chemistry Parameters by APHA	/EPA Methods								
Color	ND CU	5 0	1	AH14313	08/18/21 16:48	08/18/21 16:48	3 2728	SM2120B	
MBAS, calculated as LAS, mw 340	ND mg/L	0 050	1	AH14260	08/20/21 08 15	08/20/21 16 30	1551	SM5540C	
Perchlorate	ND ug/L	2 0	1	AH14310	08/20/21 08:00	08/20/21 19:05	2303	EPA 314 0	
Sulfide	ND mg/L	0 10	1	AH14407	08/24/21 06:00	08/24/21 06:00	1551	SM4500-S2 D	
Total Dissolved Solids	940 mg/L	10	1	AH14424	08/24/21 10:40	09/03/21 14:57	1551	SM2540C	
Turbidity	0.10 NTU	0.10	1	AH14314	08/18/21 16:57	08/18/21 16:57	2728	SM2130B	
Bicarbonate Alkalinity as CaCO3	310 mg/L	5.0	1	AH14703	08/30/21 08:00	08/30/21 12:21	1551	SM2320B	
Carbonate Alkalinity as CaCO3	ND mg/L	5 0	1	AH14703	08/30/21 08:00	08/30/21 12:21	1551	SM2320B	
Hydroxide Alkalinity as CaCO3	ND mg/L	5 0	1	AH14703	08/30/21 08:00	08/30/21 12:21	1551	SM2320B	
Total Alkalinity as CaCO3	310 mg/L	5.0	1	AH14703	08/30/21 08:00	08/30/21 12:21	1551	SM2320B	
Hardness, Total	384 mg/L	5	1	AH14872	09/01/21 13:35	09/03/21 17:04	1551	SM2340B	
Anions by EPA Method 300.0									
Chloride	130 mg/L	5.0	10	AH14195	08/19/21 15:30	08/19/21 15:30	1551	EPA 300 0	
Fluoride	0.32 mg/L	0.10	1	AH14195	08/19/21 14:23	08/19/21 14:23	1551	EPA 300 0	
Nitrate as N	3.7 mg/L	0.20	1	AH14195	08/19/21 14:23	08/19/21 14:23	1551	EPA 300 0	
Sulfate as SO4	220 mg/L	5.0	10	AH14195	08/19/21 15:30	08/19/21 15:30	1551	EPA 300 0	
Microbiological Parameters by APHA Standar	d Methods								
Total Coliforms	ND MPN/100mL	1 0	1	AH14327	08/18/21 16:35	08/19/21 16:35	2728	SM9223B	
E Coli	ND MPN/100mL	1 0	1	AH14327	08/18/21 16:35	08/19/21 16:35	2728	SM9223B	
Volatile Organic Compounds by EPA Method	524.2								
Bromodichloromethane	ND ug/L	1 00	1	AH14496	08/25/21 15:00	08/25/21 23:29	1551	EPA 524 2	
Bromoform	ND ug/L	1 00	1	AH14496	08/25/21 15:00	08/25/21 23:29	1551	EPA 524 2	
Chloroform	ND ug/L	1 00	1	AH14496	08/25/21 15:00	08/25/21 23:29	1551	EPA 524 2	
Dibromochloromethane	ND ug/L	1 00	1	AH14496	08/25/21 15:00	08/25/21 23:29	1551	EPA 524 2	
Trihalomethanes (total)	ND ug/L	1 00	1	AH14496	08/25/21 15:00	08/25/21 23:29	1551	EPA 524 2	
Surrogate: Bromofluorobenzene	99.0 %	70-130		AH14496	08/25/21 15:00	08/25/21 23:29	1551	EPA 524.2	
Surrogate: Dibromofluoromethane	94.2 %	70-130		AH14496	08/25/21 15:00	08/25/21 23:29	1551	EPA 524.2	
Surrogate: Toluene-d8	96.6 %	70-130		AH14496	08/25/21 15:00	08/25/21 23:29	1551	EPA 524.2	

Alpha Analytical Laboratories, Inc.

email: clientservices@alpha-labs.com

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215 Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501 Project Number: Round 3 ASR Water Quality Baseline

Reported: 09/24/21 16:57

Samplet Samp		Result	Reporting Limit Dilution	n Batch	Prepared	Analyzed	ELAP# Method	Note
Haloacetic Acid ND ug/L 10 1 AH14766 08/31/21 07:00 09/02/21 03:03 1551 EPA 552.2	3121 (21H2633-01)		Sample Type: Water		Sampled	d: 08/18/21 09:	10	
Monochloroacetic Acid ND ug/L 20 1	Haloacetic Acids by EPA Method 552.2				_			
Dibromoacetic Acid ND ug/L 10 1 AH14766 08/31/21 07:00 09/02/21 03:03 1551 EPA 552 2 Dichloroacetic Acid ND ug/L 10 1 AH14766 08/31/21 07:00 09/02/21 03:03 1551 EPA 552 2 Trichloroacetic Acid (HAA5) ND ug/L 10 1 AH14766 08/31/21 07:00 09/02/21 03:03 1551 EPA 552 2 Surrogate: 2,3-Dibromopropionic Acid 106 % 70-130 AH14766 08/31/21 07:00 09/02/21 03:03 1551 EPA 552 2 Surrogate: 2-Bromopropionic Acid 123 % 70-130 AH14766 08/31/21 07:00 09/02/21 03:03 1551 EPA 552.2	Monobromoacetic Acid	ND ug/L	10 1	AH14766	08/31/21 07:00	09/02/21 03:0	03 1551 EPA 552 2	
Dichloroacetic Acid ND ug/L 1 0 1 AH14766 08/31/21 07:00 09/02/21 03:03 1551 EPA 552 2 Trichloroacetic Acids (INAS) ND ug/L 1 0 1 AH14766 08/31/21 07:00 09/02/21 03:03 1551 EPA 552 2 Surrogate: 2.3-Dibromopropionic Acid 106 % 70-130 AH14766 08/31/21 07:00 09/02/21 03:03 1551 EPA 552 2 Surrogate: 2.3-Enomopropionic Acid 123 % 70-130 AH14766 08/31/21 07:00 09/02/21 03:03 1551 EPA 552 2	Monochloroacetic Acid	ND ug/L	20 1	AH14766	08/31/21 07 00	09/02/21 03 0	03 1551 EPA 552 2	
Trichloroacetic Acid	Dibromoacetic Acid	ND ug/L	10 1	AH14766	08/31/21 07:00	09/02/21 03:0	03 1551 EPA 552 2	
Total Haloacetic Acids (HAA5) ND ug/L 1 0 1 AH14766 08/31/21 07:00 09/02/21 03:03 1551 EPA 552 2 Surrogate: 2.3-Dibromopropionic Acid 106 % 70-130 AH14766 08/31/21 07:00 09/02/21 03:03 1551 EPA 552.2 Surrogate: 2-Bromopropionic Acid 123 % 70-130 AH14766 08/31/21 07:00 09/02/21 03:03 1551 EPA 552.2	Dichloroacetic Acid	ND ug/L	10 1	AH14766	08/31/21 07:00	09/02/21 03:0	03 1551 EPA 552 2	
Surrogate: 2,3-Dibromopropionic Acid 106 % 70-130 AH14766 08/31/21 07:00 09/02/21 03:03 1551 EPA 552.2 Surrogate: 2-Bromopropionic Acid 123 % 70-130 AH14766 08/31/21 07:00 09/02/21 03:03 1551 EPA 552.2	Trichloroacetic Acid	ND ug/L	10 1	AH14766	08/31/21 07:00	09/02/21 03:0	03 1551 EPA 552 2	
Surrogate: 2-Bromopropionic Acid 123 % 70-130 AH14766 08/31/21 07:00 09/02/21 03:03 1551 EPA 552.2	Total Haloacetic Acids (HAA5)	ND ug/L	10 1	AH14766	08/31/21 07:00	09/02/21 03:0	03 1551 EPA 552 2	
	Surrogate: 2,3-Dibromopropionic Acid	106 %	70-130	AH14766	08/31/21 07:00	09/02/21 03:0	03 1551 EPA 552.2	
	Surrogate: 2-Bromopropionic Acid	123 %	70-130	AH14766	08/31/21 07:00	09/02/21 03:0	03 1551 EPA 552.2	
								_
	<u> </u>	· · · · · · · · · · · · · · · · · · ·						

email: clientservices@alpha-labs.com

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Alameda, CA 94501

Project: Round 3 ASR Water Quality Baseline

Project Number: Round 3 ASR Water Quality Baseline

Reported: 09/24/21 16:57

Result: Reporting Limit: Dilution Batch Prepared Analyzed ELAP# Method Note

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501

Project Number: Round 3 ASR Water Quality Baseline

Result	Reporting Limit Dilution	Batch	Prepared	Analyzed	ELAP# Method	Note
	= ;					
	= :					
	= i					
	_ !					
	= :					
	= i					
	= ;					
	= i					
	= :					
	= 1					
	= !					

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Alameda, CA 94501

Project: Round 3 ASR Water Quality Baseline

Project Number: Round 3 ASR Water Quality Baseline

	Result	Reporting Limit	Dilution	Batch	Prepared	Analyzed	ELAP#	Method	Note
			Ī						
		_							
			Ī						
<u> </u>		_							
<u> </u>			I						
		_	_			<u> </u>			
			I						

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501

Project Number: Round 3 ASR Water Quality Baseline

	Result	Reporting Limit Dilution	Batch	Prepared	Analyzed	ELAP# Method	Note
		= i					
		= :					
		= :					
		= i					
						_	
		- !					
	≣						
		= !					
		= 1					
		- 1					
		_ !					
		= :					
		= i					
<u> </u>							
		= i					
		= :					
		= :					
		= i					
		= :					
		-					
		- 1					

email: clientservices@alpha-labs.com

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Project Number: Round 3 ASR Water Quality Baseline Alameda, CA 94501

Reported: 09/24/21 16:57

Result Reporting Limit Dilution Batch Prepared Analyzed ELAP# Method Note

email: clientservices@alpha-labs.com

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Alameda, CA 94501

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline Project Number: Round 3 ASR Water Quality Baseline

Reported: 09/24/21 16:57

Result Reporting Limit Dilution Batch Prepared Analyzed ELAP# Method Note

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Alameda, CA 94501

Project: Round 3 ASR Water Quality Baseline

Project Number: Round 3 ASR Water Quality Baseline

	Result	Reporting Limit	Dilution	Batch	Prepared	Analyzed	ELAP#	Method	Note
			_						
			Ī						
							_		
=									
=									
		_							
			Ī						

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501

Project Number: Round 3 ASR Water Quality Baseline

Result	Reporting Limit Dilution	Batch	Prepared	Analyzed	ELAP# Method	Note
				_		
	!					
				_		

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Alameda, CA 94501

Project: Round 3 ASR Water Quality Baseline

Project Number: Round 3 ASR Water Quality Baseline

	Result	Reporting Limit	Dilution	Batch	Prepared	Analyzed	ELAP#	Method	Note
		_	_						
<u> </u>									
			Ī						
			Ī						
<u> </u>									
			_						
		_	-						
=									
			ī						
			i						
			I						

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501 Project Number: Round 3 ASR Water Quality Baseline Reported:

09/24/21 16:57

 Result	Reporting Limit	Dilution	Batch	Prepared	Analyzed	ELAP#	Method	Note
	<u> </u>	_						
		_						
	<u> </u>	_						

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501

Project Number: Round 3 ASR Water Quality Baseline

Reported: 09/24/21 16:57

Metals (Dissolved) by EPA 200 Series Methods - Quality Control

	.	Reporting	** .	Spike	Source		%REC	n	RPD	F1
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
atch AH14872 - Metals Digest (D)										
Blank (AH14872 BLK1)				Prepared: (09/01/21 A	nalyzed: 09	/03/21			
Calcium, dissolved	ND	1 0	mg/L							
fron, dissolved	ND	0 10	mg/L							
Magnesium, dissolved	ND	10	mg/L							
Potassium, dissolved	ND	10	mg/L							
Sodium, dissolved	ND	1 0	mg/L							
LCS (AH14872-BS1)				Prepared: (09/01/21 A	nalyzed: 09	/03/21			
Calcium, dissolved	8 37	1 0	mg/L	8 00		105	85-115			
ron, dissolved	1 90	0 10	mg/L	2 00		95 1	85-115			
Magnesium, dissolved	8 66	10	mg/L	8 00		108	85-115			
Potassium, dissolved	8 06	10	mg/L	8 00		101	85-115			
Sodium, dissolved	8 12	1 0	mg/L	8 00		101	85-115			
Duplicate (AH14872-DUP1)	Sour	ce: 21H345	2-01	Prepared: (09/01/21 A	nalyzed: 09	/03/21			
Calcium, dissolved	48 0	1 0	mg/L		47 3			1 38	20	
ron, dissolved	ND	0 10	mg/L		ND				20	
Magnesium, dissolved	28 7	10	mg/L		28 2			1 74	20	
Potassium, dissolved	4 07	10	mg/L		4 04			0 855	20	
Sodium, dissolved	23 1	1 0	mg/L		22 8			1 01	20	
Matrix Spike (AH14872-MS1)	Sour	ce: 21H345	2-01	Prepared: (09/01/21 A	nalyzed: 09	/03/21			
Calcium, dissolved	56 4	1 0	mg/L	8 00	47 3	114	70-130			
ron, dissolved	1 91	0 10	mg/L	2 00	ND	95 5	70-130			
Magnesium, dissolved	37 9	10	mg/L	8 00	28 2	122	70-130			
Potassium, dissolved	12 6	10	mg/L	8 00	4 04	107	70-130			
Sodium, dissolved	30 6	1 0	mg/L	8 00	22 8	96 6	70-130			
Matrix Spike (AH14872-MS2)	Sour	ce: 21H337	4-01	Prepared: (09/01/21 Ai	nalyzed: 09	/03/21			
Calcium, dissolved	21 6	1 0	mg/L	8 00	12 9	108	70-130			
fron, dissolved	1 95	0 10	mg/L	2 00	ND	97 3	70-130			
Magnesium, dissolved	17 3	1 0	mg/L	8 00	8 10	115	70-130			
Potassium, dissolved	9 84	1 0	mg/L	8 00	1 75	101	70-130			
Sodium, dissolved	27 1	10	mg/L	8 00	19 7	92 7	70-130			

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501 Project Number: Round 3 ASR Water Quality Baseline

Reported: 09/24/21 16:57

Metals (Dissolved) by EPA 200 Series Methods - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AH14872 - Metals Digest (D)										
Matrix Spike Dup (AH14872-MSD1)	Sou	rce: 21H345	2-01	Prepared: (09/01/21 A	nalyzed: 09	0/03/21			
Calcium, dissolved	56 6	1 0	mg/L	8 00	47 3	117	70-130	0 409	20	
Iron, dissolved	1 87	0 10	mg/L	2 00	ND	93 6	70-130	1 95	20	
Magnesium, dissolved	37 4	10	mg/L	8 00	28 2	115	70-130	1 46	20	
Potassium, dissolved	12 4	10	mg/L	8 00	4 04	105	70-130	1 10	20	
Sodium, dissolved	30 8	1 0	mg/L	8 00	22 8	99 2	70-130	0 666	20	
Batch AI13118 - EPA 245.1 Hg Water										
Blank (AI13118-BLK1)				Prepared: (09/02/21 A					
Mercury, dissolved	ND	0 20	ug/L							
LCS (AI13118-BS1)				Prepared: (09/02/21 A	nalyzed: 09	0/03/21			
Mercury, dissolved	2 56	0 20	ug/L	2 50		102	85-115			
Duplicate (AI13118 DUP1)	Sou	rce: 21H263	3-02	Prepared: (09/02/21 A	nalyzed: 09	0/03/21			
Mercury, dissolved	ND	0 20	ug/L		ND				20	
Matrix Spike (AI13118-MS1)	Sou	rce: 21H263	3-02	Prepared: ()9/02/21 A					
Mercury, dissolved	2 52	0 20	ug/L	2 50	ND	101	70-130			
Matrix Spike Dup (AI13118-MSD1)	Sou	rce: 21H263	3-02	Prepared: ()9/02/21 A	nalyzed: 09	0/03/21			
Mercury, dissolved	2 51	0 20	ug/L	2 50	ND	100	70-130	0 437	20	

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501

Project Number: Round 3 ASR Water Quality Baseline

Reported: 09/24/21 16:57

Analyta(a)	Result	Reporting Limit	Units	Spike	Source	%REC	%REC	RPD	RPD Limit	Flag
Analyte(s)	Result	Limit	Units	Level	Result	70KEC	Limits	KPD	Limit	1 lag
Batch AH14197 - EPA 200.8 (D)										
Blank (AH14197-BLK1)				Prepared: (08/24/21 Aı	nalyzed: 08	/27/21			
Aluminum, dissolved	ND	10	ug/L							
Antimony, dissolved	ND	0 50	ug/L							
Arsenic, dissolved	ND	0 50	ug/L							
Barium, dissolved	ND	0 50	ug/L							
Beryllium, dissolved	ND	0 10	ug/L							
Boron, dissolved	ND	50	ug/L							
Cadmium, dissolved	ND	0 10	ug/L							
Chromium, dissolved	ND	0 50	ug/L							
Copper, dissolved	0 591	0 50	ug/L							
Lead, dissolved	ND	0 25	ug/L							
Manganese, dissolved	ND	5 0	ug/L							
Molybdenum, dissolved	ND	0 25	ug/L							
Nickel, dissolved	ND	0 50	ug/L							
Selenium, dissolved	ND	2 0	ug/L							
Silver, dissolved	ND	0 10	ug/L							
Thallium, dissolved	ND	0 10	ug/L							
Vanadium, dissolved	ND	1 0	ug/L							
Zinc, dissolved	ND	5 0	ug/L							
LCS (AH14197-BS1)				Prenared: (08/24/21 Aı	nalyzed: 08	/27/21			
Aluminum, dissolved	554	10	ug/L	520	JOI 2 11 2 1 1 1 1	107	85-115			
Antimony, dissolved	20 8	0 50	ug/L	20 0		104	85-115			
Arsenic, dissolved	21 1	0 50	ug/L	20 0		105	85-115			
Barium, dissolved	20 3	0 50	ug/L	20 0		102	85-115			
Beryllium, dissolved	20 7	0 10	ug/L	20 0		104	85-115			
Boron, dissolved	106	50	ug/L	100		106	85-115			
Cadmium, dissolved	20 3	0 10	ug/L	20 0		101	85-115			
Chromium, dissolved	20 3	0 50	ug/L	20 0		101	85-115			
Copper, dissolved	22 3	0 50	ug/L	20 0		112	85-115			
Lead, dissolved	20 5	0 25	ug/L	20 0		103	85-115			
Manganese, dissolved	20 5	5 0	ug/L	20 0		102	85-115			
Molybdenum, dissolved	21 3	0 25	ug/L	20 0		106	85-115			
Nickel, dissolved	20 1	0 50	ug/L	20 0		100	85-115			
Selenium, dissolved	21 6	20	ug/L ug/L	20 0		108	85-115			
Silver, dissolved	18 0	0 10	ug/L ug/L	20 0		90 1	85-115			

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501 Project Number: Round 3 ASR Water Quality Baseline

Reported: 09/24/21 16:57

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AH14197 - EPA 200.8 (D)										
LCS (AH14197-BS1)				Prepared: (08/24/21 At	nalyzed: 08	/26/21			
Thallium, dissolved	20 4	0 10	ug/L	20 0		102	85-115			
Vanadium, dissolved	20 6	10	ug/L	20 0		103	85-115			
Zinc, dissolved	103	5 0	ug/L	100		103	85-115			
Duplicate (AH14197-DUP1)	Sour	ce: 21H263	3-01	Prepared: (08/24/21 A	nalyzed: 08	/27/21			
Aluminum, dissolved	ND	100	ug/L		ND				20	
Antimony, dissolved	ND	0 50	ug/L		ND				20	
Arsenic, dissolved	5 05	0 50	ug/L		4 88			3 43	20	
Barium, dissolved	41 3	0 50	ug/L		40 5			2 00	20	
Beryllium, dissolved	ND	0 10	ug/L		ND				20	
Boron, dissolved	1930	50	ug/L		1910			0 965	20	
Cadmium, dissolved	ND	0 10	ug/L		ND				20	
Chromium, dissolved	11 6	0 50	ug/L		11 5			1 13	20	
Copper, dissolved	24 4	0 50	ug/L		24 2			0 967	20	
Lead, dissolved	0 340	0 25	ug/L		0 296			14 0	20	
Manganese, dissolved	ND	5 0	ug/L		ND				20	
Molybdenum, dissolved	5 45	0 25	ug/L		5 36			1 49	20	
Nickel, dissolved	1 19	0 50	ug/L		1 20			0 848	20	
Selenium, dissolved	5 75	2 0	ug/L		5 43			5 61	20	
Silver, dissolved	ND	0 10	ug/L		0 218			200	20	
Thallium, dissolved	ND	0 10	ug/L		ND				20	
Vanadium, dissolved	6 40	10	ug/L		6 47			1 08	20	
Zinc, dissolved	13 8	5 0	ug/L		13 4			2 85	20	
MRL Check (AH14197-MRL1)				Prepared: (08/24/21 A	nalyzed: 08	/27/21			
Aluminum, dissolved	12 2	10	ug/L	8 00		153	0-200			
Silver, dissolved	0 0833	0 10	ug/L	0 0800		104	0-200			
Thallium, dissolved	0 0721	0 10	ug/L	0 0800		90 1	0-200			
Vanadium, dissolved	0 878	10	ug/L	0 800		110	0-200			

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501 Project Number: Round 3 ASR Water Quality Baseline

Reported: 09/24/21 16:57

		Reporting		Spike	Source		%REC		RPD	F1
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AH14197 - EPA 200.8 (D)										
Matrix Spike (AH14197-MS1)	Sour	ce: 21H263	3-05	Prepared: (08/24/21 Aı	nalyzed: 08	/27/21			
Aluminum, dissolved	616	10	ug/L	520	ND	117	70-130			QM-0
Antimony, dissolved	198	0 50	ug/L	20 0	ND	99 1	70-130			
Arsenic, dissolved	27 4	0 50	ug/L	20 0	7 71	98 7	70-130			
Barium, dissolved	82 4	0 50	ug/L	20 0	65 2	86 1	70-130			
Beryllium, dissolved	18 3	0 10	ug/L	20 0	ND	91 4	70-130			
Boron, dissolved	2380	50	ug/L	100	2470	NR	70-130			QM-42
Cadmium, dissolved	18 5	0 10	ug/L	20 0	ND	92 6	70-130			
Chromium, dissolved	19 5	0 50	ug/L	20 0	ND	97 3	70-130			
Copper, dissolved	23 0	0 50	ug/L	20 0	3 01	100	70-130			
Lead, dissolved	162	0 25	ug/L	20 0	ND	80 8	70-130			
Manganese, dissolved	441	5 0	ug/L	20 0	429	63 4	70-130			QM-0
Molybdenum, dissolved	29 8	0 25	ug/L	20 0	8 61	106	70-130			
lickel, dissolved	24 8	0 50	ug/L	20 0	7 15	88 4	70-130			
Selenium, dissolved	196	2 0	ug/L	20 0	ND	90 8	70-130			
Silver, dissolved	17 2	0 10	ug/L	20 0	ND	86 1	70-130			QM-0
Thallium, dissolved	160	0 10	ug/L	20 0	ND	80 2	70-130			
Vanadium, dissolved	24 9	10	ug/L	20 0	5 33	97 9	70-130			
Zinc, dissolved	98 0	5 0	ug/L	100	7 93	90 0	70-130			
Matrix Spike Dup (AH14197-MSD1)	Sour	ce: 21H263	3-05	Prepared: (08/24/21 Aı	nalvzed: 08	/27/21			
Aluminum, dissolved	621	10	ug/L	520	ND	118	70-130	0 734	20	QM-0
Antimony, dissolved	197	0 50	ug/L	20 0	ND	98 3	70-130	0 783	20	
Arsenic, dissolved	27 3	0 50	ug/L	20 0	7 71	98 0	70-130	0 533	20	
Barium, dissolved	82 5	0 50	ug/L	20 0	65 2	86 3	70-130	0 0474	20	
Beryllium, dissolved	183	0 10	ug/L	20 0	ND	91 7	70-130	0 349	20	
Boron, dissolved	2330	50	ug/L	100	2470	NR	70-130	2 06	20	QM-4
Cadmium, dissolved	187	0 10	ug/L	20 0	ND	93 3	70-130	0 746	20	
Chromium, dissolved	198	0 50	ug/L	20 0	ND	99 0	70-130	1 72	20	
Copper, dissolved	23 1	0 50	ug/L	20 0	3 01	100	70-130	0 257	20	
Lead, dissolved	15 9	0 25	ug/L	20 0	ND	79 6	70-130	1 41	20	
Manganese, dissolved	448	5 0	ug/L	20 0	429	99 2	70-130	1 61	20	
Molybdenum, dissolved	29 8	0 25	ug/L	20 0	8 61	106	70-130	0 125	20	
Vickel, dissolved	25 3	0 50	ug/L	20 0	7 15	90 7	70-130	1 81	20	
Selenium, dissolved	198	2 0	ug/L	20 0	ND	91 7	70-130	0 900	20	
*			-							

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501

Project Number: Round 3 ASR Water Quality Baseline

Reported: 09/24/21 16:57

Analyte(s)	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AH14197 - EPA 200.8 (D)										
Matrix Spike Dup (AH14197-MSD1)	Sour	ce: 21H263:	3-05	Prepared: (08/24/21 A	nalyzed: 08	3/26/21			
Thallium, dissolved	15 6	0 10	ug/L	20 0	ND	78 2	70-130	2 57	20	
Vanadium, dissolved	25 3	10	ug/L	20 0	5 33	99 8	70-130	1 46	20	
Zinc, dissolved	98 6	5 0	ug/L	100	7 93	90 7	70-130	0 676	20	

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501

Project Number: Round 3 ASR Water Quality Baseline

Reported: 09/24/21 16:57

Conventional Chemistry Parameters by APHA/EPA Methods - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AH14260 - General Preparation										
Blank (AH14260-BLK1)				Prepared &	Analyzed:	08/20/21				
MBAS, calculated as LAS, mw 340	ND	0 050	mg/L							
LCS (AH14260-BS1)				Prepared &	Analyzed:	08/20/21				
MBAS, calculated as LAS, mw 340	0 201	0 050	mg/L	0 200		101	80-120			
Matrix Spike (AH14260-MS1)	Sour	ce: 21H263	3-01	Prepared &	k Analyzed:	08/20/21				
MBAS, calculated as LAS, mw 340	0 188	0 050	mg/L	0 200	ND	94 0	80-120			
Matrix Spike Dup (AH14260-MSD1)	Sour	ce: 21H263	3-01	Prepared &	k Analyzed:	08/20/21				
MBAS, calculated as LAS, mw 340	0 201	0 050	mg/L	0 200	ND	101	80-120	6 84	20	
Batch AH14310 - NB General Prep										
Blank (AH14310-BLK1)				Prepared &	Analyzed:	08/20/21				
Perchlorate	ND	2 0	ug/L							
LCS (AH14310-BS1)				Prepared &	k Analyzed:	08/20/21				
Perchlorate	9 58	2 0	ug/L	10 0		95 8	85-115			
Duplicate (AH14310-DUP1)	Sour	ce: 21H246	8-01	Prepared &	Analyzed:	08/20/21				
Perchlorate	ND	2 0	ug/L		ND				15	
Matrix Spike (AH14310-MS1)	Sour	ce: 21H241	4-13	Prepared &	Analyzed:	08/20/21				
Perchlorate	9 36	2 0	ug/L	10 0	ND	93 6	70-130			
Matrix Spike Dup (AH14310-MSD1)	Sour	ce: 21H241	4-13	Prepared &	z Analyzed:	08/20/21				
Perchlorate	9 72	2 0	ug/L	10 0	ND	97 2	70-130	3 77	15	

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215 Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501 09/24/21 16:57 Project Number: Round 3 ASR Water Quality Baseline

Conventional Chemistry Parameters by APHA/EPA Methods - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AH14314 - General Prep (BAL)										
Duplicate (AH14314-DUP1)	Sour	ce: 21H263	3-03	Prepared &	Analyzed:	08/18/21				
Turbidity	ND	0 10	NTU		ND				15	
Batch AH14407 - General Preparation										
Blank (AH14407-BLK1)				Prepared &	Analyzed:	08/24/21				
Sulfide	ND	0 10	mg/L							
LCS (AH14407-BS1)				Prepared &	: Analyzed:	08/24/21				
Sulfide	0 230	0 10	mg/L	0 222		104	85-115			
Duplicate (AH14407-DUP1)	Sour	ce: 21H263	3-01	Prepared &	: Analyzed:	08/24/21				
Sulfide	ND	0 10	mg/L		ND				15	
Matrix Spike (AH14407-MS1)	Sour	ce: 21H263	3-01	Prepared &	: Analyzed:	08/24/21				
Sulfide	0 0910	0 10	mg/L	0 222	ND	41 0	80-120			QM-05
Matrix Spike Dup (AH14407-MSD1)	Sour	ce: 21H263	3-01	Prepared &	: Analyzed:	08/24/21				
Sulfide	0 0900	0 10	mg/L	0 222	ND	40 5	80-120	1 10	15	QM-05
Batch AH14424 - General Preparation										
Blank (AH14424-BLK1)				Prepared: (08/24/21 A	nalyzed: 09	/03/21			
Total Dissolved Solids	ND	10	mg/L							
Duplicate (AH14424-DUP1)	Sour	ce: 21H2320	6-01	Prepared: (08/24/21 A	nalyzed: 09	/03/21			
Total Dissolved Solids	188	10	mg/L		172			8 89	15	

Reported:

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215 Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501 09/24/21 16:57 Project Number: Round 3 ASR Water Quality Baseline

Conventional Chemistry Parameters by APHA/EPA Methods - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AH14424 - General Preparation										
Duplicate (AH14424-DUP2)	Sour	ce: 21H232	6-02	Prepared: (08/24/21 At	nalyzed: 09	/03/21			
Total Dissolved Solids	156	10	mg/L		154			1 29	15	
Batch AH14703 - General Preparation										
Blank (AH14703-BLK1)				Prepared &	: Analyzed:	08/30/21				
Total Alkalinity as CaCO3	ND	5 0	mg/L							
Carbonate Alkalinity as CaCO3	ND	5 0	mg/L							
Hydroxide Alkalinity as CaCO3	ND	5 0	mg/L							
Bicarbonate Alkalinity as CaCO3	ND	5 0	mg/L							
LCS (AH14703-BS1)				Prepared &	Analyzed:	08/30/21				
Total Alkalinity as CaCO3	90 0	5 0	mg/L	80 0		112	70-130			
Duplicate (AH14703-DUP1)	Sour	ce: 21H263	3-01	Prepared &	: Analyzed:	08/30/21				
Total Alkalinity as CaCO3	310	5 0	mg/L		310			0 00	20	
Carbonate Alkalinity as CaCO3	ND	5 0	mg/L		ND				20	
Hydroxide Alkalinity as CaCO3	ND	5 0	mg/L		ND				20	
Bicarbonate Alkalinity as CaCO3	310	5 0	mg/L		310			0 00	20	
Batch AH14872 - Metals Digest (D)										
Blank (AH14872-BLK1)				Prepared: (09/01/21 At	nalyzed: 09	/03/21			
Hardness, Total	ND	5	mg/L							
Duplicate (AH14872-DUP1)	Sour	ce: 21H345	2-01	Prepared: (09/01/21 Aı	nalyzed: 09	/03/21			
Hardness, Total	238	5	mg/L		234			1 56	20	

Reported:

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501

09/24/21 16:57 Project Number: Round 3 ASR Water Quality Baseline

Anions by	EPA Method	300.0 -	Quality	Control
-----------	------------	---------	---------	---------

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AH14195 - EPA 300.0										
Blank (AH14195-BLK1)				Prepared &	Analyzed:	08/19/21				
Nitrate as N	ND	0 20	mg/L							
Fluoride	ND	0 10	mg/L							
Sulfate as SO4	ND	0 50	mg/L							
Chloride	ND	0 50	mg/L							
LCS (AH14195-BS1)				Prepared &	Analyzed:	08/19/21				
Nitrate as N	5 37	0 20	mg/L	5 56		96 7	90-110			
Fluoride	5 59	0 10	mg/L	5 56		101	90-110			
Chloride	10 9	0 50	mg/L	11 1		97 8	90-110			
Sulfate as SO4	22 2	0 50	mg/L	22 2		100	90-110			
Duplicate (AH14195-DUP1)	Sou	ırce: 21H253	0-02	Prepared &	k Analyzed:	08/19/21				
Sulfate as SO4	7 91	0 50	mg/L		7 92			0 0379	20	
Chloride	2 04	0 50	mg/L		2 04			0 0490	20	
Nitrate as N	0 277	0 20	mg/L		0 277			0 244	20	
Fluoride	0 163	0 10	mg/L		0 163			0 00	20	
Matrix Spike (AH14195-MS1)	Soi	ırce: 21H253	0-02	Prepared &	z Analyzed:	08/19/21				
Fluoride	5 01	1 0	mg/L	5 56	ND	90 2	80-120			
Nitrate as N	5 57	2 0	mg/L	5 56	ND	100	80-120			
Chloride	11 7	5 0	mg/L	11 1	ND	87 2	80-120			
Sulfate as SO4	26 4	5 0	mg/L	22 2	7 92	83 3	80-120			
Matrix Spike (AH14195-MS2)	Soi	ırce: 21H268	2-01	Prepared &	z Analyzed:	08/19/21				
Fluoride	4 71	1 0	mg/L	5 56	ND	84 8	80-120			
Nitrate as N	8 55	2 0	mg/L	5 56	3 70	87 3	80-120			
Sulfate as SO4	31 1	5 0	mg/L	22 2	12 9	82 2	80-120			
Chloride	17 1	5 0	mg/L	11 1	7 80	83 8	80-120			

Reported:

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215 Alameda, CA 94501

Project: Round 3 ASR Water Quality Baseline

Project Number: Round 3 ASR Water Quality Baseline

Reported: 09/24/21 16:57

Anions by EPA Method 300.0 - Quality Control

Analyte(s)	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AH14195 - EPA 300.0										
Matrix Spike Dup (AH14195-MSD1)	Sourc	e: 21H2530	0-02	Prepared &	Analyzed:	08/19/21				
Sulfate as SO4	26 6	5 0	mg/L	22 2	7 92	84 2	80-120	0 796	20	
Fluoride	5 06	10	mg/L	5 56	ND	91 0	80-120	0 883	20	
Nitrate as N	5 61	20	mg/L	5 56	ND	101	80-120	0 717	20	
Chloride	11 8	5 0	mg/L	11 1	ND	88 0	80-120	0 755	20	

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501

Project Number: Round 3 ASR Water Quality Baseline

Reported: 09/24/21 16:57

Volatile Organic Compounds by EPA Method 524.2 - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AH14496 - VOAs in Water GCMS										
Blank (AH14496-BLK1)				Prepared &	Analyzed:	08/25/21				
Bromodichloromethane	ND	1 00	ug/L							
Bromoform	ND	1 00	ug/L							
Chloroform	ND	1 00	ug/L							
Dibromochloromethane	ND	1 00	ug/L							
Trihalomethanes (total)	ND	1 00	ug/L							
Surrogate: Bromofluorobenzene	25.4		ug/L	25.0		102	70-130			
Surrogate: Dibromofluoromethane	24.6		ug/L	25.0		98.5	70-130			
Surrogate: Toluene-d8	24.8		ug/L	25.0		99.1	70-130			
LCS (AH14496-BS1)				Prepared &	k Analyzed:	08/25/21				
Bromodichloromethane	4 57	1 00	ug/L	5 00	<u> </u>	91 4	70-130			
Bromoform	4 31	1 00	ug/L	5 00		86 2	70-130			
Chloroform	5 19	1 00	ug/L	5 00		104	70-130			
Dibromochloromethane	4 45	1 00	ug/L	5 00		89 0	70-130			
Surrogate: Bromofluorobenzene	27.8		ug/L	25.0		111	70-130			
Surrogate: Dibromofluoromethane	23.5		ug/L	25.0		94.2	70-130			
Surrogate: Toluene-d8	24.8		ug/L	25.0		99.2	70-130			
LCS Dup (AH14496-BSD1)				Prepared &	Analyzed:	08/25/21				
Bromodichloromethane	4 59	1 00	ug/L	5 00	•	91 8	70-130	0 437	30	
Bromoform	4 11	1 00	ug/L	5 00		82 2	70-130	4 75	30	
Chloroform	5 14	1 00	ug/L	5 00		103	70-130	0 968	30	
Dibromochloromethane	4 58	1 00	ug/L	5 00		91 6	70-130	2 88	30	
Surrogate: Bromofluorobenzene	28.1		ug/L	25.0		113	70-130			
Surrogate: Dibromofluoromethane	22.4		ug/L	25.0		89.5	70-130			
Surrogate: Toluene-d8	24.9		ug/L	25.0		99.6	70-130			
Matrix Spike (AH14496-MS1)	So	urce: 21H246	9-02	Prepared: (08/25/21 A	nalyzed: 08	/26/21			
Bromodichloromethane	20 5	1 00	ug/L	5 00	14 0	130	70-130			
Bromoform	4 73	1 00	ug/L	5 00	ND	94 6	70-130			
Chloroform	79 8	1 00	ug/L	5 00	67 2	253	70-130			QM-
Dibromochloromethane	8 71	1 00	ug/L	5 00	3 65	101	70-130			-
Surrogate: Bromofluorobenzene	28.3		ug/L	25.0		113	70-130			
Surrogate: Dibromofluoromethane	23.0		ug/L	25.0		91.8	70-130			

email: clientservices@alpha-labs.com

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project Number: Round 3 ASR Water Quality Baseline

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501 Proje

Reported: 09/24/21 16:57

Volatile Organic Compounds by EPA Method 524.2 - Quality Control

Analyte(s)	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AH14496 - VOAs in Water GCMS										
Matrix Spike (AH14496-MS1)	Sour	ce: 21H246	9-02	Prepared: (08/25/21 A	nalyzed: 08	/26/21			
Surrogate: Toluene-d8	24.4		ug/L	25.0		97.6	70-130			
Matrix Spike (AH14496-MS2)	Sour	ce: 21H261	1-01	Prepared: (08/25/21 A	nalyzed: 08	/26/21			
Bromodichloromethane	6 50	1 00	ug/L	5 00	1 77	94 6	70-130			
Bromoform	4 42	1 00	ug/L	5 00	ND	88 4	70-130			
Chloroform	60 2	1 00	ug/L	5 00	50 7	190	70-130			QM-05
Dibromochloromethane	4 27	1 00	ug/L	5 00	ND	85 4	70-130			
Surrogate: Bromofluorobenzene	27.8		ug/L	25.0		111	70-130			
Surrogate: Dibromofluoromethane	21.4		ug/L	25.0		85.8	70-130			
Surrogate: Toluene-d8	23.7		ug/L	25.0		94.7	70-130			

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501 Project Number: Round 3 ASR Water Quality Baseline

Reported: 09/24/21 16:57

Haloacetic Acids by EPA Method 552.2 - Quality Control

		Reporting		Spike	Source		%REC		RPD	El
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AH14766 - EPA 552.2										
Blank (AH14766-BLK1)				Prepared: (08/31/21 A	nalyzed: 09	/01/21			
Monobromoacetic Acid	ND	1 0	ug/L							
Monochloroacetic Acid	ND	2 0	ug/L							
Dibromoacetic Acid	ND	10	ug/L							
Dichloroacetic Acid	ND	10	ug/L							
Trichloroacetic Acid	ND	10	ug/L							
Total Haloacetic Acids (HAA5)	ND	10	ug/L							
Surrogate: 2,3-Dibromopropionic Acid	8.28		ug/L	9.85		84.1	70-130			
Surrogate: 2-Bromopropionic Acid	10.9		ug/L	10.0		109	70-130			
LCS (AH14766-BS1)				Prepared: (08/31/21 A	nalyzed: 09	/01/21			
Monobromoacetic Acid	28 6	1 0	ug/L	25 0		114	70-130			
Monochloroacetic Acid	28 6	2 0	ug/L	25 0		114	70-130			
Dibromoacetic Acid	24 9	10	ug/L	25 0		99 7	70-130			
Dichloroacetic Acid	28 5	10	ug/L	25 0		114	70-130			
Trichloroacetic Acid	24 5	10	ug/L	25 0		98 0	70-130			
Surrogate: 2,3-Dibromopropionic Acid	9.70		ug/L	9.85		98.5	70-130			
Surrogate: 2-Bromopropionic Acid	12.6		ug/L	10.0		126	70-130			
Matrix Spike (AH14766-MS1)	Sou	ırce: 21H263	3-01	Prepared: (08/31/21 A:	nalyzed: 09	/02/21			
Monobromoacetic Acid	31 8	1 0	ug/L	25 0	ND	127	70-130			
Monochloroacetic Acid	30 4	2 0	ug/L	25 0	ND	121	70-130			
Dibromoacetic Acid	28 2	10	ug/L	25 0	ND	113	70-130			
Dichloroacetic Acid	31 0	10	ug/L	25 0	ND	124	70-130			
Trichloroacetic Acid	27 6	10	ug/L	25 0	ND	110	70-130			
Surrogate: 2,3-Dibromopropionic Acid	11.8		ug/L	9.85		120	70-130			
Surrogate: 2-Bromopropionic Acid	14.3		ug/L	10.0		143	70-130			S-0
Matrix Spike (AH14766-MS2)	Sou	ırce: 21H273	8-01	Prepared: (08/31/21 A	nalyzed: 09	/02/21			
Monobromoacetic Acid	25 7	1 0	ug/L	25 0	ND	103	70-130			
Monochloroacetic Acid	51 4	2 0	ug/L	25 0	ND	205	70-130			QM-0'
Dibromoacetic Acid	23 8	1 0	ug/L	25 0	ND	95 0	70-130			
Dichloroacetic Acid	26 3	1 0	ug/L	25 0	ND	105	70-130			
Trichloroacetic Acid	24 2	1 0	ug/L	25 0	ND	96 7	70-130			
Surrogate: 2,3-Dibromopropionic Acid	10.5		ug/L	9.85		107	70-130			

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Project Number: Round 3 ASR Water Quality Baseline

Alameda, CA 94501

Reported:

09/24/21 16:57

Haloacetic Acids by EPA Method 552.2 - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag

ug/L

Batch AH14766 - EPA 552.2

Matrix Spike (AH14766-MS2) Source: 21H2738-01 Prepared: 08/31/21 Analyzed: 09/02/21

11.5

Surrogate: 2-Bromopropionic Acid

115

email: clientservices@alpha-labs.com

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501

Project Number: Round 3 ASR Water Quality Baseline

Reported: 09/24/21 16:57

Notes and Definitions

FILT	The sampl	e was filte	ered in the	lab prior	to analysis
------	-----------	-------------	-------------	-----------	-------------

QM-01 The spike recovery for this QC sample is outside of established control limits possibly due to a sample matrix interference.

QM-05 The spike recovery was outside acceptance limits for the MS and/or MSD due to matrix interference. The LCS and/or LCSD

were within acceptance limits showing that the laboratory is in control and the data is acceptable.

QM-07 The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS

recovery.

QM-4X The spike recovery was outside of QC acceptance limits for the MS and/or MSD due to analyte concentration at 4 times or

greater the spike concentration. The QC batch was accepted based on LCS and/or LCSD recoveries within the acceptance

limits.

R-01 The Reporting Limit for this analyte has been raised to account for matrix interference.

S-GC Surrogate recovery outside of control limits. The data was accepted based on valid recovery of the remaining surrogates.

ND Analyte NOT DETECTED at or above the reporting limit

dry Sample results reported on a dry weight basis

REC Recovery

RPD Relative Percent Difference

www.alpha-labs.com

Corporate Laboratory (1551) 707-468-0401 208 Mason Street, Ukiah CA 95482

Los Angeles (Service Center) 310-743-5711 1230 E 233rd St #205, Carson CA 90745

North Bay Laboratory (2303) 707-769-3128 110 Liberty Street, Petaluma CA 94952

Bay Area Laboratory (2728) 925-828-6226 262 Rickenbacker Circle, Livermore CA 94551

Chain of Custody Record

Reports and Invoices delivered by email as PDF files

clientservices@alpha-labs.com

www.alpha-labs.com	in Diego I aborato	ry (3055) 760-930-2	2555		Ce	ntral	Valle	y Lai	bora	tory (2922	916	-686-	5190)						/	71	11		6	7	7		Pg_	1 01 6
WATERS, SEDIMENTS, SOLIDS	2722 Loker Ave W	est, Ste A, Carlsba	d CA 92	010		9090	Unic	n Pai	k W	y #1	13, E	k Gr	ove C	A 95	624	_				VO		4			00	<u></u>			Pg_	
Report to	T Involce	to (if different)			Р	rojec	t Info	,							Ā	naly	sis:F	lequ	est					_	_		TA,		4	Temp 'C
	Contact:	to in annotary		Projec														- 1	ŀ	i	ı	l	ļ		l		Stand 10-d		1	Ukiah
Company:				Rou	nd 3 /			r Qua	ility	1			1	ı	1		-	-	-	_ 1	_1				1	i	_	-	ı	3.0
Todd Groundwater				-		Base	line			-	Į į			- 1		ı	- [1	- 1	ᅙ	2	1	l			ĺ	0		h	Livermore
Attn:	Email Address:			Projec	t Nun	nber:				1			1	- 1	- 1	- 1	-	- [- 1	ភ្ន	貟	l	- 1				RUS		1	5.8
Nicole Grimm										1.	l '		l	1		- [ا ي	1	ļ	ပ္ခု	Se				1	5-	-day :	25%	, -	
	Phone:			PO N	umbe	г:				19				- 1	l	-	≨∣		g l	ē l	S.		l			i	0		1	Elk Grove
Phone:	, iono.									물	l			-	- 1	l	ξ	-	9	88	[]				ŀ	2.	-day	75%	-	
610-747-6920	<u> </u>					_				Sample ID	-		l l			- 1	ğ		Ϋ́	\$	Z	1	als			_	_		፞ Ի	Petaluma
Physical Address:				Frequ	ency:					ğ	暮	1 1		l	- 1		ᇎᅵ	Ì	ᆲ	짆	Ξ	_	Μe			i	0			
2490 Mariner Square Loop, Suite 215, Ala	meda CA 94501			İ							E E	_	1	1		ı	<u>e</u>	age	Ö	₹	۶	Ŧ	ved				Oth	er	l	
		 -	Conta	iner	Pres	serva	tion	Ma	trix `	Total Number of Containers per	BAL - TCEC GW 30hr Quantitray	BAL - Color and Turbidity	1 1	l	- }	- 1	<u>ĕ</u>	S	tals	tals	ig	Dissolved 245.1 CVAA - Hg	Lab Filtration for Dissolved Metals			l	0			Carlsbad
Email address:		ľ	\Box	\Box	П	П	П		П	Ę	통	Ĭū		- 1	- 1	ı	<u> </u> 5	SS.	튙	Ě	Ē	ઠ	١ё	-	1 1	ĺ	_		1	
ngrimm@toddgroundwater.com			11	1		Н		ااي	H	ē	Š	D u	[읦	l		-	賣	븬	Š.	8.0	8.0	15.1	u foi	stion		l -	<u> </u> '	days	,	Los Angeles
Field Sampler - Printed Name and Signature	<u>;</u>	_ · >	حاها			H		ᆲ	Н	ğ	잂	قِ	[욹]	- 1	- 1		۴	z	d 20	42	9	Ž D	atio	ige			Poly :	size		
Nicole brinn	not		퉦톘	ᡖ	8	11		길흏	1 1	Į	ဥ	ပြီ	§	ا ؞.	. . .	ا بو	<u></u>	e a	olve.	e Alc	oke	olve	ᆵ	ş		آيا	ᄀ	[6]	L	
	T Samt	oled on	뒤휩윷	is is	[S2	8 :	3 8	혈윭	io d	<u> </u>	¥	Įį́	NB - Perchlorate	HAA5	MHTT	툌	ka	ita Ta	iss()iss	issi)iss	ар	Metals Digestion		ន្លា	500mL 1L]를[딿	Source Code
Sample Identification	Time		40mL vial Glass bottle Poly bottle ↓	8 8	밀모	卣	5 <u>₹</u>	کّا مَ	βİ	<u> </u>	mì	<u> </u>	z	픡	-	<u>~</u>	∸	_		<u>-</u>	Dissolved 200.8 metals - Mn Mo Ni Pb Sb Se TI V Zn		╌	┡	H	7	ᢡ	剒	1	
212)	9:10	8/18/21	. ×	H	x			x		1	×	<u> </u>											$ldsymbol{ld}}}}}}$	┕	_	Н	+	$\!$	<u>*</u>	
3121	1 ' '	-		\sqcap	\sqcap	П	×	x	П	1		×	П				ļ			·						11	. 1		1	
			┤┤,	++	┞┼	╁	\	×	††	1	t		×		H									Γ		×	T	П		
			╌╁╌╁╴	+	╁┼╴	╫	╫	\vdash	╁╂	╅	╁╴	╆	╁┪	×	H	\dashv	\neg				一	Г	T	T		П	\top	\Box	T	
l				1	!	44	<u>*</u> _	<u> </u>	₩	1	╀	┼	\vdash	_	\vdash				-	┝	├	┞	╁╌	-	╀	H	+	╁┤	H	
			×		×	Ш		×	Ц	3	1.	L	L		×				ļ_	<u> </u>	├-	-	┞	⊢	<u> </u>	H	_	\dashv	Н	 -
			[Н		×	×		1	١.					×			L	_		L	<u> </u>	<u> </u>	<u> </u>	×	┵	$\downarrow \downarrow$	Ц	
			,		П	П	×	×	\prod	1		Π					x	×	x	×	×	x	×	×		Ц	Ц	×	Ц	
		 -	H +	╂╁╸	╉┼	+1	+	H	17	1	十	╁	+-										:			[]				
		 -	╟╫	╁┼	╂┼	++	+-	╂┼╴	╁		╁	╁╴	┼─		┝╌			-	T	\vdash		Г	Τ	T		П	П	\top	П	
		<u> </u>	\square	11	╀┼	+	+-	╀	H	╂	╀	╁	╁╌	-	├─	_	-	├	╁╌	╁	╁	╁	╀╴	╁	†	Ħ	厂	†	H	
	<u> </u>	<u> </u>		Ш	┸	44	\bot	\sqcup	Ц	4	╄	╄-		├	╁~	_	_	-	╀	╁	╀	╀	╁╌	╁╴	╁╌	H	$\vdash \uparrow$	十	H	<u></u> -
	T	<u> </u>		11			_				<u> </u>	<u> </u>	<u>.</u>	<u> </u>	<u> </u>	L				上	L	V of th	L.	al R	equir	 remy	 ents	Т.	Ц	
Relinquished by	<u> </u>	Received	by					Time				Dat	te:		┼							Muu								
NA		57					16	05			٢_	18	121			0	CA	DD ite-	W On I	EDT	•		State	Sys	tem I	No:	_			
13	- †	10				T	1 4	d	5	\top	g.	18	7/2	1	-	_									_					/
		<u> </u>				42	_		_2	-	ΔI	, ,		<u> </u>	1	_	CA				F	acilit	y Glo	bal	D No	ı:			4	
78		- SIE				<	<u>22</u>	-10	\	_ _'	8/	18	/2	<u> </u>	-	0	Ge	oTr	ack tepo						any L			:: _/ /	4	<u> </u>
		-								- [_		EL	,r r	.apc	,, r			_				_	<u>(;</u>		

WORK ORDER

Printed: 8/19/2021 10:31:02AM

21H2633

Alpha Analytical Laboratories Ukiah to North Bay Chain of Custody

Client: Todd Groundwater Project: Round 3 ASR Water	r Quality Baseline		DP_TODENG Round 3 ASR Wate	Bid: r Qualit PO #:	Round 3 ASR	Water Quality
Date Due: 09/02/21 Received By: James Bix Logged In By: Sean Fole			ived: 08/18/21 22:15 ged 08/19/21 10:02			
Samples Received at:	deg C	All containers	received and intact:	YES N	0	
Analysis	Department	Expires	Comments			
21H2633-01 3121 [Water] San NB Perchlorate EPA 314.0	npled 08/18/21 09:10 NB Wet Chem	09/15/21 23	:59	_Lab I	Filter	
21H2633-02 12-5-23A20 [Wate NB Perchlorate EPA 314.0	r] Sampled 08/18/21 NB Wet Chem	09:55 09/15/21 23	:59	Lab-l	Filter	
21H2633-03 3357 [Water] San NB Perchlorate EPA 314.0	npled 08/18/21 10:30 NB Wet Chem	09/15/21 23	:59	<u>Jab I</u>	ritter	
11H2633-04 3123 [Water] San NB Perchlorate EPA 314.0	npled 08/18/21 11:50 NB Wet Chem	09/15/21 23	:59	Lah-I	Filter	
1 H2633-05 3127 [Water] Sam NB Perchlorate EPA 314.0	npled 08/18/21 12:25 NB Wet Chem	09/15/21 23:	:59	Lab-F	Pilter	
1H2633-06 Hollister #2 [Wate NB Perchlorate EPA 314.0	r] Sampled 08/18/21 NB Wet Chem	13:15 09/15/21 23:	59	Lab F	ritter	<u></u>
Containers Supplied: 250mL Poly Unpres (C)						
250mL Poly Unpres (C)						
250mL Poly Unpres (C)						
250mL Poly Unpres (C)						
250mL Poly Unpres (C) 250mL Poly Unpres (C)						:
Relinquished By	8/19/2 Date	Z/Time	Received By	\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-	7/20/1/ Date	Time
It Dr.	* 220h1	12:30	Medical by:	< /	Solve $\sqrt{20}$	Time
Relinquished By	Date	Time	Received By	7	Date	Time

email: clientservices@alpha-labs.com

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

24 September 2021

Todd Groundwater

Attn: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Alameda, CA 94501

RE: Round 3 ASR Water Quality Baseline

Work Order: 21H2617

Enclosed are the results of analyses for samples received by the laboratory on 08/18/21 22:15. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jeanette L. Poplin For David S. Pingatore

Jeanette Popli

Project Manager

email: clientservices@alpha-labs.com

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501

Project Number: Round 3 ASR Water Quality Baseline

Reported:

09/24/21 14:03

Bay Area: 262 Rickenbacker Circle | Livermore, CA 94551 | T: 925-828-6226 | F: 925-828-6309 | ELAP# 2728 Central Valley: 9090 Union Park Way Suite 113 | Elk Grove, CA 95624 | T. 916-686-5190 | F: 916-686-5192 | ELAP# 2922 North Bay: 110 Liberty Street | Petaluma, CA 94952 | T: 707-769-3128 | F: 707-769-8093 | ELAP# 2303 San Diego: 2722 Loker Avenue West Suite A | Carlsbad, CA 92010 | T: 760-930-2555 | F: 760-930-2510 | ELAP# 3055

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
3123	21H2617-02	Water	08/18/21 12:00	08/18/21 22:15

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501

Project Number: Round 3 ASR Water Quality Baseline

	Result	Reporting Limit I	Dilution	Batch	Prepared	Analyzed	ELAP#	Method	Note
		-							
<u> </u>		_					!==		
			•						
		7							
<u> </u>									
		_							
			: :						
<u> </u>		_							
		_							
			•						
		=					!==		
			: :						
		_	: :						
			: :						
		=							
		=	: :						
			: :						
		=	: :						

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501 Project Number: Round 3 ASR Water Quality Baseline

	Result	Reporting Limit D	ilution	Batch	Prepared	Analyzed	ELAP#	Method	Note
		_							
			; ;						
			i i						
		_							
<u> </u>									

Result

email: clientservices@alpha-labs.com

Analyzed

ELAP#

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

Reporting Limit Dilution

2490 Mariner Square Loop, Suite 215

Alameda, CA 94501

Project: Round 3 ASR Water Quality Baseline

Project Number: Round 3 ASR Water Quality Baseline

Batch

Prepared

Reported: 09/24/21 14:03

Note

Method

3123 (21H2617-02) Sample Type: Water Sampled: 08/18/21 12:00 Metals by EPA 200 Series Methods Silica (SiO2) 33 mg/L 1.0 AI13078 09/01/21 11:47 09/03/21 15:15 2303 EPA 200.7 Calcium 44 mg/L 1.0 AH14695 08/31/21 08:57 09/03/21 18:19 1551 EPA 200.7 Chromium, hexavalent 11 ug/L 1.0 AH14395 08/23/21 15:19 08/24/21 02:12 1551 EPA 218.6 Magnesium 25 mg/L 1.0 AH14695 08/31/21 08:57 09/03/21 18:19 1551 EPA 200.7 Metals by EPA Method 200.8 ICP/MS Cobalt 1.8 ug/L 0.40 AH14675 08/27/21 13:50 08/30/21 17:09 1551 EPA 200.8 ND pCi/l AH14675 08/27/21 13:50 08/30/21 17:09 1551 EPA 200.8 Uranium 1.0 Conventional Chemistry Parameters by APHA/EPA Methods 0.50 AI13121 09/07/21 09:30 09/07/21 16:30 1551 SM4500NH3B,C Ammonia as NH3 ND mg/L Hardness, Total 213 mg/L 08/31/21 08:57 09/03/21 18:19 1551 SM2340B 5 AH14695 Phosphorus, total 0.20 mg/L 0.040 AH14650 08/27/21 10:18 08/27/21 16:20 1551 SM4500-P E 1.00 AH14594 08/31/21 14:40 09/01/21 00:58 1551 SM5310C Total Organic Carbon ND mg/L Volatile Organic Compounds by EPA Method 524.2 ND ug/L 5.0 1 AH14583 08/26/21 12:00 08/26/21 16:05 1551 EPA 524.2 Acetone ND ug/L 5.0 AH14583 08/26/21 12:00 08/26/21 16:05 1551 EPA 524.2 Acrylonitrile 08/26/21 16:05 1551 EPA 524.2 Benzene ND ug/L 0.50 AH14583 08/26/21 12:00 Bromobenzene ND ug/L 0.50 AH14583 08/26/21 12:00 08/26/21 16:05 1551 EPA 524.2 Bromochloromethane 0.50 AH14583 08/26/21 12:00 08/26/21 16:05 1551 EPA 524.2 ND ug/L 1 Bromodichloromethane AH14583 08/26/21 12:00 08/26/21 16:05 1551 EPA 524.2 ND ug/L 1.0 Bromoform ND ug/L 1.0 AH14583 08/26/21 12:00 08/26/21 16:05 1551 EPA 524.2 Bromomethane ND ug/L 0.50 AH14583 08/26/21 12:00 08/26/21 16:05 1551 EPA 524.2 n-Butylbenzene 0.50 AH14583 08/26/21 12:00 08/26/21 16:05 1551 EPA 524.2 ND ug/L sec-Butylbenzene ND ug/L 0.50 AH14583 08/26/21 12:00 08/26/21 16:05 1551 EPA 524.2 tert-Butylbenzene ND ug/L 0.50 AH14583 08/26/21 12:00 08/26/21 16:05 1551 EPA 524.2 Carbon disulfide AH14583 08/26/21 12:00 08/26/21 16:05 1551 EPA 524.2 ND ug/L 0.50 Carbon tetrachloride AH14583 08/26/21 12:00 08/26/21 16:05 1551 EPA 524.2 ND ug/L 0.50 Chlorobenzene 0.50 AH14583 08/26/21 12:00 08/26/21 16:05 1551 EPA 524.2 ND ug/L Chloroethane ND ug/L 0.50 AH14583 08/26/21 12:00 08/26/21 16:05 1551 EPA 524.2 Chloroform ND ug/L 1.0 1 AH14583 08/26/21 12:00 08/26/21 16:05 1551 EPA 524.2 Chloromethane ND ug/L 0.50 AH14583 08/26/21 12:00 08/26/21 16:05 1551 EPA 524.2 2-Chlorotoluene ND ug/L 0.50 AH14583 08/26/21 12:00 08/26/21 16:05 1551 EPA 524.2 4-Chlorotoluene ND ug/L 0.50 AH14583 08/26/21 12:00 08/26/21 16:05 1551 EPA 524.2 Dibromochloromethane ND ug/L 1.0 AH14583 08/26/21 12:00 08/26/21 16:05 1551 EPA 524.2 Dibromomethane 0.50 AH14583 08/26/21 12:00 08/26/21 16:05 1551 EPA 524.2 ND ug/L 1,2-Dichlorobenzene ND ug/L 0.50 AH14583 08/26/21 12:00 08/26/21 16:05 1551 EPA 524.2

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501

Project Number: Round 3 ASR Water Quality Baseline

	Result	Reporting Limit Dilu	ution	Batch	Prepared	Analyzed	ELAP#	Method	Note
3123 (21H2617-02)		Sample Type: Wat	ter		Sampled	l: 08/18/21 12:	00		
Volatile Organic Compounds by EPA Meth	nod 524.2 (cont'd)								
1,3-Dichlorobenzene	ND ug/L	0.50	1 .	AH14583	08/26/21 12:00	08/26/21 16:0	05 1551	EPA 524.2	
1,4-Dichlorobenzene	ND ug/L	0.50	1 .	AH14583	08/26/21 12:00	08/26/21 16:0	05 1551 1	EPA 524.2	
Dichlorodifluoromethane	ND ug/L	0.50	1 .	AH14583	08/26/21 12:00	08/26/21 16:0)5 1551 1	EPA 524.2	
1,1-Dichloroethane	ND ug/L	0.50	1 .	AH14583	08/26/21 12:00	08/26/21 16:0)5 1551 1	EPA 524.2	
1,2-Dichloroethane	ND ug/L	0.50	1 .	AH14583	08/26/21 12:00	08/26/21 16:0)5 1551 1	EPA 524.2	
1,1-Dichloroethene	ND ug/L	0.50	1 .	AH14583	08/26/21 12:00	08/26/21 16:0)5 1551 1	EPA 524.2	
cis-1,2-Dichloroethene	ND ug/L	0.50	1 .	AH14583	08/26/21 12:00	08/26/21 16:0)5 1551 1	EPA 524.2	
trans-1,2-Dichloroethene	ND ug/L	0.50	1 .	AH14583	08/26/21 12:00	08/26/21 16:0	05 1551 1	EPA 524.2	
1,3-Dichloropropene (total)	ND ug/L	0.50	1 .	AH14583	08/26/21 12:00	08/26/21 16:0	05 1551 1	EPA 524.2	
1,2-Dichloropropane	ND ug/L	0.50	1 .	AH14583	08/26/21 12:00	08/26/21 16:0)5 1551 1	EPA 524.2	
1,3-Dichloropropane	ND ug/L	0.50	1 .	AH14583	08/26/21 12:00	08/26/21 16:0)5 1551 1	EPA 524.2	
2,2-Dichloropropane	ND ug/L	0.50	1 .	AH14583	08/26/21 12:00	08/26/21 16:0)5 1551 1	EPA 524.2	
1,1-Dichloropropene	ND ug/L	0.50	1 .	AH14583	08/26/21 12:00	08/26/21 16:0)5 1551 1	EPA 524.2	
cis-1,3-Dichloropropene	ND ug/L	0.50	1 .	AH14583	08/26/21 12:00	08/26/21 16:0	05 1551 1	EPA 524.2	
trans-1,3-Dichloropropene	ND ug/L	0.50	1 .	AH14583	08/26/21 12:00	08/26/21 16:0)5 1551 1	EPA 524.2	
Ethylbenzene	ND ug/L	0.50	1 .	AH14583	08/26/21 12:00	08/26/21 16:0)5 1551 1	EPA 524.2	
Hexachlorobutadiene	ND ug/L	0.50	1 .	AH14583	08/26/21 12:00	08/26/21 16:0)5 1551 1	EPA 524.2	
Isopropylbenzene	ND ug/L	0.50	1 .	AH14583	08/26/21 12:00	08/26/21 16:0)5 1551 1	EPA 524.2	
p-Isopropyltoluene	ND ug/L	0.50	1 .	AH14583	08/26/21 12:00	08/26/21 16:0)5 1551 1	EPA 524.2	
Methyl ethyl ketone	ND ug/L	5.0	1 .	AH14583	08/26/21 12:00	08/26/21 16:0)5 1551 1	EPA 524.2	
Methyl isobutyl ketone	ND ug/L	5.0	1 .	AH14583	08/26/21 12:00	08/26/21 16:0)5 1551 1	EPA 524.2	
Methyl tert-butyl ether	ND ug/L	3.0	1 .	AH14583	08/26/21 12:00	08/26/21 16:0)5 1551 1	EPA 524.2	
Methylene chloride	ND ug/L	0.50	1 .	AH14583	08/26/21 12:00	08/26/21 16:0)5 1551 1	EPA 524.2	
Naphthalene	ND ug/L	0.50	1 .	AH14583	08/26/21 12:00	08/26/21 16:0)5 1551 1	EPA 524.2	
n-Propylbenzene	ND ug/L	0.50	1 .	AH14583	08/26/21 12:00	08/26/21 16:0)5 1551	EPA 524.2	
Styrene	ND ug/L	0.50	1 .	AH14583	08/26/21 12:00	08/26/21 16:0)5 1551	EPA 524.2	
1,1,1,2-Tetrachloroethane	ND ug/L	0.50	1 .	AH14583	08/26/21 12:00	08/26/21 16:0)5 1551	EPA 524.2	
1,1,2,2-Tetrachloroethane	ND ug/L	0.50	1 .	AH14583	08/26/21 12:00	08/26/21 16:0)5 1551 1	EPA 524.2	
Tetrachloroethene	ND ug/L	0.50	1 .	AH14583	08/26/21 12:00	08/26/21 16:0	05 1551 1	EPA 524.2	
Toluene	ND ug/L	0.50	1 .	AH14583	08/26/21 12:00	08/26/21 16:0	05 1551 1	EPA 524.2	
1,2,3-Trichlorobenzene	ND ug/L	0.50	1 .	AH14583	08/26/21 12:00	08/26/21 16:0	05 1551 1	EPA 524.2	
1,2,4-Trichlorobenzene	ND ug/L	0.50	1 .	AH14583	08/26/21 12:00	08/26/21 16:0	05 1551 1	EPA 524.2	
1,1,1-Trichloroethane	ND ug/L	0.50	1 .	AH14583	08/26/21 12:00	08/26/21 16:0)5 1551 1	EPA 524.2	
1,1,2-Trichloroethane	ND ug/L			AH14583		08/26/21 16:0			
Trichloroethene	ND ug/L	0.50			08/26/21 12:00	08/26/21 16:0			
Trichlorofluoromethane	ND ug/L				08/26/21 12:00	08/26/21 16:0			
Trichlorotrifluoroethane	ND ug/L				08/26/21 12:00	08/26/21 16:0			
1,2,4-Trimethylbenzene	ND ug/L				08/26/21 12:00	08/26/21 16:0			
1,3,5-Trimethylbenzene	ND ug/L			AH14583		08/26/21 16:0			
Vinyl chloride	ND ug/L				08/26/21 12:00	08/26/21 16:0			

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501 Project Number: Round 3 ASR Water Quality Baseline

	Result	Reporting Limit Dil	lution	Batch	Prepared	Analyzed	ELAP#	Method	Note
3123 (21H2617-02)		Sample Type: Wa	nter		Sampled	: 08/18/21 12:0)0		
Volatile Organic Compounds by EPA Method	1 524.2 (cont'd)								
m,p-Xylene	ND ug/L	0.50	1	AH14583	08/26/21 12:00	08/26/21 16:0	5 1551	EPA 524.2	
o-Xylene	ND ug/L	0.50	1	AH14583	08/26/21 12:00	08/26/21 16:0	5 1551	EPA 524.2	
Xylenes (total)	ND ug/L	0.50	1	AH14583	08/26/21 12:00	08/26/21 16:0	5 1551	EPA 524.2	
Trihalomethanes (total)	ND ug/L	0.50	1	AH14583	08/26/21 12:00	08/26/21 16:0	5 1551	EPA 524.2	
Surrogate: Bromofluorobenzene	112 %	70-130		AH14583	08/26/21 12:00	08/26/21 16:0	5 1551	EPA 524.2	
Surrogate: Dibromofluoromethane	94.5 %	70-130		AH14583	08/26/21 12:00	08/26/21 16:0	5 1551	EPA 524.2	
Surrogate: Toluene-d8	100 %	70-130		AH14583	08/26/21 12:00	08/26/21 16:0	5 1551	EPA 524.2	

Reported:

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215 Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501 09/24/21 14:03 Project Number: Round 3 ASR Water Quality Baseline

Metals by EPA 200 Series Methods - Quality Control

		Reporting		Spike	Source		%REC		RPD					
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag				
Batch AH14395 - General Prep														
Blank (AH14395-BLK1)				Prepared &	Analyzed:	08/23/21								
Chromium, hexavalent	ND	1.0	ug/L											
LCS (AH14395-BS1)				Prepared &	Analyzed:	08/23/21								
Chromium, hexavalent	9.27	1.0	ug/L	10.0		92.7	90-110							
Duplicate (AH14395-DUP1)	Sour	ce: 21H260	4-01	Prepared &	Analyzed:	08/23/21								
Chromium, hexavalent	1.96	1.0	ug/L		2.00			2.07	20					
Matrix Spike (AH14395-MS1)	Sour	ce: 21H260	4-01	Prepared &	Analyzed:									
Chromium, hexavalent	10.9	1.0	ug/L	10.0	2.00	88.6	90-110			QM-07				
Matrix Spike Dup (AH14395-MSD1)	Sour	Source: 21H2604-01 Prej				Prepared & Analyzed: 08/23/21								
Chromium, hexavalent	10.8	1.0	ug/L	10.0	2.00	87.7	90-110	0.804	20	QM-07				
Batch AH14695 - Metals Digest														
Blank (AH14695-BLK1)				Prepared: 08/31/21 Analyzed: 09/03/21										
Calcium	ND	1.0	mg/L											
Magnesium	ND	1.0	mg/L											
LCS (AH14695-BS1)				Prepared: (08/31/21 A	nalyzed: 09	/03/21							
Calcium	8.45	1.0	mg/L	8.00		106	85-115							
Magnesium	8.88	1.0	mg/L	8.00		111	85-115							
Duplicate (AH14695-DUP1)	Sour	ce: 21H264	0-04	Prepared: (08/31/21 A	nalyzed: 09	/03/21							
Calcium	5.03	1.0	mg/L		5.06			0.681	20					
Magnesium	1.08	1.0	mg/L		1.09			0.428	20					

Reported:

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215 Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501 09/24/21 14:03 Project Number: Round 3 ASR Water Quality Baseline

Metals by EPA 200 Series Methods - Quality Control

	•			_	•					
Analyte(s)	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AH14695 - Metals Digest										
Matrix Spike (AH14695-MS1)	Soul	rce: 21H264	0-04	Prepared: (08/31/21 A	nalyzed: 09	9/03/21			
Calcium	13.5	1.0	mg/L	8.00	5.06	106	70-130			
Magnesium	9.94	1.0	mg/L	8.00	1.09	111	70-130			
Matrix Spike (AH14695-MS2)	Sou	rce: 21H267	5-03	Prepared: (08/31/21 A	nalyzed: 09	9/03/21			
Calcium	14.9	1.0	mg/L	8.00	5.89	112	70-130			
Magnesium	11.6	1.0	mg/L	8.00	2.41	115	70-130			
Matrix Spike Dup (AH14695-MSD1)	Sou	rce: 21H264	0-04	Prepared: (08/31/21 A	nalyzed: 09	9/03/21			
Calcium	13.8	1.0	mg/L	8.00	5.06	109	70-130	1.84	20	
Magnesium	9.83	1.0	mg/L	8.00	1.09	109	70-130	1.10	20	
Batch AI13078 - NB EPA 200 series										
Blank (AI13078-BLK1)				Prepared: (09/01/21 A	nalyzed: 09	9/03/21			
Silica (SiO2)	ND	1.0	mg/L							
LCS (AI13078-BS1)				Prepared: (09/01/21 A	nalyzed: 09	9/03/21			
Silica (SiO2)	5.13	1.0	mg/L	5.35		95.9	0-200			
LCS Dup (AI13078-BSD1)				Prepared: (09/01/21 A	nalyzed: 09	0/03/21			
Silica (SiO2)	5.03	1.0	mg/L	5.35		94.0	0-200	1.90	200	
Matrix Spike (AI13078-MS1)	Sour	rce: 21H281	7-01	Prepared: (09/01/21 A	nalyzed: 09	9/03/21			
Silica (SiO2)	67.2	1.0	mg/L	5.35	73.9	NR	0-200			QM-0

Alpha Analytical Laboratories, Inc.

email: clientservices@alpha-labs.com

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501 Project Number: Round 3 ASR Water Quality Baseline

Reported: 09/24/21 14:03

Metals by EPA Method 200.8 ICP/MS - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AH14675 - EPA 200.8										
Blank (AH14675-BLK1)				Prepared: (08/27/21 A	nalyzed: 08	8/30/21			
Cobalt	ND	0.10	ug/L							
Uranium	ND	1.0	pCi/l							
LCS (AH14675-BS1)				Prepared: (08/27/21 A	analyzed: 08	8/30/21			
Cobalt	21.4	0.10	ug/L	20.0		107	85-115			
Uranium	13.3	1.0	pCi/l	13.4		99.1	85-115			
Duplicate (AH14675-DUP1)	Sou	rce: 21H226	1-01	Prepared: (08/27/21 A	analyzed: 08	8/30/21			
Cobalt	ND	0.40	ug/L		ND			16.9	20	R-01
Uranium	ND	1.0	pCi/l		ND				20	
Matrix Spike (AH14675-MS1)	Sou	rce: 21H226	1-01	Prepared: (08/27/21 A	analyzed: 08	8/30/21			
Cobalt	21.0	0.40	ug/L	20.0	ND	104	70-130			
Uranium	13.3	1.0	pCi/l	13.4	ND	99.3	70-130			
Matrix Spike (AH14675-MS2)	Sou	rce: 21H266	8-02	Prepared: (08/27/21 A	nalyzed: 08	3/30/21			
Cobalt	20.6	0.40	ug/L	20.0	ND	103	70-130			
Uranium	12.9	1.0	pCi/l	13.4	ND	96.1	70-130			
Matrix Spike Dup (AH14675-MSD1)	Sou	rce: 21H226	1-01	Prepared: (08/27/21 A	nalyzed: 08	3/30/21			
Cobalt	20.4	0.40	ug/L	20.0	ND	101	70-130	2.94	20	
Uranium	13.0	1.0	pCi/l	13.4	ND	97.4	70-130	1.94	20	

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501 Project Number: Round 3 ASR Water Quality Baseline

Reported: 09/24/21 14:03

Conventional Chemistry Parameters by APHA/EPA Methods - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AH14594 - General Prep										
Blank (AH14594-BLK1)				Prepared &	Analyzed:	08/31/21				
Total Organic Carbon	ND	1.00	mg/L							
LCS (AH14594-BS1)				Prepared &	Analyzed:	08/31/21				
Total Organic Carbon	9.27	1.00	mg/L	10.0		92.7	85-115			
LCS Dup (AH14594-BSD1)				Prepared &	z Analyzed:	08/31/21				
Total Organic Carbon	9.28	1.00	mg/L	10.0		92.8	85-115	0.141	20	
Duplicate (AH14594-DUP1)	Sour	ce: 21H242	8-02	Prepared &	Analyzed:	08/31/21				
Total Organic Carbon	ND	1.00	mg/L		ND			0.838	20	
Matrix Spike (AH14594-MS1)	Sour	ce: 21H242	8-02	Prepared &	Analyzed:	08/31/21				
Total Organic Carbon	10.1	1.00	mg/L	10.0	ND	92.0	70-130			
Matrix Spike Dup (AH14594-MSD1)	Sour	ce: 21H242	8-02	Prepared &	Analyzed:	08/31/21				
Total Organic Carbon	10.2	1.00	mg/L	10.0	ND	93.5	70-130	1.44	20	
Batch AH14650 - General Prep										
Blank (AH14650-BLK1)				Prepared &	Analyzed:	08/27/21				
Phosphorus, total	ND	0.040	mg/L							
LCS (AH14650-BS1)				Prepared &	z Analyzed:	08/27/21				
Phosphorus, total	0.195	0.040	mg/L	0.200		97.5	85-115			
Duplicate (AH14650-DUP1)	Sour	ce: 21H232	6-01	Prepared &	z Analyzed:	08/27/21				
Phosphorus, total	ND	0.040	mg/L		ND			2.67	20	

Ammonia as NH3

11.7

0.50

mg/L

email: clientservices@alpha-labs.com

85-115

1.84

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215 Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501 Project Number: Round 3 ASR Water Quality Baseline 09/24/21 14:03

Reporting Result Limit Units		Spike	Source	%REC			RPD		
Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag	
e: 21H232	6-01	Prepared &	Analyzed:	08/27/21					
0.040	mg/L	0.200	ND	98.0	70-130				
e: 21H261	7-01	Prepared &	Analyzed:	08/27/21					
0.040	mg/L	0.200	0.0790	94.5	70-130				
e: 21H232	6-01	Prepared &	Analyzed:	08/27/21					
0.040	mg/L	0.200	ND	97.0	70-130	0.858	20		
		Prepared: 0	8/31/21 Ar	nalyzed: 09	/03/21				
5	mg/L								
		Prepared &	Analyzed:	09/07/21					
0.50	mg/L	6.10		101	90-110				
		Prepared &	Analyzed:	09/07/21					
0.50	mg/L	6.10		94.2	90-110	7.13	20		
e: 21H337	2-01	Prepared &	Analyzed:	09/07/21					
0.50	mg/L	12.2	ND	94.2	85-115				
	2-01	Prepared &	Analyzed	09/07/21					
		0.50 mg/L ce: 21H3372-01	Ü						

12.2

ND

96.0

Reported:

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501

Project Number: Round 3 ASR Water Quality Baseline

Reported: 09/24/21 14:03

Analyte(s)	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
• ` ` ` `	resur	Limit	Cints	Level	resurt	7 UTCLE	Limits	МЪ	Limit	0
atch AH14583 - VOAs in Water GCMS										
Blank (AH14583-BLK1)				Prepared &	k Analyzed:	08/26/21				
Acetone	ND	5.0	ug/L							
Acrylonitrile	ND	5.0	ug/L							
Benzene	ND	0.50	ug/L							
Bromobenzene	ND	0.50	ug/L							
Bromochloromethane	ND	0.50	ug/L							
Bromodichloromethane	ND	1.0	ug/L							
Bromoform	ND	1.0	ug/L							
Bromomethane	ND	0.50	ug/L							
n-Butylbenzene	ND	0.50	ug/L							
sec-Butylbenzene	ND	0.50	ug/L							
ert-Butylbenzene	ND	0.50	ug/L							
Carbon disulfide	ND	0.50	ug/L							
Carbon tetrachloride	ND	0.50	ug/L							
Chlorobenzene	ND	0.50	ug/L							
Chloroethane	ND	0.50	ug/L							
Chloroform	ND	1.0	ug/L							
Chloromethane	ND	0.50	ug/L							
-Chlorotoluene	ND	0.50	ug/L							
l-Chlorotoluene	ND	0.50	ug/L							
Dibromochloromethane	ND	1.0	ug/L							
Dibromomethane	ND	0.50	ug/L							
,2-Dichlorobenzene	ND	0.50	ug/L							
,3-Dichlorobenzene	ND	0.50	ug/L							
,4-Dichlorobenzene	ND	0.50	ug/L							
Dichlorodifluoromethane	ND	0.50	ug/L							
,1-Dichloroethane	ND	0.50	ug/L							
,2-Dichloroethane	ND	0.50	ug/L							
,1-Dichloroethene	ND	0.50	ug/L							
is-1,2-Dichloroethene	ND	0.50	ug/L							
rans-1,2-Dichloroethene	ND	0.50	ug/L							
,3-Dichloropropene (total)	ND	0.50	ug/L							
,2-Dichloropropane	ND	0.50	ug/L							
,3-Dichloropropane	ND	0.50	ug/L							
2,2-Dichloropropane	ND	0.50	ug/L							
,1-Dichloropropene	ND	0.50	ug/L							

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501 Project Number: Round 3 ASR Water Quality Baseline

Reported: 09/24/21 14:03

Analyte(s)	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
	Result	Limit	Cints	Level	Result	70KEC	Limits	МЪ	Liiiit	
Batch AH14583 - VOAs in Water GCMS										
Blank (AH14583-BLK1)				Prepared &	k Analyzed:	08/26/21				
cis-1,3-Dichloropropene	ND	0.50	ug/L							
trans-1,3-Dichloropropene	ND	0.50	ug/L							
Ethylbenzene	ND	0.50	ug/L							
Hexachlorobutadiene	ND	0.50	ug/L							
Isopropylbenzene	ND	0.50	ug/L							
p-Isopropyltoluene	ND	0.50	ug/L							
Methyl ethyl ketone	ND	5.0	ug/L							
Methyl tert-butyl ether	ND	3.0	ug/L							
Methyl isobutyl ketone	ND	5.0	ug/L							
Methylene chloride	ND	0.50	ug/L							
Naphthalene	ND	0.50	ug/L							
n-Propylbenzene	ND	0.50	ug/L							
Styrene	ND	0.50	ug/L							
1,1,1,2-Tetrachloroethane	ND	0.50	ug/L							
1,1,2,2-Tetrachloroethane	ND	0.50	ug/L							
Tetrachloroethene	ND	0.50	ug/L							
Toluene	ND	0.50	ug/L							
1,2,3-Trichlorobenzene	ND	0.50	ug/L							
1,2,4-Trichlorobenzene	ND	0.50	ug/L							
1,1,1-Trichloroethane	ND	0.50	ug/L							
1,1,2-Trichloroethane	ND	0.50	ug/L							
Trichloroethene	ND	0.50	ug/L							
Trichlorofluoromethane	ND	5.0	ug/L							
Trichlorotrifluoroethane	ND	10	ug/L							
1,2,4-Trimethylbenzene	ND	0.50	ug/L							
1,3,5-Trimethylbenzene	ND	0.50	ug/L							
Vinyl chloride	ND	0.50	ug/L							
m,p-Xylene	ND	0.50	ug/L							
o-Xylene	ND	0.50	ug/L							
Xylenes (total)	ND	0.50	ug/L							
Trihalomethanes (total)	ND	0.50	ug/L							
Surrogate: Bromofluorobenzene	27.6		ug/L	25.0		110	70-130			
Surrogate: Dibromofluoromethane	24.1		ug/L	25.0		96.6	70-130			
Surrogate: Toluene-d8	26.5		ug/L	25.0		106	70-130			

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215 Alameda, CA 94501

Project: Round 3 ASR Water Quality Baseline

Project Number: Round 3 ASR Water Quality Baseline

Reported: 09/24/21 14:03

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AH14583 - VOAs in Water GCMS										
LCS (AH14583-BS1)				Prepared &	Analyzed:	08/26/21				
Acetone	16.3	5.0	ug/L	20.0		81.4	70-130			
Acrylonitrile	4.31	5.0	ug/L	5.00		86.2	70-130			
Benzene	4.24	0.50	ug/L	5.00		84.8	70-130			
Bromobenzene	4.98	0.50	ug/L	5.00		99.6	70-130			
Bromochloromethane	4.71	0.50	ug/L	5.00		94.2	70-130			
Bromodichloromethane	4.33	1.0	ug/L	5.00		86.6	70-130			
Bromoform	4.67	1.0	ug/L	5.00		93.4	70-130			
Bromomethane	3.75	0.50	ug/L	5.00		75.0	70-130			
n-Butylbenzene	4.81	0.50	ug/L	5.00		96.2	70-130			
sec-Butylbenzene	4.77	0.50	ug/L	5.00		95.4	70-130			
tert-Butylbenzene	4.73	0.50	ug/L	5.00		94.6	70-130			
Carbon disulfide	3.77	0.50	ug/L	5.00		75.4	70-130			
Carbon tetrachloride	3.99	0.50	ug/L	5.00		79.8	70-130			
Chlorobenzene	4.53	0.50	ug/L	5.00		90.6	70-130			
Chloroethane	4.05	0.50	ug/L	5.00		81.0	70-130			
Chloroform	4.18	1.0	ug/L	5.00		83.6	70-130			
Chloromethane	5.00	0.50	ug/L	5.00		100	70-130			
2-Chlorotoluene	4.87	0.50	ug/L	5.00		97.4	70-130			
4-Chlorotoluene	4.75	0.50	ug/L	5.00		95.0	70-130			
Dibromochloromethane	4.53	1.0	ug/L	5.00		90.6	70-130			
Dibromomethane	4.41	0.50	ug/L	5.00		88.2	70-130			
1,2-Dichlorobenzene	4.33	0.50	ug/L	5.00		86.6	70-130			
1,3-Dichlorobenzene	4.89	0.50	ug/L	5.00		97.8	70-130			
1,4-Dichlorobenzene	4.30	0.50	ug/L	5.00		86.0	70-130			
Dichlorodifluoromethane	4.16	0.50	ug/L	5.00		83.2	70-130			
1,1-Dichloroethane	4.09	0.50	ug/L	5.00		81.8	70-130			
1,2-Dichloroethane	4.24	0.50	ug/L	5.00		84.8	70-130			
1,1-Dichloroethene	3.88	0.50	ug/L	5.00		77.6	70-130			
trans-1,2-Dichloroethene	4.13	0.50	ug/L	5.00		82.6	70-130			
cis-1,2-Dichloroethene	4.17	0.50	ug/L	5.00		83.4	70-130			
1,2-Dichloropropane	4.20	0.50	ug/L	5.00		84.0	70-130			
1,3-Dichloropropane	4.48	0.50	ug/L	5.00		89.6	70-130			
2,2-Dichloropropane	4.24	0.50	ug/L	5.00		84.8	70-130			
1,1-Dichloropropene	3.91	0.50	ug/L	5.00		78.2	70-130			
cis-1,3-Dichloropropene	3.89	0.50	ug/L	5.00		77.8	70-130			

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501

Project Number: Round 3 ASR Water Quality Baseline

Reported: 09/24/21 14:03

Analyte(s)	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AH14583 - VOAs in Water GCMS										
LCS (AH14583-BS1)				Prepared &	Analyzed:	08/26/21				
trans-1,3-Dichloropropene	3.94	0.50	ug/L	5.00		78.8	70-130			
Ethylbenzene	4.36	0.50	ug/L	5.00		87.2	70-130			
Hexachlorobutadiene	4.52	0.50	ug/L	5.00		90.4	70-130			
Isopropylbenzene	4.86	0.50	ug/L	5.00		97.2	70-130			
p-Isopropyltoluene	4.83	0.50	ug/L	5.00		96.6	70-130			
Methyl ethyl ketone	8.86	5.0	ug/L	10.0		88.6	70-130			
Methyl tert-butyl ether	4.29	3.0	ug/L	5.00		85.8	70-130			
Methyl isobutyl ketone	8.65	5.0	ug/L	10.0		86.5	70-130			
Methylene chloride	3.62	0.50	ug/L	5.00		72.4	70-130			
Naphthalene	4.23	0.50	ug/L	5.00		84.6	70-130			
n-Propylbenzene	4.70	0.50	ug/L	5.00		94.0	70-130			
Styrene	4.57	0.50	ug/L	5.00		91.4	70-130			
1,1,1,2-Tetrachloroethane	3.68	0.50	ug/L	5.00		73.6	70-130			
1,1,2,2-Tetrachloroethane	4.31	0.50	ug/L	5.00		86.2	70-130			
Tetrachloroethene	4.63	0.50	ug/L	5.00		92.6	70-130			
Toluene	4.50	0.50	ug/L	5.00		90.0	70-130			
1,2,3-Trichlorobenzene	4.73	0.50	ug/L	5.00		94.6	70-130			
1,2,4-Trichlorobenzene	4.53	0.50	ug/L	5.00		90.6	70-130			
1,1,1-Trichloroethane	3.95	0.50	ug/L	5.00		79.0	70-130			
1,1,2-Trichloroethane	4.43	0.50	ug/L	5.00		88.6	70-130			
Trichloroethene	4.20	0.50	ug/L	5.00		84.0	70-130			
Trichlorofluoromethane	4.02	5.0	ug/L	5.00		80.4	70-130			
Trichlorotrifluoroethane	4.12	10	ug/L	5.00		82.4	70-130			
1,2,4-Trimethylbenzene	5.08	0.50	ug/L	5.00		102	70-130			
1,3,5-Trimethylbenzene	4.83	0.50	ug/L	5.00		96.6	70-130			
Vinyl chloride	5.56	0.50	ug/L	5.00		111	70-130			
m,p-Xylene	9.18	0.50	ug/L	10.0		91.8	70-130			
o-Xylene	4.74	0.50	ug/L	5.00		94.8	70-130			
Xylenes (total)	13.9	0.50	ug/L	15.0		92.8	70-130			
Surrogate: Bromofluorobenzene	28.4		ug/L	25.0		114	70-130			
Surrogate: Dibromofluoromethane	24.5		ug/L	25.0		98.1	70-130			
Surrogate: Toluene-d8	26.3		ug/L	25.0		105	70-130			

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215 Alameda, CA 94501

Project: Round 3 ASR Water Quality Baseline

Project Number: Round 3 ASR Water Quality Baseline

Reported: 09/24/21 14:03

Analyte(s)	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
•		Liiiit	Omts	Level	Result	70KLC	Limits	KI D	Limit	
atch AH14583 - VOAs in Water GCMS										
LCS Dup (AH14583-BSD1)				Prepared &	Analyzed:	08/26/21				
Acetone	15.2	5.0	ug/L	20.0		76.0	70-130	6.92	30	
Acrylonitrile	4.32	5.0	ug/L	5.00		86.4	70-130	0.232	30	
Benzene	4.49	0.50	ug/L	5.00		89.8	70-130	5.73	30	
Bromobenzene	5.14	0.50	ug/L	5.00		103	70-130	3.16	30	
Bromochloromethane	4.71	0.50	ug/L	5.00		94.2	70-130	0.00	30	
Bromodichloromethane	4.67	1.0	ug/L	5.00		93.4	70-130	7.56	30	
Bromoform	4.71	1.0	ug/L	5.00		94.2	70-130	0.853	30	
Bromomethane	3.90	0.50	ug/L	5.00		78.0	70-130	3.92	30	
n-Butylbenzene	5.02	0.50	ug/L	5.00		100	70-130	4.27	30	
ec-Butylbenzene	4.92	0.50	ug/L	5.00		98.4	70-130	3.10	30	
ert-Butylbenzene	4.95	0.50	ug/L	5.00		99.0	70-130	4.55	30	
Carbon disulfide	3.95	0.50	ug/L	5.00		79.0	70-130	4.66	30	
Carbon tetrachloride	4.26	0.50	ug/L	5.00		85.2	70-130	6.55	30	
Chlorobenzene	4.72	0.50	ug/L	5.00		94.4	70-130	4.11	30	
Chloroethane	4.36	0.50	ug/L	5.00		87.2	70-130	7.37	30	
Chloroform	4.36	1.0	ug/L	5.00		87.2	70-130	4.22	30	
Chloromethane	4.95	0.50	ug/L	5.00		99.0	70-130	1.01	30	
-Chlorotoluene	4.98	0.50	ug/L	5.00		99.6	70-130	2.23	30	
-Chlorotoluene	4.90	0.50	ug/L	5.00		98.0	70-130	3.11	30	
Dibromochloromethane	4.53	1.0	ug/L	5.00		90.6	70-130	0.00	30	
Dibromomethane	4.54	0.50	ug/L	5.00		90.8	70-130	2.91	30	
,2-Dichlorobenzene	4.46	0.50	ug/L	5.00		89.2	70-130	2.96	30	
,3-Dichlorobenzene	4.87	0.50	ug/L	5.00		97.4	70-130	0.410	30	
,4-Dichlorobenzene	4.38	0.50	ug/L	5.00		87.6	70-130	1.84	30	
Dichlorodifluoromethane	4.78	0.50	ug/L	5.00		95.6	70-130	13.9	30	
,1-Dichloroethane	4.26	0.50	ug/L	5.00		85.2	70-130	4.07	30	
,2-Dichloroethane	4.48	0.50	ug/L	5.00		89.6	70-130	5.50	30	
,1-Dichloroethene	4.11	0.50	ug/L	5.00		82.2	70-130	5.76	30	
is-1,2-Dichloroethene	4.31	0.50	ug/L	5.00		86.2	70-130	3.30	30	
rans-1,2-Dichloroethene	4.21	0.50	ug/L	5.00		84.2	70-130	1.92	30	
,2-Dichloropropane	4.47	0.50	ug/L	5.00		89.4	70-130	6.23	30	
,3-Dichloropropane	4.74	0.50	ug/L	5.00		94.8	70-130	5.64	30	
,2-Dichloropropane	4.00	0.50	ug/L	5.00		80.0	70-130	5.83	30	
,1-Dichloropropene	4.24	0.50	ug/L	5.00		84.8	70-130	8.10	30	
sis-1,3-Dichloropropene	3.97	0.50	ug/L	5.00		79.4	70-130	2.04	30	

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501

Project Number: Round 3 ASR Water Quality Baseline

Reported: 09/24/21 14:03

Analyte(s)	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Analyte(s)	Result	LIIIII	Ullits	Level	Resuit	70KEC	Limits	KPD	LIIIII	Tag
Batch AH14583 - VOAs in Water GCMS										
LCS Dup (AH14583-BSD1)				Prepared &	Analyzed:	08/26/21				
trans-1,3-Dichloropropene	4.04	0.50	ug/L	5.00		80.8	70-130	2.51	30	
Ethylbenzene	4.66	0.50	ug/L	5.00		93.2	70-130	6.65	30	
Hexachlorobutadiene	4.85	0.50	ug/L	5.00		97.0	70-130	7.04	30	
Isopropylbenzene	5.12	0.50	ug/L	5.00		102	70-130	5.21	30	
p-Isopropyltoluene	4.91	0.50	ug/L	5.00		98.2	70-130	1.64	30	
Methyl ethyl ketone	8.91	5.0	ug/L	10.0		89.1	70-130	0.563	30	
Methyl isobutyl ketone	8.97	5.0	ug/L	10.0		89.7	70-130	3.63	30	
Methyl tert-butyl ether	4.47	3.0	ug/L	5.00		89.4	70-130	4.11	30	
Methylene chloride	3.81	0.50	ug/L	5.00		76.2	70-130	5.11	30	
Naphthalene	4.33	0.50	ug/L	5.00		86.6	70-130	2.34	30	
n-Propylbenzene	4.96	0.50	ug/L	5.00		99.2	70-130	5.38	30	
Styrene	4.85	0.50	ug/L	5.00		97.0	70-130	5.94	30	
1,1,1,2-Tetrachloroethane	3.76	0.50	ug/L	5.00		75.2	70-130	2.15	30	
1,1,2,2-Tetrachloroethane	4.30	0.50	ug/L	5.00		86.0	70-130	0.232	30	
Tetrachloroethene	5.06	0.50	ug/L	5.00		101	70-130	8.88	30	
Toluene	4.76	0.50	ug/L	5.00		95.2	70-130	5.62	30	
1,2,3-Trichlorobenzene	4.89	0.50	ug/L	5.00		97.8	70-130	3.33	30	
1,2,4-Trichlorobenzene	4.69	0.50	ug/L	5.00		93.8	70-130	3.47	30	
1,1,1-Trichloroethane	4.27	0.50	ug/L	5.00		85.4	70-130	7.79	30	
1,1,2-Trichloroethane	4.59	0.50	ug/L	5.00		91.8	70-130	3.55	30	
Trichloroethene	4.40	0.50	ug/L	5.00		88.0	70-130	4.65	30	
Trichlorofluoromethane	4.22	5.0	ug/L	5.00		84.4	70-130	4.85	30	
Trichlorotrifluoroethane	4.45	10	ug/L	5.00		89.0	70-130	7.70	30	
1,2,4-Trimethylbenzene	5.15	0.50	ug/L	5.00		103	70-130	1.37	30	
1,3,5-Trimethylbenzene	4.95	0.50	ug/L	5.00		99.0	70-130	2.45	30	
Vinyl chloride	5.38	0.50	ug/L	5.00		108	70-130	3.29	30	
m,p-Xylene	9.67	0.50	ug/L	10.0		96.7	70-130	5.20	30	
o-Xylene	4.99	0.50	ug/L	5.00		99.8	70-130	5.14	30	
Xylenes (total)	14.7	0.50	ug/L	15.0		97.7	70-130	5.18	30	
Surrogate: Bromofluorobenzene	28.1		ug/L	25.0		112	70-130			
Surrogate: Dibromofluoromethane	24.0		ug/L	25.0		95.9	70-130			
Surrogate: Toluene-d8	26.3		ug/L	25.0		105	70-130			

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501 Project Number: Round 3 ASR Water Quality Baseline

Reported: 09/24/21 14:03

Analyte(s)	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AH14583 - VOAs in Water GCMS										
Matrix Spike (AH14583-MS1)	So	urce: 21H273	4-01	Prepared &	Analyzed:	08/26/21				QM-05
Acetone	16.7	5.0	ug/L	20.0	ND	83.5	70-130			
Acrylonitrile	4.54	5.0	ug/L	5.00	ND	90.8	70-130			
Benzene	5.52	0.50	ug/L	5.00	ND	110	70-130			
Bromobenzene	5.93	0.50	ug/L	5.00	ND	119	70-130			
Bromochloromethane	5.47	0.50	ug/L	5.00	ND	109	70-130			
Bromodichloromethane	4.94	1.0	ug/L	5.00	ND	98.8	70-130			
Bromoform	3.59	1.0	ug/L	5.00	ND	71.8	70-130			
Bromomethane	5.42	0.50	ug/L	5.00	ND	108	70-130			
n-Butylbenzene	6.70	0.50	ug/L	5.00	ND	134	70-130			
sec-Butylbenzene	6.89	0.50	ug/L	5.00	ND	138	70-130			
tert-Butylbenzene	6.70	0.50	ug/L	5.00	ND	134	70-130			
Carbon disulfide	5.54	0.50	ug/L	5.00	1.01	90.6	70-130			
Carbon tetrachloride	6.34	0.50	ug/L	5.00	ND	127	70-130			
Chlorobenzene	5.50	0.50	ug/L	5.00	ND	110	70-130			
Chloroethane	5.53	0.50	ug/L	5.00	ND	111	70-130			
Chloroform	5.28	1.0	ug/L	5.00	ND	106	70-130			
Chloromethane	6.01	0.50	ug/L	5.00	ND	120	70-130			
2-Chlorotoluene	6.23	0.50	ug/L	5.00	ND	125	70-130			
4-Chlorotoluene	6.02	0.50	ug/L	5.00	ND	120	70-130			
Dibromochloromethane	4.24	1.0	ug/L	5.00	ND	84.8	70-130			
Dibromomethane	5.56	0.50	ug/L	5.00	ND	111	70-130			
1,2-Dichlorobenzene	5.05	0.50	ug/L	5.00	ND	101	70-130			
1,3-Dichlorobenzene	5.79	0.50	ug/L	5.00	ND	116	70-130			
1,4-Dichlorobenzene	5.02	0.50	ug/L	5.00	ND	100	70-130			
Dichlorodifluoromethane	6.47	0.50	ug/L	5.00	ND	129	70-130			
1,1-Dichloroethane	5.35	0.50	ug/L	5.00	ND	107	70-130			
1,2-Dichloroethane	5.13	0.50	ug/L	5.00	ND	103	70-130			
1,1-Dichloroethene	6.16	0.50	ug/L	5.00	ND	123	70-130			
cis-1,2-Dichloroethene	5.30	0.50	ug/L	5.00	ND	106	70-130			
trans-1,2-Dichloroethene	5.64	0.50	ug/L	5.00	ND	113	70-130			
1,2-Dichloropropane	5.14	0.50	ug/L	5.00	ND	103	70-130			
1,3-Dichloropropane	5.08	0.50	ug/L	5.00	ND	102	70-130			
2,2-Dichloropropane	6.16	0.50	ug/L	5.00	ND	123	70-130			
1,1-Dichloropropene	6.25	0.50	ug/L	5.00	ND	125	70-130			
cis-1,3-Dichloropropene	4.06	0.50	ug/L	5.00	ND	81.2	70-130			

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501

Project Number: Round 3 ASR Water Quality Baseline

Reported: 09/24/21 14:03

Analyte(s)	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AH14583 - VOAs in Water GCMS										
Matrix Spike (AH14583-MS1)	So	urce: 21H273	4-01	Prepared &	ኔ Analyzed:	08/26/21				QM-05
trans-1,3-Dichloropropene	4.28	0.50	ug/L	5.00	ND	85.6	70-130			
Ethylbenzene	5.91	0.50	ug/L	5.00	ND	118	70-130			
Hexachlorobutadiene	6.23	0.50	ug/L	5.00	ND	125	70-130			
Isopropylbenzene	6.83	0.50	ug/L	5.00	ND	137	70-130			
p-Isopropyltoluene	6.68	0.50	ug/L	5.00	ND	134	70-130			
Methyl ethyl ketone	11.0	5.0	ug/L	10.0	ND	110	70-130			
Methyl isobutyl ketone	10.5	5.0	ug/L	10.0	ND	105	70-130			
Methyl tert-butyl ether	4.50	3.0	ug/L	5.00	ND	90.0	70-130			
Methylene chloride	4.63	0.50	ug/L	5.00	ND	92.6	70-130			
Naphthalene	4.50	0.50	ug/L	5.00	ND	90.0	70-130			
n-Propylbenzene	6.74	0.50	ug/L	5.00	ND	135	70-130			
Styrene	5.78	0.50	ug/L	5.00	ND	116	70-130			
1,1,1,2-Tetrachloroethane	4.45	0.50	ug/L	5.00	ND	89.0	70-130			
1,1,2,2-Tetrachloroethane	4.93	0.50	ug/L	5.00	ND	98.6	70-130			
Tetrachloroethene	7.12	0.50	ug/L	5.00	ND	142	70-130			
Toluene	5.95	0.50	ug/L	5.00	ND	119	70-130			
1,2,3-Trichlorobenzene	5.35	0.50	ug/L	5.00	ND	107	70-130			
1,2,4-Trichlorobenzene	5.13	0.50	ug/L	5.00	ND	103	70-130			
1,1,1-Trichloroethane	6.34	0.50	ug/L	5.00	ND	127	70-130			
1,1,2-Trichloroethane	5.05	0.50	ug/L	5.00	ND	101	70-130			
Trichloroethene	5.87	0.50	ug/L	5.00	ND	117	70-130			
Trichlorofluoromethane	6.41	5.0	ug/L	5.00	ND	128	70-130			
Trichlorotrifluoroethane	9.55	10	ug/L	5.00	ND	158	70-130			
1,2,4-Trimethylbenzene	6.42	0.50	ug/L	5.00	ND	128	70-130			
1,3,5-Trimethylbenzene	6.33	0.50	ug/L	5.00	ND	127	70-130			
Vinyl chloride	7.11	0.50	ug/L	5.00	ND	142	70-130			
m,p-Xylene	12.3	0.50	ug/L	10.0	ND	123	70-130			
o-Xylene	5.97	0.50	ug/L	5.00	ND	119	70-130			
Xylenes (total)	18.3	0.50	ug/L	15.0	ND	122	70-130			
Surrogate: Bromofluorobenzene	28.1		ug/L	25.0		112	70-130			
Surrogate: Dibromofluoromethane	24.1		ug/L	25.0		96.4	70-130			
Surrogate: Toluene-d8	25.9		ug/L	25.0		103	70-130			

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501

Project Number: Round 3 ASR Water Quality Baseline

Reported: 09/24/21 14:03

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AH14583 - VOAs in Water GCMS										
Matrix Spike (AH14583-MS2)	Sour	ce: 21H281	3-01	Prepared &	Analyzed:	08/26/21				
Acetone	17.3	5.0	ug/L	20.0	ND	86.3	70-130			
Acrylonitrile	4.76	5.0	ug/L	5.00	ND	95.2	70-130			
Benzene	5.27	0.50	ug/L	5.00	ND	105	70-130			
Bromobenzene	5.85	0.50	ug/L	5.00	ND	117	70-130			
Bromochloromethane	5.12	0.50	ug/L	5.00	ND	102	70-130			
Bromodichloromethane	4.99	1.0	ug/L	5.00	ND	99.8	70-130			
Bromoform	4.22	1.0	ug/L	5.00	ND	84.4	70-130			
Bromomethane	5.03	0.50	ug/L	5.00	ND	101	70-130			
n-Butylbenzene	6.35	0.50	ug/L	5.00	ND	127	70-130			
sec-Butylbenzene	6.37	0.50	ug/L	5.00	ND	127	70-130			
tert-Butylbenzene	6.46	0.50	ug/L	5.00	ND	129	70-130			
Carbon disulfide	5.35	0.50	ug/L	5.00	ND	107	70-130			
Carbon tetrachloride	6.31	0.50	ug/L	5.00	ND	126	70-130			
Chlorobenzene	5.35	0.50	ug/L	5.00	ND	107	70-130			
Chloroethane	5.07	0.50	ug/L	5.00	ND	101	70-130			
Chloroform	5.10	1.0	ug/L	5.00	ND	102	70-130			
Chloromethane	5.76	0.50	ug/L	5.00	ND	115	70-130			
2-Chlorotoluene	5.86	0.50	ug/L	5.00	ND	117	70-130			
4-Chlorotoluene	5.68	0.50	ug/L	5.00	ND	114	70-130			
Dibromochloromethane	4.40	1.0	ug/L	5.00	ND	88.0	70-130			
Dibromomethane	4.96	0.50	ug/L	5.00	ND	99.2	70-130			
1,2-Dichlorobenzene	4.80	0.50	ug/L	5.00	ND	96.0	70-130			
1,3-Dichlorobenzene	5.59	0.50	ug/L	5.00	ND	112	70-130			
1,4-Dichlorobenzene	4.90	0.50	ug/L	5.00	ND	98.0	70-130			
Dichlorodifluoromethane	6.48	0.50	ug/L	5.00	ND	130	70-130			
1,1-Dichloroethane	5.17	0.50	ug/L	5.00	ND	103	70-130			
1,2-Dichloroethane	4.82	0.50	ug/L	5.00	ND	96.4	70-130			
1,1-Dichloroethene	5.78	0.50	ug/L	5.00	ND	116	70-130			
trans-1,2-Dichloroethene	5.38	0.50	ug/L	5.00	ND	108	70-130			
cis-1,2-Dichloroethene	5.13	0.50	ug/L	5.00	ND	103	70-130			
1,2-Dichloropropane	4.84	0.50	ug/L	5.00	ND	96.8	70-130			
1,3-Dichloropropane	5.03	0.50	ug/L	5.00	ND	101	70-130			
2,2-Dichloropropane	6.25	0.50	ug/L	5.00	ND	125	70-130			
1,1-Dichloropropene	6.02	0.50	ug/L	5.00	ND	120	70-130			
cis-1,3-Dichloropropene	4.16	0.50	ug/L	5.00	ND	83.2	70-130			

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501

Project Number: Round 3 ASR Water Quality Baseline

Reported: 09/24/21 14:03

Analyte(s)	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AH14583 - VOAs in Water GCMS										
Matrix Spike (AH14583-MS2)	So	urce: 21H281	3-01	Prepared &	ኔ Analyzed:	08/26/21				
trans-1,3-Dichloropropene	4.31	0.50	ug/L	5.00	ND	86.2	70-130			
Ethylbenzene	5.79	0.50	ug/L	5.00	ND	116	70-130			
Hexachlorobutadiene	6.07	0.50	ug/L	5.00	ND	121	70-130			
Isopropylbenzene	6.50	0.50	ug/L	5.00	ND	130	70-130			
p-Isopropyltoluene	6.40	0.50	ug/L	5.00	ND	128	70-130			
Methyl ethyl ketone	9.74	5.0	ug/L	10.0	ND	97.4	70-130			
Methyl isobutyl ketone	10.0	5.0	ug/L	10.0	ND	100	70-130			
Methyl tert-butyl ether	4.59	3.0	ug/L	5.00	ND	91.8	70-130			
Methylene chloride	4.32	0.50	ug/L	5.00	ND	86.4	70-130			
Naphthalene	4.52	0.50	ug/L	5.00	ND	90.4	70-130			
n-Propylbenzene	6.47	0.50	ug/L	5.00	ND	129	70-130			
Styrene	5.77	0.50	ug/L	5.00	ND	115	70-130			
1,1,1,2-Tetrachloroethane	4.19	0.50	ug/L	5.00	ND	83.8	70-130			
1,1,2,2-Tetrachloroethane	4.84	0.50	ug/L	5.00	ND	96.8	70-130			
Tetrachloroethene	6.42	0.50	ug/L	5.00	ND	128	70-130			
Toluene	5.69	0.50	ug/L	5.00	ND	114	70-130			
1,2,3-Trichlorobenzene	5.16	0.50	ug/L	5.00	ND	103	70-130			
1,2,4-Trichlorobenzene	5.06	0.50	ug/L	5.00	ND	101	70-130			
1,1,1-Trichloroethane	6.07	0.50	ug/L	5.00	ND	121	70-130			
1,1,2-Trichloroethane	4.94	0.50	ug/L	5.00	ND	98.8	70-130			
Trichloroethene	5.60	0.50	ug/L	5.00	ND	112	70-130			
Trichlorofluoromethane	6.49	5.0	ug/L	5.00	ND	130	70-130			
Trichlorotrifluoroethane	7.01	10	ug/L	5.00	ND	140	70-130			QM-05
1,2,4-Trimethylbenzene	6.26	0.50	ug/L	5.00	ND	125	70-130			
1,3,5-Trimethylbenzene	6.16	0.50	ug/L	5.00	ND	123	70-130			
Vinyl chloride	7.20	0.50	ug/L	5.00	ND	144	70-130			QM-05
m,p-Xylene	12.0	0.50	ug/L	10.0	ND	120	70-130			
o-Xylene	5.84	0.50	ug/L	5.00	ND	117	70-130			
Xylenes (total)	17.9	0.50	ug/L	15.0	ND	119	70-130			
Surrogate: Bromofluorobenzene	28.0		ug/L	25.0		112	70-130			
Surrogate: Dibromofluoromethane	23.9		ug/L	25.0		95.5	70-130			
Surrogate: Toluene-d8	25.4		ug/L	25.0		102	70-130			

Alpha Analytical Laboratories, Inc.

email: clientservices@alpha-labs.com

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501

Project Number: Round 3 ASR Water Quality Baseline

Reported: 09/24/21 14:03

Notes and Definitions

QM-05 The spike recovery was outside acceptance limits for the MS and/or MSD due to matrix interference. The LCS and/or LCSD

were within acceptance limits showing that the laboratory is in control and the data is acceptable.

QM-07 The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS

recovery.

R-01 The Reporting Limit for this analyte has been raised to account for matrix interference.

ND Analyte NOT DETECTED at or above the reporting limit

dry Sample results reported on a dry weight basis

REC Recovery

RPD Relative Percent Difference

September 15, 2021

Vista Work Order No. 2108221

Mr. David S. Pingatore Alpha Analytical Laboratories, Inc 208 Mason Street Ukiah, CA 95482

Dear Mr. Pingatore,

Enclosed are the results for the sample set received at Vista Analytical Laboratory on August 24, 2021 under your Project Name '21H2617'.

Vista Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-673-1520 or by email at jfox@vista-analytical.com.

Thank you for choosing Vista as part of your analytical support team.

Sincerely,

Jamie Fox

Laboratory Director

Vista Analytical Laboratory certifies that the report herein meets all the requirements set forth by NELAP for those applicable test methods. Results relate only to the samples as received by the laboratory. This report should not be reproduced except in full without the written approval of Vista.

Vista Analytical Laboratory 1104 Windfield Way El Dorado Hills, CA 95762 ph: 916-673-1520 fx: 916-673-0106 www.vista-analytical.com

Work Order 2108221 Page 1 of 16

Vista Work Order No. 2108221 Case Narrative

Sample Condition on Receipt:

Two drinking water samples were received and stored securely in accordance with Vista standard operating procedures and EPA methodology. The samples were received in good condition and within the method temperature requirements.

Analytical Notes:

EPA Method 537.1

The samples were extracted and analyzed for a selected list of PFAS using EPA Method 537.1.

Holding Times

The samples were extracted and analyzed within the method hold times.

Quality Control

The Initial Calibration and Continuing Calibration Verifications met the method acceptance criteria.

A Laboratory Fortified Blank (LFB) and Laboratory Reagent Blank (LRB) were extracted and analyzed with the preparation batch. No analytes were detected in the LRB above the method specified limits. The LFB recoveries were within the method acceptance criteria.

The surrogate recoveries for all QC and field samples were within the acceptance criteria.

Work Order 2108221 Page 2 of 16

TABLE OF CONTENTS

Case Narrative	1
Table of Contents	3
Sample Inventory	4
Analytical Results	5
Qualifiers	10
Certifications	11
Sample Receipt	14

Work Order 2108221 Page 3 of 16

Sample Inventory Report

Vista Sample ID	Client Sample ID	Sampled	Received	Components/Containers
				Polypropylene, 250mL
2108221-02	3123	18-Aug-21 12:00	24-Aug-21 11:19	Polypropylene, 250mL
				Polypropylene 250ml

Vista Project: 2108221 Client Project: 21H2617

Work Order 2108221 Page 4 of 16

ANALYTICAL RESULTS

Work Order 2108221 Page 5 of 16

Sample ID: L	RB									EPA Metho	d 537.1
Client Data					Lab	oratory Data					
Name: Project:	Alpha Analytical Laboratories, Inc 21H2617	Matrix:	Aqueous		Lab	Sample:	B1H0212-	BLK1	Column:	BEH C18	
Analyte	CAS Number	Conc. (ng/L)	MDL		RL	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
PFBS	375-73-5	ND	0.704	2	.00		B1H0212	27-Aug-21	0.250 L	29-Aug-21 05:55	1
PFHxA	307-24-4	ND	0.961	2	.00		B1H0212	27-Aug-21	0.250 L	29-Aug-21 05:55	1
HFPO-DA	13252-13-6	ND	0.847	2	.00		B1H0212	27-Aug-21	0.250 L	29-Aug-21 05:55	1
PFHpA	375-85-9	ND	0.790	2	.00		B1H0212	27-Aug-21	0.250 L	29-Aug-21 05:55	1
ADONA	919005-14-4	ND	0.762	2	.00		B1H0212	27-Aug-21	0.250 L	29-Aug-21 05:55	1
PFHxS	355-46-4	ND	0.803	2	.00		B1H0212	27-Aug-21	0.250 L	29-Aug-21 05:55	1
PFOA	335-67-1	ND	0.745	2	.00		B1H0212	27-Aug-21	0.250 L	29-Aug-21 05:55	1
PFNA	375-95-1	ND	0.878	2	.00		B1H0212	27-Aug-21	0.250 L	29-Aug-21 05:55	1
PFOS	1763-23-1	ND	1.31	2	.00		B1H0212	27-Aug-21	0.250 L	29-Aug-21 05:55	1
9C1-PF3ONS	756426-58-1	ND	0.866	2	.00		B1H0212	27-Aug-21	0.250 L	29-Aug-21 05:55	1
PFDA	335-76-2	ND	0.629	2	.00		B1H0212	27-Aug-21	0.250 L	29-Aug-21 05:55	1
MeFOSAA	2355-31-9	ND	0.483	2	.00		B1H0212	27-Aug-21	0.250 L	29-Aug-21 05:55	1
EtFOSAA	2991-50-6	ND	0.902	2	.00		B1H0212	27-Aug-21	0.250 L	29-Aug-21 05:55	1
PFUnA	2058-94-8	ND	0.682	2	.00		B1H0212	27-Aug-21	0.250 L	29-Aug-21 05:55	1
PFDoA	307-55-1	ND	0.727	2	.00		B1H0212	27-Aug-21	0.250 L	29-Aug-21 05:55	1
PFTrDA	72629-94-8	ND	0.766	2	.00		B1H0212	27-Aug-21	0.250 L	29-Aug-21 05:55	1
11Cl-PF3OUdS	763051-92-9	ND	1.18	2	.00		B1H0212	27-Aug-21	0.250 L	29-Aug-21 05:55	1
PFTeDA	376-06-7	ND	0.781	2	.00		B1H0212	27-Aug-21	0.250 L	29-Aug-21 05:55	1
Labeled Standar	rds Type	% Recovery		Limits		Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
13C2-PFHxA	SURR	107		70 - 130			B1H0212	27-Aug-21	0.250 L	29-Aug-21 05:55	1
13C2-PFDA	SURR	101		70 - 130			B1H0212	27-Aug-21	0.250 L	29-Aug-21 05:55	1
d5-EtFOSAA	SURR	88.6		70 - 130			B1H0212	27-Aug-21	0.250 L	29-Aug-21 05:55	1
13C3-HFPO-DA	SURR	100		70 - 130			B1H0212	27-Aug-21	0.250 L	29-Aug-21 05:55	1

MDL - Method Detection Limit

RL - Reporting limit

Results reported to MDL.

When reported, PFHxS, PFOA, PFOS, MeFOSAA and EtFOSAA include both linear and branched isomers. Only the linear isomer is reported for all other analytes.

Work Order 2108221 Page 6 of 16

Sample ID: LFB EPA Method 537.1

Client Data Laboratory Data

Alpha Analytical Laboratories, Inc 21H2617 Name: B1H0212-BS1 Column: BEH C18 Matrix: Aqueous Lab Sample:

Project:

F10ject. 21112017											
Analyte	CAS Number	Amt Found (ng/L)	Spike Amt	% Rec	Limits	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
PFBS	375-73-5	15.4	14.2	109	50 - 150		B1H0212	27-Aug-21	0.250 L	29-Aug-21 06:06	1
PFHxA	307-24-4	16.4	16.0	103	50 - 150		B1H0212	27-Aug-21	$0.250~\mathrm{L}$	29-Aug-21 06:06	1
HFPO-DA	13252-13-6	16.7	16.0	104	50 - 150		B1H0212	27-Aug-21	0.250 L	29-Aug-21 06:06	1
PFHpA	375-85-9	17.5	16.0	109	50 - 150		B1H0212	27-Aug-21	$0.250~\mathrm{L}$	29-Aug-21 06:06	1
ADONA	919005-14-4	15.1	15.1	99.6	50 - 150		B1H0212	27-Aug-21	0.250 L	29-Aug-21 06:06	1
PFHxS	355-46-4	15.2	14.6	105	50 - 150		B1H0212	27-Aug-21	$0.250~\mathrm{L}$	29-Aug-21 06:06	1
PFOA	335-67-1	16.3	16.0	102	50 - 150		B1H0212	27-Aug-21	0.250 L	29-Aug-21 06:06	1
PFNA	375-95-1	15.1	16.0	94.5	50 - 150		B1H0212	27-Aug-21	0.250 L	29-Aug-21 06:06	1
PFOS	1763-23-1	15.3	14.8	103	50 - 150		B1H0212	27-Aug-21	0.250 L	29-Aug-21 06:06	1
9CI-PF3ONS	756426-58-1	14.6	14.9	98.3	50 - 150		B1H0212	27-Aug-21	0.250 L	29-Aug-21 06:06	1
PFDA	335-76-2	17.1	16.0	107	50 - 150		B1H0212	27-Aug-21	0.250 L	29-Aug-21 06:06	1
MeFOSAA	2355-31-9	16.8	16.0	105	50 - 150		B1H0212	27-Aug-21	0.250 L	29-Aug-21 06:06	1
EtFOSAA	2991-50-6	13.9	16.0	86.9	50 - 150		B1H0212	27-Aug-21	0.250 L	29-Aug-21 06:06	1
PFUnA	2058-94-8	15.4	16.0	96.4	50 - 150		B1H0212	27-Aug-21	0.250 L	29-Aug-21 06:06	1
PFDoA	307-55-1	15.4	16.0	96.2	50 - 150		B1H0212	27-Aug-21	0.250 L	29-Aug-21 06:06	1
PFTrDA	72629-94-8	14.2	16.0	88.6	50 - 150		B1H0212	27-Aug-21	0.250 L	29-Aug-21 06:06	1
11Cl-PF3OUdS	763051-92-9	15.2	15.0	101	50 - 150		B1H0212	27-Aug-21	0.250 L	29-Aug-21 06:06	1
PFTeDA	376-06-7	14.3	16.0	89.4	50 - 150		B1H0212	27-Aug-21	0.250 L	29-Aug-21 06:06	1
Labeled Standards		Type		% Rec	Limits	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
13C2-PFHxA		SURR		105	70 - 130		B1H0212	27-Aug-21	0.250 L	29-Aug-21 06:06	1
13C2-PFDA		SURR		99.7	70 - 130		B1H0212	27-Aug-21	0.250 L	29-Aug-21 06:06	1
d5-EtFOSAA		SURR		87.5	70 - 130		B1H0212	27-Aug-21	$0.250~\mathrm{L}$	29-Aug-21 06:06	1
13C3-HFPO-DA		SURR		94.9	70 - 130		B1H0212	27-Aug-21	0.250 L	29-Aug-21 06:06	1

Page 7 of 16 Work Order 2108221

RL - Reporting limit Results reported to MDL. MDL - Method Detection Limit When reported, PFHxS, PFOA, PFOS, MeFOSAA and EtFOSAA include both linear and branched isomers. Only the linear isomer is reported for all other

Work Order 2108221 Page 8 of 16

analytes.

Sample ID: 3	3123										EPA Metho	d 537.1
Client Data Name: Project: Location:	Alpha Analytical La 21H2617 21H2617-02	boratories, Inc	Matrix: Date Colle	Drinking V		Lab	oratory Data Sample: Received:	2108221-0 24-Aug-21		Column	BEH C18	
Analyte		CAS Number	Conc. (ng/L)	MDL		RL	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
PFBS		375-73-5	ND	0.725		2.06		B1H0212	27-Aug-21	0.243 L	29-Aug-21 10:10	1
PFHxA		307-24-4	ND	0.990		2.06		B1H0212	27-Aug-21	0.243 L	29-Aug-21 10:10	1
HFPO-DA		13252-13-6	ND	0.873		2.06		B1H0212	27-Aug-21	0.243 L	29-Aug-21 10:10	1
PFHpA		375-85-9	ND	0.814		2.06		B1H0212	27-Aug-21	0.243 L	29-Aug-21 10:10	1
ADONA		919005-14-4	ND	0.785		2.06		B1H0212	27-Aug-21	0.243 L	29-Aug-21 10:10	1
PFHxS		355-46-4	ND	0.827		2.06		B1H0212	27-Aug-21	0.243 L	29-Aug-21 10:10	1
PFOA		335-67-1	ND	0.767		2.06		B1H0212	27-Aug-21	0.243 L	29-Aug-21 10:10	1
PFNA		375-95-1	ND	0.904		2.06		B1H0212	27-Aug-21	0.243 L	29-Aug-21 10:10	1
PFOS		1763-23-1	ND	1.35		2.06		B1H0212	27-Aug-21	0.243 L	29-Aug-21 10:10	1
9Cl-PF3ONS		756426-58-1	ND	0.892		2.06		B1H0212	27-Aug-21	0.243 L	29-Aug-21 10:10	1
PFDA		335-76-2	ND	0.648		2.06		B1H0212	27-Aug-21	0.243 L	29-Aug-21 10:10	1
MeFOSAA		2355-31-9	ND	0.498		2.06		B1H0212	27-Aug-21	0.243 L	29-Aug-21 10:10	1
EtFOSAA		2991-50-6	ND	0.929		2.06		B1H0212	27-Aug-21	0.243 L	29-Aug-21 10:10	1
PFUnA		2058-94-8	ND	0.703		2.06		B1H0212	27-Aug-21	0.243 L	29-Aug-21 10:10	1
PFDoA		307-55-1	ND	0.749		2.06		B1H0212	27-Aug-21	0.243 L	29-Aug-21 10:10	1
PFTrDA		72629-94-8	ND	0.789		2.06		B1H0212	27-Aug-21	0.243 L	29-Aug-21 10:10	1
11Cl-PF3OUdS		763051-92-9	ND	1.22		2.06		B1H0212	27-Aug-21	0.243 L	29-Aug-21 10:10	1
PFTeDA		376-06-7	ND	0.805		2.06		B1H0212	27-Aug-21	0.243 L	29-Aug-21 10:10	1
Labeled Standa	ards	Type	% Recovery		Limits		Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
13C2-PFHxA		SURR	106		70 - 130			B1H0212	27-Aug-21	0.243 L	29-Aug-21 10:10	1
13C2-PFDA		SURR	97.2		70 - 130			B1H0212	27-Aug-21	0.243 L	29-Aug-21 10:10	1
d5-EtFOSAA		SURR	90.1		70 - 130			B1H0212	27-Aug-21	0.243 L	29-Aug-21 10:10	1
13C3-HFPO-DA	Λ	SURR	98.4		70 - 130			B1H0212	27-Aug-21	0.243 L	29-Aug-21 10:10	1

MDL - Method Detection Limit

RL - Reporting limit

Results reported to MDL.

When reported, PFHxS, PFOA, PFOS, MeFOSAA and EtFOSAA **include both** linear and branched isomers. Only the linear isomer is reported for all other **analytes**.

Work Order 2108221 Page 9 of 16

B This compound was also detected in the method blank

Conc. Concentration

CRS Cleanup Recovery Standard

D Dilution

DL Detection Limit

E The associated compound concentration exceeded the calibration range of the

instrument

H Recovery and/or RPD was outside laboratory acceptance limits

I Chemical Interference

IS Internal Standard

J The amount detected is below the Reporting Limit/LOQ

LOD Limit of Detection

LOQ Limit of Quantitation

M Estimated Maximum Possible Concentration (CA Region 2 projects only)

MDL Method Detection Limit

NA Not applicable

ND Not Detected

OPR Ongoing Precision and Recovery sample

P The reported concentration may include contribution from chlorinated diphenyl ether(s).

Q The ion transition ratio is outside of the acceptance criteria.

RL Reporting Limit

RL For 537.1, the reported RLs are the MRLs.

TEQ Toxic Equivalency, sum of the toxic equivalency factors (TEF) multiplied by the

sample concentrations.

TEQMax TEQ calculation that uses the detection limit as the concentration for non-detects

TEQMin TEQ calculation that uses zero as the concentration for non-detects

TEQRisk TEQ calculation that uses ½ the detection limit as the concentration for non-

detects

U Not Detected (specific projects only)

* See Cover Letter

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

Work Order 2108221 Page 10 of 16

Vista Analytical Laboratory Certifications

Accrediting Authority	Certificate Number
Alaska Department of Environmental Conservation	17-013
Arkansas Department of Environmental Quality	21-023-0
California Department of Health – ELAP	2892
DoD ELAP - A2LA Accredited - ISO/IEC 17025:2005	3091.01
Florida Department of Health	E87777-26
Hawaii Department of Health	N/A
Louisiana Department of Environmental Quality	01977
Maine Department of Health	2020018
Massachusetts Department of Environmental Protection	M-CA413
Michigan Department of Environmental Quality	9932
Minnesota Department of Health	1980678
New Hampshire Environmental Accreditation Program	207720
New Jersey Department of Environmental Protection	CA003
New York Department of Health	11411
Ohio Environmental Protection Agency	87778
Oregon Laboratory Accreditation Program	4042-016
Pennsylvania Department of Environmental Protection	017
Texas Commission on Environmental Quality	T104704189-21-12
Vermont Department of Health	VT-4042
Virginia Department of General Services	10769
Washington Department of Ecology	C584
Wisconsin Department of Natural Resources	998036160

Current certificates and lists of licensed parameters are located in the Quality Assurance office and are available upon request.

Work Order 2108221 Page 11 of 16

NELAP Accredited Test Methods

MATRIX: Air	
Description of Test	Method
Determination of Polychlorinated p- Dioxins & Polychlorinated Dibenzofurans	EPA 23
Polychlorinated Dibenzodioxins in Ambient Air by GC/HRMS	EPA TO-9A

MATRIX: Biological Tissue	
Description of Test	Method
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution	EPA 1613B
GC/HRMS	
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue	EPA 1668A/C
by GC/HRMS	
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by	EPA 1699
HRGC/HRMS	
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans by	EPA 8280A/B
GC/HRMS	
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated	EPA
Dibenzofurans (PCDFs) by GC/HRMS	8290/8290A

MATRIX: Drinking Water	
Description of Test	Method
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution	EPA
GC/HRMS	1613/1613B
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537.1
Determination of Per- and Polyfluoroalkyl Substances in Drinking Water by	EPA 533
Isotope Dilution Anion Exchange Solid Phase Extraction and Liquid	
Chromatography/Tandem Mass Spectrometry	
Perfluorooctanesulonate (PFOS) and Perfluorooctanoate (PFOA) - Method	ISO 25101
for Unfiltered Samples Using Solid Phase Extraction and Liquid	2009
Chromatography/Mass Spectrometry	

Work Order 2108221 Page 12 of 16

MATRIX: Non-Potable Water				
Description of Test	Method			
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope	EPA 1613B			
Dilution GC/HRMS				
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A			
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue	EPA 1668A/C			
by GC/HRMS				
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS	EPA 1699			
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537			
D' ' 1 OCATIONA	ED 4 612			
Dioxin by GC/HRMS	EPA 613			
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated	EPA 8280A/B			
1 -	EFA 828UA/B			
Dibenzofurans by GC/HRMS	ED.			
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated	EPA			
Dibenzofurans (PCDFs) by GC/HRMS	8290/8290A			

MATRIX: Solids	
Description of Test	Method
Tetra-Octa Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS	EPA 1613
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS	EPA 1613B
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue by GC/HRMS	EPA 1668A/C
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS	EPA 1699
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans by GC/HRMS	EPA 8280A/B
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated Dibenzofurans (PCDFs) by GC/HRMS	EPA 8290/8290A

Work Order 2108221 Page 13 of 16

SUBCONTRACT ORDER

Alpha Analytical Laboratories, Inc.

21H2617

RECEIVING LABORATORY:

Vista Analytical

2106221 3.3°C

208 Mason St.	1104	Windfield Way	/	
Ukiah, CA 95482		orado Hills, CA		
Phone: (707)468-0401		e :(916) 673-15	520	
Fax: (707)468-5267 Project Manager: David S. Pingatore	Fax:			
Project Manager: David S. Pingatore		ns: Net 30		
Analysis	Due	Expires	Comments	
Containers Supplied:				
500mL PP Poly (Trizma) (500mL PP Poly (Triz 21H2617-02 3123 [Water] Sampled 08/18/21				
21H2017-02 3123 [Water] Sampled 06/16/21]	12:00			
537.1 Perfluorochemicals x 18 w/GenX	09/02/21 15:00	09/01/21 12:00		
	07/02/21 15:00	07/01/21 12:00		
Containers Supplied: 500mL PP Poly (Trizma) (500mL PP Poly (Triz	ma) (
Report to State				
System Name:	Employed by:			
User ID:	Sampler:			
System Number:				
System Number.				
	. 0 0			
	+80			
M	16	7 :	alial	1011
8-19-2		o and Du	1/19/21	14:15
Released By Date	Rece	ived By	9/19/21 Date	14:15
Released By Date 8/19/11	18:18	Justo B	us Vistn Brisen	14:15
	18:18		Date Date	08/24/21/11/9
Released By Date 8/19/11	Recei	Justo B	us Vistn Brisen	08/24/21/11/9
Released By Released By Date Date Date Date	Recei	ved By	us Ustin Brisen Date	08/24/21/11/9
Released By Black Date Released By Date Date	Recei	ved By	us Ustin Brisen Date	08/24/21/11/9

SENDING LABORATORY:

Alpha Analytical Laboratories, Inc.

Sample Log-In Checklist

Vista Work Orde	r#:	21062	121					age # _		of	_
Samples Arrival: Location: (
Delivered By:	08/&4/ FedEx	UPS		On Trac	: GLS	DHI		f/Rack Hand Deliver	d	Oth	er
Preservation:	lo	e		Blu	e ice		chni ce	Dry	Ice	No	ne
Temp °C: 3.4 (uncorrected) Temp °C: 3.3 (corrected) Probe used: Y N Thermome									ter ID:	IB- E) 2
		公司以				111			YES	NO	NA
Shipping Contain	ner(s) Intac	:t?							~		
Shipping Custod	y Seals Int	act?								/	/
Airbill	Trk	#564	138	52921							
Shipping Docum						_			/		
Shipping Contain	ner		Vi	sta	Client	R	etain	Re	eturn	Dis	pose
Chain of Custody	/ I Sample	Docum	nent	ation Pre	esent?				~		
Chain of Custody	/ / Sample	Docum	nent	ation Co	mplete?				\ \		
Holding Time Ac	ceptable?									<u></u>	
Logged In:	Date/Tin	ne		:	Initials:)	Loc	ation:	12-13	WY	-2
	08/24/2	11	12:	.00	U)	She	lf/Rack	: A-4	b	.Ц
COC Anomaly/Sample Acceptance Form completed?										-	

Comments:

ID.: LR - SLC

Rev No.: 6

Rev Date: 07/16/2020

Page: 1 of 1

CoC/Label Reconciliation Report WO# 2108221

LabNumber CoC Sample ID	Sample	Alias		Sample Date/Time	Container	BaseMatrix	Sample Comments
2108221-02 A 3123	21H261	7-02		18-Aug-21 12:00	Polypropylene, 250mL	Aqueous	\$ 15 M-14
2108221-02 B 3123	21H261	7-02		18-Aug-21 12:00	Polypropylene, 250mL	Aqueous	
Checkmarks indicate that information on the COC reconcil Any discrepancies are noted in the following columns.	led with the sample label.						
	Yes	No	NA	Comments:			
Sample Container Intact?	J						
Sample Custody Seals Intact?		V	V				
Adequate Sample Volume?	J						
Container Type Appropriate for Analysis(es)							
Preservation Documented: Na2S2O3 Trizma NF	H4CH3CO2 None C	ther		•			

Printed: 8/24/2021 12:06:47PM 2108221 Page I of 1

September 17, 2021

Lab ID Alpha Analytical Laboratories, Inc. : SP 2111724 Attn: Leslie Quinn Customer : 2-20626

208 Mason St. Ukiah, CA 95482

Laboratory Report

Introduction: This report package contains total of 4 pages divided into 3 sections:

Case Narrative (1 pages): An overview of the work performed at FGL.

Sample Results (2 pages): Results for each sample submitted.

Quality Control (1 page): Supporting Quality Control (QC) results.

Case Narrative

This Case Narrative pertains to the following samples:

Sample Description	Date Sampled	Date Received	FGL Lab ID#	Matrix	
21H2617-02	08/18/2021	08/24/2021	SP 2111724-002	W	

Sampling and Receipt Information: All samples were received in acceptable condition and within temperature requirements, unless noted on the Condition Upon Receipt (CUR) form. All samples arrived at 19 °C. All samples were prepared and analyzed within the method specified hold time. All samples were checked for pH if acid or base preservation is required (except for VOAs). For details of sample receipt information, please see the attached Chain of Custody and Condition Upon Receipt Form.

Quality Control: All samples were prepared and analyzed according to the following tables:

Radio QC

900.0	09/15/2021:214382 All analysis quality controls are within established criteria
II .	08/27/2021:209898 All preparation quality controls are within established criteria (performed at FGL-SP ELAP# 1573)

Certification:: I certify that this data package is in compliance with ELAP standards, both technically and for completeness, except for any conditions listed above. Release of the data contained in this data package is authorized by the Laboratory Director or his designee, as verified by the following electronic signature.

KD:MKH

Reviewed and Account By Kelly A. Dunnahoo, B.S. Digitally signed by Kelly A. Dunnahoo, B.S. Title: Laboratory Director Date: 2021-09-17

Page 1 of 4

Analytical Chemists

September 17, 2021 Lab ID : SP 2111724-001

Customer ID : 2-20626

Alpha Analytical Laboratories, Inc.

Attn: Leslie Quinn 208 Mason St. Ukiah, CA 95482

Sampled By : Not Available

Received On : August 24, 2021-10:15

Sampled On : August 18, 2021-08:38

: Water Matrix

: 21H2617 Project

Sample Result - Radio

ND=Non-Detected. PQL=Practical Quantitation Limit. * PQL adjusted for dilution.

MDA = Minimum Detectable Activity (Calculated at the 95% confidence level) = Data utilized by DHS to determine matrix interference. MCL / AL = Maximum Contamination Level / Action Level. Alpha's Action Level of 5 pCi/L is based on the Assigned Value (AV). AV = Assigned Value(Gross Alpha Result + (0.84 x Error)). CCR Section 64442: Drinking Water Compliance Note: Do the following If Gross Alpha's (AV) exceeds 5 pCi/L run Uranium. If Gross Alpha's (AV) minus Uranium exceeds 5 pCi/L run Radium 226.

Drinking Water Compliance:

Gross Alpha (AV) minus Uranium is less than or equal to 15 pCi/L Uranium is less than or equal to 20 pCi/L Radium 226 + Radium 228 is less than or equal to 5 pCi/L

Note: Samples are held for 3-6 months prior to disposal.

Lab ID September 17, 2021 : SP 2111724-002

Customer ID : 2-20626

Alpha Analytical Laboratories, Inc.

Sampled On : August 18, 2021-12:00 Attn: Leslie Quinn 208 Mason St. Sampled By : Not Available

Ukiah, CA 95482 Received On : August 24, 2021-10:15

> : Water Matrix

Description : 21H2617-02 Project : 21H2617

Sample Result - Radio

Constituent	Result ± Error MDA		MDA Units MCL/AL Sample		Sample Preparation		Sampl	e Analysis
Constituent	Result ± Ellor	MDA	Omis	WICL/AL	Method	Date/ID	Method	Date/ID
Radio Chemistry								
Gross Alpha	2.10 ± 1.81	2.59	pCi/L	15/5	900.0	08/27/21-07:30 2P2109898	900.0	09/15/21-13:11 2A2114382
Gross Beta	1.97 ± 1.17	1.44	pCi/L	50	900.0	08/27/21-07:30 2P2109898	900.0	09/15/21-13:11 2A2114382

ND=Non-Detected. PQL=Practical Quantitation Limit. * PQL adjusted for dilution.

MDA = Minimum Detectable Activity (Calculated at the 95% confidence level) = Data utilized by DHS to determine matrix interference. MCL / AL = Maximum Contamination Level / Action Level. Alpha's Action Level of 5 pCi/L is based on the Assigned Value (AV). AV = Assigned Value(Gross Alpha Result + (0.84 x Error)). CCR Section 64442: Drinking Water Compliance Note: Do the following If Gross Alpha's (AV) exceeds 5 pCi/L run Uranium. If Gross Alpha's (AV) minus Uranium exceeds 5 pCi/L run Radium 226.

Drinking Water Compliance:

Gross Alpha (AV) minus Uranium is less than or equal to 15 pCi/L Uranium is less than or equal to 20 pCi/L Radium 226 + Radium 228 is less than or equal to 5 pCi/L

Note: Samples are held for 3-6 months prior to disposal.

September 17, 2021 Lab ID : SP 2111724 Alpha Analytical Laboratories, Inc. : 2-20626 Customer

Quality Control - Radio

Constituent	onstituent Method		Date/ID	Туре	Units	Conc.	QC Data	DQO	Note
Radio									
Alpha		900.0	09/15/21:214382JCA	CCV CCB	cpm cpm	7347	41.9 % 0.1200	35-47 0.15	
Beta		900.0	09/15/21:214382JCA	CCV CCB	cpm cpm	7347	94.4 % 0.460	83-94 0.5	
Gross Alpha		900.0	08/27/21:209898jca (SP 2111724-001)	Blank LCS MS MSD	pCi/L pCi/L pCi/L pCi/L	201.1 201.1 201.1	0.26 78.6 % 114 % 115 %	3 75-125 60-140 60-140	
			,	MSRPD	pCi/L	201.1	0.7%	≤30	
Gross Beta		900.0	08/27/21:209898jca (SP 2111724-001)	Blank LCS MS MSD MSRPD	pCi/L pCi/L pCi/L pCi/L pCi/L	35.25 35.25 35.25 201.1	0.63 110 % 93.6 % 90.2 % 3.4%	4 84-160 80-130 80-130 ≤30	
Definition CCV CCB Blank LCS	: Continuing Calil : Method Blank -	bration Blank - Prepared to ver	tion - Analyzed to verify Analyzed to verify the sify that the preparation ample - Prepared to veri	instrument b process is no	aseline is with ot contributing	hin criteria. g contaminat	tion to the sam	•	

: Matrix Spikes - A random sample is spiked with a known amount of analyte. The recoveries are an indication of how that sample MS

matrix affects analyte recovery. : Matrix Spike Duplicate of MS/MSD pair - A random sample duplicate is spiked with a known amount of analyte. The recoveries

MSD are an indication of how that sample matrix affects analyte recovery.

: MS/MSD Relative Percent Difference (RPD) - The MS relative percent difference is an indication of precision for the preparation MSRPD

and analysis.

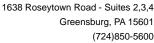
DQO Data Quality Objective - This is the criteria against which the quality control data is compared. September 17, 2021

Alpha Analytical Laboratories, Inc. Attn: Leslie Quinn 208 Mason St. Ukiah, CA 95482

Subject: Subcontract Analysis for FGL Lab No. SP 2111724

Enclosed please find results for the following sample(s) which were received by FGL.

• Sub Contracted-Strontium 90


Please note that this analysis was performed by Pace Analytical (ELAP Certified Laboratory)

Thank you for using FGL Environmental.

Sincerely,

Digitally signed by Tracy Pro Title: Customer Service Rep Date: 2021-09-17 Tracy Proefrock @

Enclosure

September 15, 2021

Cindy Aguirre FGL Environmental, Inc. 853 Corporation St. Santa Paula, CA 930603005

RE: Project: SP 2111724

Pace Project No.: 30437814

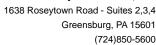
Dear Cindy Aguirre:

Enclosed are the analytical results for sample(s) received by the laboratory on August 26, 2021. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Greensburg

If you have any questions concerning this report, please feel free to contact me.


Sincerely,

Karen L. Smetanka karen.smetanka@pacelabs.com (724)850-5600 Project Manager

Jour Drutos

Enclosures

CERTIFICATIONS

Project: SP 2111724 Pace Project No.: 30437814

Pace Analytical Services Pennsylvania

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601

ANAB DOD-ELAP Rad Accreditation #: L2417

Alabama Certification #: 41590 Arizona Certification #: AZ0734

Arkansas Certification

California Certification #: 04222CA Colorado Certification #: PA01547 Connecticut Certification #: PH-0694

Delaware Certification EPA Region 4 DW Rad

Florida/TNI Certification #: E87683 Georgia Certification #: C040 Florida: Cert E871149 SEKS WET

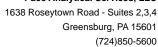
Guam Certification Hawaii Certification Idaho Certification Illinois Certification Indiana Certification Iowa Certification #: 391

Kansas/TNI Certification #: E-10358 Kentucky Certification #: KY90133 KY WW Permit #: KY0098221 KY WW Permit #: KY0000221

Louisiana DHH/TNI Certification #: LA180012 Louisiana DEQ/TNI Certification #: 4086

Maine Certification #: 2017020 Maryland Certification #: 308

Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991 Missouri Certification #: 235
Montana Certification #: Cert0082
Nebraska Certification #: NE-OS-29-14
Nevada Certification #: PA014572018-1
New Hampshire/TNI Certification #: 297617
New Jersey/TNI Certification #: PA051
New Mexico Certification #: PA01457
New York/TNI Certification #: 10888
North Carolina Certification #: 42706
North Dakota Certification #: R-190

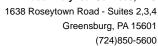

Oregon/TNI Certification #: PA200002-010 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282

South Dakota Certification
Tennessee Certification #: 02867

Ohio EPA Rad Approval: #41249

Texas/TNI Certification #: T104704188-17-3 Utah/TNI Certification #: PA014572017-9 USDA Soil Permit #: P330-17-00091 Vermont Dept. of Health: ID# VT-0282 Virgin Island/PADEP Certification Virginia/VELAP Certification #: 9526 Washington Certification #: C868 West Virginia DEP Certification #: 143 West Virginia DHHR Certification #: 9964C

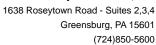
Wisconsin Approve List for Rad Wyoming Certification #: 8TMS-L



SAMPLE SUMMARY

Project: SP 2111724
Pace Project No.: 30437814

Lab ID	Sample ID	Matrix	Date Collected	Date Received				
30437814001	21H2617-01	Water	08/18/21 08:38	08/26/21 10:30				
30437814002	21H2617-02	Water	08/18/21 12:00	08/26/21 10:30				



SAMPLE ANALYTE COUNT

Project: SP 2111724
Pace Project No.: 30437814

Sample ID	Method	Analysts	Analytes Reported
21H2617-01	EPA 905.0	JJY	1
21H2617-02	EPA 905.0	JJY	1
	21H2617-01	21H2617-01 EPA 905.0	21H2617-01 EPA 905.0 JJY

PASI-PA = Pace Analytical Services - Greensburg

ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: SP 2111724
Pace Project No.: 30437814

Sample: 21H2617-01 Lab ID: 30437814001 Collected: 08/18/21 08:38 Received: 08/26/21 10:30 Matrix: Water

PWS: Site ID: Sample Type:

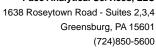
Parameters Method Act ± Unc (MDC) Carr Trac Units Analyzed CAS No. Qual

Pace Analytical Services - Greensburg

Strontium-90 EPA 905.0 **-0.183 ± 0.353 (0.700)** pCi/L 09/14/21 17:14 10098-97-2

C:101% T:NA

Sample: 21H2617-02 Lab ID: 30437814002 Collected: 08/18/21 12:00 Received: 08/26/21 10:30 Matrix: Water


PWS: Site ID: Sample Type:

Parameters Method Act ± Unc (MDC) Carr Trac Units Analyzed CAS No. Qual

Pace Analytical Services - Greensburg

Strontium-90 EPA 905.0 **-0.0380 ± 0.404 (0.784)** pCi/L 09/14/21 17:14 10098-97-2

C:98% T:NA

QUALITY CONTROL - RADIOCHEMISTRY

Project: SP 2111724
Pace Project No.: 30437814

QC Batch: 462847 Analysis Method: EPA 905.0

QC Batch Method: EPA 905.0 Analysis Description: 905.0 Strontium 89/90

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 30437814001, 30437814002

METHOD BLANK: 2234496 Matrix: Water

Associated Lab Samples: 30437814001, 30437814002

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Strontium-90
 -0.0231 ± 0.0704 (0.139) C:94% T:NA
 pCi/L
 09/14/21 17:15

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

1638 Roseytown Road - Suites 2,3,4 Greensburg, PA 15601 (724)850-5600

QUALIFIERS

Project: SP 2111724
Pace Project No.: 30437814

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Act - Activity

Unc - Uncertainty: For Safe Drinking Water Act (SDWA) analyses, the reported Unc. Is the calculated Count Uncertainty (95% confidence interval) using a coverage factor of 1.96. For all other matrices (non-SDWA), the reported Unc. is the calculated Expanded Uncertainty (aka Combined Standard Uncertainty, CSU), reported at the 95% confidence interval using a coverage factor of 1.96.

Gamma Spec: The Unc. reported for all gamma-spectroscopy analyses (EPA 901.1), is the calculated Expanded Uncertainty (CSU) at the 95.4% confidence interval, using a coverage factor of 2.0.

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

Date: 09/15/2021 03:27 PM

Subcontract to Pace Analytical

CHAIN OF CUSTODY

AND ANALYSES REQUEST FORM

Pittsburgh Lab Sample Cond	ition	upo	n Ke	ceibi	
Pace Analytical Client Name:		f	G	<u></u>	Project #
Courier: Fed Ex TUPS USPS Clier Tracking #: 17 92 03 613 6				Pace Other	Label ME
Custody Seal on Cooler/Box Present: yes		•		intact: yes (no
Thermometer Used	Туре	of ice:	We	Blue (None)	
Cooler Temperature Observed Temp	_	. C	Corr	ection Factor:	°C Final Temp: C
Temp should be above freezing to 6°C		_			
				pH paper Lot#	Date and Initials of person examining contents:
Comments:	Yes	No	N/A	lovani	Jn 8-27.21
Chain of Custody Present:		<u> </u>		1.	
Chain of Custody Filled Out:	<u> </u>	<u> </u>	<u> </u>	2.	
Chain of Custody Relinquished:			<u> </u>	3.	
Sampler Name & Signature on COC:				4.	
Sample Labels match COC:] 5.	
-Includes date/time/ID Matrix:	w	<u> </u>	T		
Samples Arrived within Hold Time:				6.	
Short Hold Time Analysis (<72hr remaining):		_		7.	
Rush Turn Around Time Requested:		-	L	8.	
Sufficient Volume:				9.	
Correct Containers Used:	_			10,	
-Pace Containers Used:					
Containers Intact:	_			11.	
Orthophosphate field filtered			_	12.	
Hex Cr Aqueous sample field filtered				13.	
Organic Samples checked for dechlorination:				14.	
Filtered volume received for Dissolved tests			-	15.	
ill containers have been checked for preservation.				16.	
exceptions: VOA, coliform, TOC, O&G, Phenolics, Non-aqueous matrix	Radon	,		PHLA	
All containers meet method preservation	_			Initial when	Date/time of
equirements.				completed // Completed	preservation
			r		
feadspace in VOA Vials (>6mm):			-	17.	
rip Blank Present:			-	18.	
rip Blank Custody Seals Present			_		
Rad Samples Screened < 0.5 mrem/hr	-			Initial when completed:	Date: (~)7~)1 Survey Meter
Client Notification/ Resolution:					
			Date/	Fime:	Contacted By:
Person Contacted:					

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

 $\ \square$ A check in this box indicates that additional information has been stored in ereports.

*PM review is documented electronically in LIMS. When the Project Manager closes the SRF Review schedule in LIMS. The review is in the Status section of the Workorder Edit Screen.

-	unt
	ပိ
	Container Cour
	nta
	-
	sample
	-
	Lab
	urg
	0
	sus
	ee ee
	σ
	ace
	Pac

Profile Number

Notes

BP2S UMB

BP3U BP32 ВРЗИ **B**b3C USAB

SPLC

MCKN

WGFU

NOAK

U69V

T65V

H69A

CCUB

DG92

BP1N

BGSN

Bein

T&DA

USDA **NEDA**

SEDY

NZSA

TrəA

SIDA

HIDA

Sample

Line Item 圣

 $^{\circ}$

Ω ဖ

HELINE US

Client

Pace Analytical ®

Plastic / Misc.

익홍 S 120mL Coliform Na Thiosulfate 500mL plastic unpreserved 250mL plastic unpreserved 1/2 Gallon Cubitainer 1L plastic unpreserved 250mL plastic H2SO4 500mL plastic H2SO4 250ml plastic NAOH 250mL plastic HNO3 GCUB 1 Gallon Cubitainer 1L plastic HNO3 12GN BP1N 3P1U P3N SP5T 3P3S SP3C 323 3P2S

500mL amber glass unpreserved

8oz wide jar unpreserved

WGKU

250mL amber glass unpreserved

250mL amber glass H2SO4 L clear glass unpreserved

AG2U

500mL clear glass unpreserved

4oz wide jar unpreserved

WGFU

BG2U

L amber glass Na Thiosulfate

40mL clear VOA vial Na Thiosul

40mL clear VOA vial HCI

VG9H

VG9T

00mL amber glass Na Thiosulfate

100mL amber glass unprserved

AGSU AGST

Gallon Jug with HNO3

4oz amber wide jar

JGFU

L amber glass H2SO4

Gallon Jug

S

L amber glass HCI

AG1H

AG1T BG1U AG3S AG3U

AG1S

40mL amber VOA vial H2SO4

40mL clear VOA vial

VG9U

DG9S

Glass

Container Codes

9 7

ω တ

Non-aqueous liquid

Solid

FNV-FRM-GRIIR-0079 00 290-c2020

FINAL REPORT

Work Orders: 1H24035

Project: 21H2617

Report Date:

Received Date:

8/24/2021

9/15/2021

Turnaround Time:

Normal

Phones:

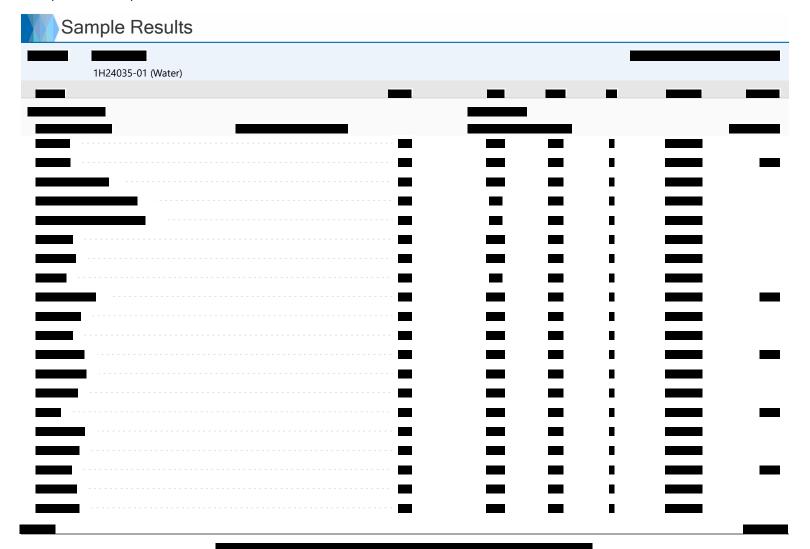
(925) 872-9637

Fax:

(707) 468-5267

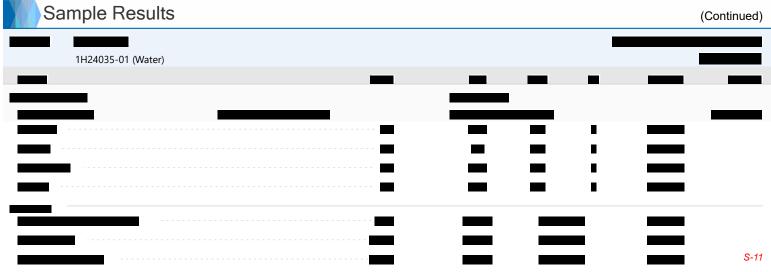
P.O. #:

Billing Code:


Attn: David Pingatore

Client: Alpha Analytical Laboratories - Ukiah CA

208 Mason St Ukiah, CA 95482


Dear David Pingatore,

Enclosed are the results of analyses for samples received 8/24/21 with the Chain-of-Custody document. The samples were received in good condition, at 2.9 °C and on ice. All analyses met the method criteria except as noted in the case narrative or in the report with data qualifiers.

FINAL REPORT

1H24035 Page 2 of 7

FINAL REPORT

Sample Results

(Continued)

Sample: 21H2617-02

Sampled: 08/18/21 12:00 by Client

1H24035-02 (Water)						
Analyte	Result	MRL	Units	Dil	Analyzed	Qualifier
Method: EPA 525.2		Instr: GCMS16				
	Preparation: EPA 525.2/SPE	Prepared: 09/0				Analyst: rm
Alachlor	ND	0.10	ug/l	1	09/10/21	
Atrazine	ND	0.10	ug/l	1	09/10/21	
Benzo (a) pyrene	ND	0.10	ug/l	1	09/10/21	
Bis(2-ethylhexyl)adipate	ND	5.0	ug/l	1	09/10/21	
Bis(2-ethylhexyl)phthalate	ND	3.0	ug/l	1	09/10/21	
Bromacil	ND	0.50	ug/l	1	09/10/21	
Butachlor	ND	0.10	ug/l	1	09/10/21	
Captan	ND	1.0	ug/l	1	09/10/21	
Chlorpropham	ND	0.10	ug/l	1	09/10/21	
Cyanazine	ND	0.10	ug/l	1	09/10/21	
Diazinon	ND	0.10	ug/l	1	09/10/21	
Dimethoate	ND	0.20	ug/l	1	09/10/21	
Diphenamid	ND	0.10	ug/l	1	09/10/21	
Disulfoton	ND	0.10	ug/l	1	09/10/21	
EPTC	ND	0.10	ug/l	1	09/10/21	
Metolachlor	ND	0.10	ug/l	1	09/10/21	
Metribuzin	ND	0.10	ug/l	1	09/10/21	
Molinate	ND	0.10	ug/l	1	09/10/21	
Prometon	ND	0.10	ug/l	1	09/10/21	
Prometryn	ND	0.10	ug/l	1	09/10/21	
Simazine	ND	0.10	ug/l	1	09/10/21	
Terbacil	ND	2.0	ug/l	1	09/10/21	
Thiobencarb	ND	0.10	ug/l	1	09/10/21	
Trithion	ND	0.10	ug/l	1	09/10/21	
Surrogate(s) 1,3-Dimethyl-2-nitrobenzene	61%	70-130	Conc:	3.18	09/10/21	S-GC
•	105%	50-120	Conc:		09/10/21	
Triphenyl phosphate	148%	70-130	Conc:		09/10/21	S-11

FINAL REPORT

Quality Control Results

Analyte tch: W110028 - EPA 525.2/SPE Blank (W110028-BLK1)	Result			Spike	Source		%REC		RPD	
tch: W110028 - EPA 525.2/SPE	Result					0/ DEC				0 110
		MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifie
Slank (W110028-BLK1)				D	24 4	0 (10 (21				
Alachlor	ND	0.10	ug/l	Prepared: 09/01/	21 Analyzed: C	19/10/21				
Atrazine		0.10	ug/l							A-0
Benzo (a) pyrene		0.10	ug/l							7.0
Bis(2-ethylhexyl)adipate		2.0	ug/l							
Bis(2-ethylhexyl)phthalate		2.0	ug/l							
Bromacil		0.50	ug/l							
Butachlor		0.10	ug/l							
Captan		1.0	ug/l							
•		0.10	_							A-0
- 1 1			ug/l							A-0
-,		0.10	ug/l							
Diazinon		0.10	ug/l							
Dimethoate		0.20	ug/l							A-0
Diphenamid		0.10	ug/l							
Disulfoton		0.10	ug/l							
EPTC		0.10	ug/l							A-0
Metolachlor	2	0.10	ug/l							
Metribuzin	ND	0.10	ug/l							
Molinate	ND	0.10	ug/l							A-0
Prometon	ND	0.10	ug/l							
Prometryn	ND	0.10	ug/l							
Propachlor	0.00		ug/l							
Simazine	ND	0.10	ug/l							
Terbacil	ND	2.0	ug/l							
Thiobencarb	ND	0.10	ug/l							
Trithion	ND	0.10	ug/l							
Surrogate(s) 1,3-Dimethyl-2-nitrobenzene	3.60			5.00		72	70-130			
•			ug/l			97				
· oryreme a.e			ug/l	5.00			50-120			0.4
Triphenyl phosphate	10.9		ug/l	5.00		217	70-130			S-1
LCS (W110028-BS1)				Prepared: 09/01/	21 Analyzed: 0					
Alachlor		0.10	ug/l	5.00		120	70-130			
Atrazine		0.10	ug/l	5.00		209	70-130			Q-0
Benzo (a) pyrene		0.10	ug/l	5.00		108	60-130			
Bis(2-ethylhexyl)adipate	8.09	2.0	ug/l	5.00		162	70-130			Q-0
Bis(2-ethylhexyl)phthalate	8.02	2.0	ug/l	5.00		160	70-130			Q-0
Bromacil	5.10	0.50	ug/l	5.00		102	70-130			
Butachlor	5.49	0.10	ug/l	5.00		110	70-130			
Captan	7.04	1.0	ug/l	5.00		141	70-130			Q-0
Chlorpropham	9.59	0.10	ug/l	5.00		192	70-130			Q-0
Cyanazine	6.05	0.10	ug/l	5.00		121	70-130			
Diazinon	3.65	0.10	ug/l	5.00		73	50-120			
Dimethoate	7.37	0.20	ug/l	5.00		147	50-120			Q-0
Diphenamid	7.11	0.10	ug/l	5.00		142	70-130			Q-0

FINAL REPORT

Quality Control Results

(Continued)

				Spike	Source	%REC		RPD	
Analyte	Result	MRL	Units	Level	Result %	REC Limits	RPD	Limit	Qualifie
ch: W110028 - EPA 525.2/SPE (Continued)									
CS (W110028-BS1)			P	repared: 09/01/2	21 Analyzed: 09/10	/21			
Disulfoton	4.73	0.10	ug/l	5.00	ę	50-12)		
EPTC	5.44	0.10	ug/l	5.00	1	09 70-13)		
Metolachlor	5.58	0.10	ug/l	5.00	1	12 60-13)		
Metribuzin	4.20	0.10	ug/l	5.00	8	34 50-12)		
Molinate	7.47	0.10	ug/l	5.00	1	49 70-13)		Q-0
Prometon	1.00	0.10	ug/l	5.00	2	20 15-12)		
Prometryn	4.26	0.10	ug/l	5.00	8	30-12)		
Simazine	4.99	0.10	ug/l	5.00	1	00 60-13)		
Terbacil	6.44	2.0	ug/l	5.00	1	29 70-13)		
Thiobencarb	4.32	0.10	ug/l	5.00	8	36 70-13)		
Trithion	4.82	0.10	ug/l	5.00	(96 70-13)		
ırrogate(s)									
1,3-Dimethyl-2-nitrobenzene	4.32		ug/l	5.00	ė	36 70-13	0		
Perylene-d12	5.26		ug/l	5.00	1	05 50-12	0		
Triphenyl phosphate	7.68		ug/l	5.00	1	54 70-13	0		S-
CS Dup (W110028-BSD1)			P	repared: 09/01/2	21 Analyzed: 09/09	/21			
Alachlor	6.15	0.10	ug/l	5.00	1	23 70-13	3	30	
Atrazine	7.62	0.10	ug/l	5.00	1	52 70-13	31	30	Q-0
Benzo (a) pyrene	5.45	0.10	ug/l	5.00	1	09 60-13	0 1	30	
Bis(2-ethylhexyl)adipate	7.03	2.0	ug/l	5.00	1	41 70-13	0 14	30	Q-0
Bis(2-ethylhexyl)phthalate	7.27	2.0	ug/l	5.00	1	45 70-13	0 10	30	Q-0
Bromacil	5.31	0.50	ug/l	5.00	1	06 70-13	0 4	30	
Butachlor	5.56	0.10	ug/l	5.00	1	11 70-13	0 1	30	
Captan	7.02	1.0	ug/l	5.00	1	40 70-13	0.2	30	Q-0
Chlorpropham	7.33	0.10	ug/l	5.00	1	47 70-13	0 27	30	Q-0
Cyanazine	5.56	0.10	ug/l	5.00	1	11 70-13	0 8	30	
Diazinon	4.18	0.10	ug/l	5.00		34 50-12	0 14	30	
Dimethoate	6.24	0.20	ug/l	5.00	1	25 50-12		30	Q-0
Diphenamid	6.53	0.10	ug/l	5.00	1	31 70-13		30	Q-0
Disulfoton		0.10	ug/l	5.00		98 50-12		30	
EPTC	5.64	0.10	ug/l	5.00		13 70-13		30	
Metolachlor		0.10	ug/l	5.00		15 60-13		30	
Metribuzin		0.10	ug/l	5.00		95 50-12		30	
Molinate		0.10	ug/l	5.00		41 70-13		30	Q-(
Prometon		0.10	ug/l	5.00		27 15-12		30	Q-C
Prometryn		0.10	_	5.00		93 30-12		30	
•			ug/l						
Simazine Terbacil		0.10	ug/l	5.00		14 60-13		30	0.7
10124011	 .	2.0	ug/l	5.00		34 70-13		30	Q-0
Thiobencarb		0.10	ug/l	5.00		92 70-13		30	
Trithion		0.10	ug/l	5.00	(96 70-13	0.004	30	
urrogate(s) 1,3-Dimethyl-2-nitrobenzene			ug/l	5.00		90 70-13	0		
Perylene-d12			ug/l	5.00		06 50-12			

FINAL REPORT

Quality Control Results

(Continued)

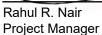
/ District													
Semivolatile Organic Compounds by GC/	MS (Continued)												
				Spike	Source		%REC		RPD				
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier			
Batch: W110028 - EPA 525.2/SPE (Continued)													
LCS Dup (W110028-BSD1)	Prepared: 09/01/21 Analyzed: 09/09/21												
Surrogate(s) Triphenyl phosphate	6.77		ug/l	5.00		135	70-130			S-11			

1H24035 Page 6 of 7

FINAL REPORT

Notes and Definitions

A-01	Low recovery of associated IS. Analyte was judged ND based on standard below reporting limit.
Q-08	High bias in the QC sample does not affect sample result since analyte was not detected or below the reporting limit.
S-11	Surrogate recovery outside of control limits. The data was accepted based on valid recovery of the remaining surrogate.
S-GC	Surrogate recovery outside of control limits due to a possible matrix effect . The data was accepted based on valid recovery of the remaining surrogate.
%REC	Percent Recovery
Dil	Dilution
MRL	The minimum levels, concentrations, or quantities of a target variable (e.g., target analyte) that can be reported with a specified degree of confidence. The MRL is also known as Limit of Quantitation (LOQ)
ND	NOT DETECTED at or above the Method Reporting Limit (MRL). If Method Detection Limit (MDL) is reported, then ND means not detected at or above the MDL.
RPD	Relative Percent Difference


Any remaining sample(s) will be disposed of one month from the final report date unless other arrangements are made in advance.

All results are expressed on wet weight basis unless otherwise specified.

All samples collected by Weck Laboratories have been sampled in accordance to laboratory SOP Number MIS002.

Reviewed by:

Rahul R. Nair

DoD-ELAP ANAB #ADE-2882 • DoD-ISO ANAB # • ELAP-CA #1132 • EPA-UCMR #CA00211 • Guam-EPA #17-008R • HW-DOH #4047 • ISO17025 ANAB #L2457.01 • LACSD #10143 • NELAP-OR #4047 • NJ-DEP #CA015 • SCAQMD #93LA1006

This is a complete final report. The information in this report applies to the samples analyzed in accordance with the chain-of-custody document. Weck Laboratories certifies that the test results meet all requirements of TNI unless noted by qualifiers or written in the Case Narrative. This analytical report must be reproduced in its entirety.

Corporate Laboratory (1551) 707-468-0401 208 Mason Street, Ukiah CA 95482

Los Angeles (Service Center) 310-743-5711 1230 E 233rd St #205, Carson CA 90745

North Bay Laboratory (2303) 707-769-3128 110 Liberty Street, Petaluma CA 94952

Bay Area Laboratory (2728) 925-828-6226 262 Rickenbacker Circle, Livermore CA 94551

Chain of Custody Record

Reports and Invoices delivered by email as PDF files

clientservices@alpha-labs.com

		o ry (3055) 760-930- Vest, Ste A, Carlsb		92010	(atory (2922) 916-686-5190 /ay #113, Elk Grove CA 95624									Lab .	No		2	11	12	22	:1	2	Pg		2
Report to	Involce	e to (if different)	'.	<u> </u>		Pro	ect ¹	nfo		1		-				_ /	Analysis Request								· · ·	- 1		TAT		Temp °C	_
Company:	Contact:		-		ect N		: SR Water Quality							Ţ				T		Ţ					一		anda		Ukiah		
Todd Groundwater				80	วนกัน		R Wa Iselir		uuali	ry																		io-da ∙∩	y	3.0	
Attn:	Email Address:		_	Proj	ect N	umb	er:				,										-					ļ	-	O RUSI		Livermore	
Nicole Grimm												ess						-		,				/eck		ı	•	lay 2		9.8	
Phone:	Phone:			PO	Numt	er:					ejp	ardn						-				-		Λqn			•	Ò		Elk Grove	
510-747-6920											Sample ID	fafH					1			1				st-s	ŀ	ŀ	2-0	lay 7	5%		
Physical Address:			1	quenc	-					Ser S	3/T₀											Vista	il Buc				0		Petaluma		
2490 Mariner Square Loop, Suite 215, Alar	meda CA 94501			A	dd-c	ns /	log	sep	oarat	e	lets bel	200.8											537.1 PFAS List of 18 - sub Vista	525.2 Nonregulated SVOC long list - sub Weck		ł		Othe	_		
Email address:			Conf	tainer	Pr	eser	vation	n ,	Matri	X.	ntain	ΜO	200.7	orus		1	List	<u>n</u>					18-	AS F		İ		0		Carlsbad	
ngrimm@toddgroundwater.com			,			1					of Con	3/0	102	osbh			<u>F</u>	S Bei	228				istof	ılate		ļ		_	ays f		
			ِ اِقِ ا	$\frac{1}{2}$				Vater	[iper c	200.8	as S	Ammonia / Phosphorus	Cr6 218.6 DW		524.2 Volatiles Full List	Gross Alpha & Beta	Radium 226 & 228	8	ĺ		ASL	nreg.		ŀ	<u> </u>	oly si		Los Angele	S
Nicole Grimn 7	<u></u>		bott		Š	_		y Gri	ewat ewat		Num	otal	iica	onia	218.6		8	S Alp	틸	Strontium 90	<u>ڍ</u> ا	등	F.	2 Noi		ŀ	$\overline{}$	Ť	$\overline{}$		
Sample Identification	Time	oled on	40ml. vial Glass bottle	Glass	Na2S	걸	di G	Drink	Wast	gle	Total Number	ი 1	NB Silica as SiO2 200.7	Amn	કુ	5	524.	Gros	Radi	Sto	Tritium	Radon	537.	525.			2504	1 1	Half (Source Co	de
	12 00			x X			#	T	ŤΪ	Ť	2		-		1	1	寸	1	-1	_	_				7	寸	x	П	T		
	12.00		\vdash	+	╂┤	+	┧╢	╂-	╁┼	+	\vdash		\vdash	┧	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	一		\dashv	ı	\dashv	+	 x	+		
			\square	<u>* </u>	44	4.	 *	4-	╀	+	1		Н	x	_	-	\dashv	\dashv	-	\dashv	4	_			\dashv		+	┼┤	+		
			Ш	×	Ш	\perp	×		Ш	\perp	1		Ш		×				_	_							×	Ц	\perp		
			x				x				2					x															
			x	\top	$\dagger \dagger$	x	$\dagger \dagger$	1	П	+	4		П		\neg		×	┪	寸	一	┪					目	Ť	\prod	\top		
2422			┝┼┼	+	╫	+	╁	\dagger	╫	+	1	\vdash	\vdash		\dashv	\dashv	ᅥ	x	┪	┪	\dashv	\dashv			\dashv		+	╢	+		_
3123			$\sqcup \sqcup$	~ -	- -	4-	++	4	┼┼	+	\vdash	<u> </u>	\vdash		\dashv	4	\dashv	-1	\dashv	\dashv		_			4	\dashv	+	×	+		_
				×		,	Ш	\perp	Ш		4								×	×							\perp	×	\perp		
			x				\prod	x			2										x										
			$ \downarrow \uparrow $	$\dagger\dagger$	T		$\dagger \dagger$	x	$\dagger \dagger$	T	2				\dashv		\dashv	寸	寸	一		x				一	十	$\dagger \dagger$	\top		
			┝╫┽	+	+	\dashv	╁┼	+	╁	╀	┢	┢	\vdash	$\vdash \vdash$	\dashv	\dashv	\dashv	-		┥	\dashv	\dashv			\dashv	\dashv	+	H	+		_
			\coprod	<u> </u>	44	igdash	<u>*</u>	\downarrow	\coprod	\perp	2	<u> </u>	\vdash	\sqcup	_		_		_		_	-	×	Щ	_	_	<u> </u>	\coprod	\bot		
			×			x	\prod				2	L												х					\perp		
Relinquished by	3 2 2			* ;	٠.,	Α,	1.9	Tin	10		11.		Date	, -		- 7 J - 2					7, 1	, A	ddi	iona	Rec	quire	men	ts		T.	
mind.				1	601	9			8	118	121	<u>. </u>	()	CA Writ	DDV	۷ ام ات	DΤ		s	tate :	Syste	m No	o: _							
4-7						T	19	70	0		Ç		8/	5/				AALI	.e-U				_				_				
(3)	_	- (ñ			_	+				_		$\overline{}$		7	爿	CA Facility Global ID No:															
717					+	2215				18/18/21					O GeoTracker EDF Report Sampling Company Log Code:																

WORK ORDER

Printed: 8/19/2021 9:58:39AM

21H2617

Alpha Analytical Laboratories Ukiah to North Bay Chain of Custody

Client: Todd Grou Project: Round 3 A	indwater SR Water Quality Baseline		DP_TODENG Round 3 ASR Water	· Qualit J	Bid: PO #:	Round 3 ASR Water Quality
Date Due: Received By: Logged In By:	09/02/21 15:00 (10 day TAT) James Bixler Sean Foley	Date Re	ceived: 08/18/21 22:15 gged 08/19/21 08:32			
Samples Received at:	deg C	All containe	ers received and intact:	YES	N	0
Analysis	Department	Expires	s Comments			
						_
21H2617-02 3123 [W	/ater] Sampled 08/18/21 12:	00				
NB Silica as SiO2 ICI	2200.7 NB Metals	02/14/22	12:00			
Containers Supplie 250mL Poly HNO3 (J)	d:					

Alpha Analytical Laboratories, Inc.

email: clientservices@alpha-labs.com

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

24 September 2021

Todd Groundwater

Attn: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Alameda, CA 94501

RE: Round 3 ASR Water Quality Baseline

Work Order: 21H2633

Enclosed are the results of analyses for samples received by the laboratory on 08/18/21 22:15. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Alisabeth J. Wilcox For David S. Pingatore

Project Manager

Alpha Analytical Laboratories, Inc.

email: clientservices@alpha-labs.com

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501

Project Number: Round 3 ASR Water Quality Baseline

Reported:

09/24/21 16:57

Bay Area: 262 Rickenbacker Circle | Livermore, CA 94551 | T: 925-828-6226 | F: 925-828-6309 | ELAP# 2728 Central Valley: 9090 Union Park Way Suite 113 | Elk Grove, CA 95624 | T: 916-686-5190 | F: 916-686-5192 | ELAP# 2922 North Bay: 110 Liberty Street | Petaluma, CA 94952 | T: 707-769-3128 | F: 707-769-8093 | ELAP# 2303 San Diego: 2722 Loker Avenue West Suite A | Carlsbad, CA 92010 | T: 760-930-2555 | F: 760-930-2510 | ELAP# 3055

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
3123	21H2633-04	Water	08/18/21 11:50	08/18/21 22:15

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501

Project Number: Round 3 ASR Water Quality Baseline

	Result	Reporting Limit	Dilution	Batch	Prepared	Analyzed	ELAP#	Method	Note
		_	_						
			<u> </u>						
_									
		_	I						
			Ī						
			Ī						

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Alameda, CA 94501

Project: Round 3 ASR Water Quality Baseline

Project Number: Round 3 ASR Water Quality Baseline

	Result	Reporting Limit	Dilution	Batch	Prepared	Analyzed	ELAP#	Method	Note
									_
			_						
_									
			-						
			Ī						
			I						
			Ī						
			i						
		_	Ī						
			_				_		
=		_	-						
			I						
			i						
			Ī						

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215 Alameda, CA 94501

Project: Round 3 ASR Water Quality Baseline

Project Number: Round 3 ASR Water Quality Baseline

 Result	Reporting Limit Dil	lution Batch	Prepared	Analyzed	ELAP#	Method	Note
	_						
							_
 ≣							
 	_						
	_						

Alpha Analytical Laboratories, Inc.

email: clientservices@alpha-labs.com

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Alameda, CA 94501

Project: Round 3 ASR Water Quality Baseline

Project Number: Round 3 ASR Water Quality Baseline

09/24/21 16:57

Reported:

Result Reporting Limit Dilution Batch Prepared Analyzed ELAP# Method Note

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215 Alameda, CA 94501

Project: Round 3 ASR Water Quality Baseline

Project Number: Round 3 ASR Water Quality Baseline

Result	Reporting Limit Dilution	Batch	Prepared	Analyzed	ELAP# Method	Note
	= :					
	!					
	= :					
	= 1					
	- 1					_
	= 1					
	= :					
	= :					
	- 1					
	= :					
	— 1					
	= :					
	T i					
	= :					
	=:					
	= i					

Reported:

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Alameda, CA 94501

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Project Number: Round 3 ASR Water Quality Baseline 09/24/21 16:57

Result Reporting Limit Dilution Batch Prepared Analyzed ELAP# Method Note

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Alameda, CA 94501

Project: Round 3 ASR Water Quality Baseline

Project Number: Round 3 ASR Water Quality Baseline

	Resul	t	Reporting Limit	Dilution	Batch	Prepared	Analyzed	ELAP	# Method	Note
			_	_						
				-						
				-						
				i						
				Ī						
3123 (21H2633-04)			Sample Type:	Water		Sampled	: 08/18/21 11:5	0		
Metals (Dissolved) by EPA 200 Series Methods										FILT
Mercury, dissolved	ND	ug/L	0 20	1	AI13118	09/02/21 08:47	09/03/21 09:18	3 1551	EPA 245 1	
Calcium, dissolved	38	mg/L	1.0	1	AH14872	09/01/21 13:35	09/03/21 17:29	9 1551	EPA 200 7	
Iron, dissolved	ND	mg/L	0 10	1	AH14872	09/01/21 13:35	09/03/21 17:29	9 1551	EPA 200 7	
Magnesium, dissolved	20	mg/L	1.0	1	AH14872	09/01/21 13:35	09/03/21 17:29	9 1551	EPA 200 7	
Potassium, dissolved	3.3	mg/L	1.0	1	AH14872	09/01/21 13:35	09/03/21 17:29	9 1551	EPA 200 7	
Sodium, dissolved	320	mg/L	1.0	1	AH14872	09/01/21 13:35	09/03/21 17:29	9 1551	EPA 200 7	
Metals (Dissolved) by EPA Method 200.8 ICP/MS										FILT
Aluminum, dissolved	ND	ug/L	10	1	AH14197	08/24/21 17:10	09/03/21 13:50	1551	EPA 200 8	
Antimony, dissolved	0.52	ug/L	0.50	1	AH14197	08/24/21 17:10	08/26/21 04:23	3 1551	EPA 200 8	
Arsenic, dissolved	14	ug/L	0.50	1	AH14197	08/24/21 17:10	08/26/21 04:23	3 1551	EPA 200 8	
Barium, dissolved	180	ug/L	0.50	1	AH14197	08/24/21 17:10	08/26/21 04:23	3 1551	EPA 200 8	
Beryllium, dissolved	ND	ug/L	0 10	1	AH14197	08/24/21 17:10	08/26/21 04:23	3 1551	EPA 200 8	
Boron, dissolved	4200	-	500	10	AH14197	08/24/21 17:10	08/27/21 16:02			
Cadmium, dissolved		ug/L	0 10	1	AH14197	08/24/21 17:10	08/26/21 04:23			
Chromium, dissolved		ug/L	0 50	1		08/24/21 17:10	08/26/21 04:23			
Copper, dissolved		ug/L	0.50	1		08/24/21 17:10	08/26/21 04:23			
Lead, dissolved		ug/L	0 25	1		08/24/21 17:10	08/26/21 04:23			
Manganese, dissolved		ug/L	5.0	1		08/24/21 17:10	08/26/21 04:23			
Molybdenum, dissolved		ug/L	0.25	1	AH14197		08/26/21 04:23			
Nickel, dissolved	0.87	0	0.50	1	AH14197	08/24/21 17:10	08/26/21 04:23			
Selenium, dissolved		ug/L	20	1	AH14197	08/24/21 17:10	08/26/21 04:23			
Silver, dissolved		ug/L	0 10	1		08/24/21 17:10	09/03/21 13:50			
Thallium, dissolved		ug/L	0 10	1		08/24/21 17:10	08/26/21 04:23			
Vanadium, dissolved		ug/L	1.0	1	AH14197	08/24/21 17:10	08/26/21 04:23			
Zinc, dissolved	ND	ug/L	5 0	1	АП1419/	08/24/21 17:10	08/26/21 04:23	1551	EPA 200 8	

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501

Reported: Project Number: Round 3 ASR Water Quality Baseline 09/24/21 16:57

	Result	Reporting Limit 1	Dilution	Batch	Prepared	Analyzed	ELAP#	Method	Note
3123 (21H2633-04)		Sample Type: V	Vater		Sampled	: 08/18/21 11:5	0		
Conventional Chemistry Parameters by APH	A/EPA Methods				_				
Color	ND CU	5 0	1	AH14313	08/18/21 16:48	08/18/21 16:48	3 2728	SM2120B	
MBAS, calculated as LAS, mw 340	ND mg/L	0 050	1	AH14260	08/20/21 08 15	08/20/21 16 30	1551	SM5540C	
Perchlorate	ND ug/L	2 0	1	AH14310	08/20/21 08:00	08/20/21 20:27	2303	EPA 314 0	
Sulfide	ND mg/L	0 10	1	AH14407	08/24/21 06:00	08/24/21 06:00	1551	SM4500-S2 D	
Total Dissolved Solids	1100 mg/L	10	1	AH14424	08/24/21 10:40	09/03/21 14:57	1551	SM2540C	
Turbidity	17 NTU	0.10	1	AH14314	08/18/21 16:57	08/18/21 16:57	2728	SM2130B	
Bicarbonate Alkalinity as CaCO3	300 mg/L	5.0	1	AH14703	08/30/21 08:00	08/30/21 12:21	1551	SM2320B	
Carbonate Alkalinity as CaCO3	ND mg/L	5 0	1	AH14703	08/30/21 08:00	08/30/21 12:21	1551	SM2320B	
Hydroxide Alkalinity as CaCO3	ND mg/L	5 0	1	AH14703	08/30/21 08:00	08/30/21 12:21	1551	SM2320B	
Total Alkalinity as CaCO3	300 mg/L	5.0	1	AH14703	08/30/21 08:00	08/30/21 12:21	1551	SM2320B	
Hardness, Total	178 mg/L	5	1	AH14872	09/01/21 13:35	09/03/21 17:29	1551	SM2340B	
Anions by EPA Method 300.0									
Chloride	340 mg/L	25	50	AH14195	08/20/21 10:30	08/20/21 10:30	1551	EPA 300 0	
Fluoride	ND mg/L	0 10	1	AH14195	08/19/21 17:10	08/19/21 17:10	1551	EPA 300 0	
Nitrate as N	1.2 mg/L	0.20	1	AH14195	08/19/21 17:10	08/19/21 17:10	1551	EPA 300 0	
Sulfate as SO4	65 mg/L	5.0	10	AH14195	08/19/21 17:27	08/19/21 17:27	1551	EPA 300 0	
Microbiological Parameters by APHA Standa	ard Methods								
Total Coliforms	ND MPN/100mL	1 0	1	AH14327	08/18/21 16:35	08/19/21 16:35	2728	SM9223B	
E Coli	ND MPN/100mL	1 0	1	AH14327	08/18/21 16:35	08/19/21 16:35	2728	SM9223B	
Volatile Organic Compounds by EPA Method	1 524.2								
Bromodichloromethane	ND ug/L	1 00	1	AH14496	08/25/21 15:00	08/26/21 01:16	1551	EPA 524 2	
Bromoform	ND ug/L	1 00	1	AH14496	08/25/21 15:00	08/26/21 01:16	1551	EPA 524 2	
Chloroform	ND ug/L	1 00	1	AH14496	08/25/21 15:00	08/26/21 01:16	1551	EPA 524 2	
Dibromochloromethane	ND ug/L	1 00	1	AH14496	08/25/21 15:00	08/26/21 01:16	1551	EPA 524 2	
Trihalomethanes (total)	ND ug/L	1 00	1	AH14496	08/25/21 15:00	08/26/21 01:16	1551	EPA 524 2	
Surrogate: Bromofluorobenzene	98.0 %	70-130		AH14496	08/25/21 15:00	08/26/21 01:16	1551	EPA 524.2	
Surrogate: Dibromofluoromethane	95.2 %	70-130		AH14496	08/25/21 15:00	08/26/21 01:10	1551	EPA 524.2	
Surrogate: Toluene-d8	95.4 %	70-130		AH14496	08/25/21 15:00	08/26/21 01:16	5 1551	EPA 524.2	

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215 Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501 Project Number: Round 3 ASR Water Quality Baseline

	Result	Reporting Limit	Dilution	Batch	Prepared	Analyzed	ELAP# N	Method	Note
3123 (21H2633-04)		Sample Type: V	Water		Sampled	l: 08/18/21 11:	50		
Haloacetic Acids by EPA Method 552.2									
Monobromoacetic Acid	ND ug/L	1 0	1	AH14766	08/31/21 07:00	09/02/21 05:1	0 1551 EPA	552 2	
Monochloroacetic Acid	ND ug/L	2 0	1	AH14766	08/31/21 07 00	09/02/21 05 1	0 1551 EPA	552 2	
Dibromoacetic Acid	ND ug/L	1 0	1	AH14766	08/31/21 07:00	09/02/21 05:1	0 1551 EPA	552 2	
Dichloroacetic Acid	ND ug/L	1 0	1	AH14766	08/31/21 07:00	09/02/21 05:1	0 1551 EPA	552 2	
Trichloroacetic Acid	ND ug/L	1 0	1	AH14766	08/31/21 07:00	09/02/21 05:1	0 1551 EPA	552 2	
Total Haloacetic Acids (HAA5)	ND ug/L	1 0	1	AH14766	08/31/21 07:00	09/02/21 05:1	0 1551 EPA	552 2	
Surrogate: 2,3-Dibromopropionic Acid	110 %	70-130		AH14766	08/31/21 07:00	09/02/21 05:1	0 1551 <i>EPA</i>	552.2	
Surrogate: 2-Bromopropionic Acid	110 %	70-130		AH14766	08/31/21 07:00	09/02/21 05:1	0 1551 <i>EPA</i>	552.2	
			_						
		_	-						
		=	-						
			_						
		_	-						
		_	_						
			-						
			_						
		<u> </u>	_						
		<u>=</u>							
		<u>=</u>	_						

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Alameda, CA 94501

Project: Round 3 ASR Water Quality Baseline

Project Number: Round 3 ASR Water Quality Baseline

	Result	Reporting Limit	Dilution	Batch	Prepared	Analyzed	ELAP#	Method	Note
			_						
			Ī						
			_				_		
=									
=									
		_							
			Ī						

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501

Project Number: Round 3 ASR Water Quality Baseline

 Result	Reporting Limit D	ilution Batch	Prepared	Analyzed	ELAP# Method	Note
	<u></u>	_				

Alpha Analytical Laboratories, Inc.

email: clientservices@alpha-labs.com

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501

Project Number: Round 3 ASR Water Quality Baseline

Reported: 09/24/21 16:57

Result Reporting Limit Dilution Batch Prepared Analyzed ELAP# Method Note

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501 Project Number: Round 3 ASR Water Quality Baseline Reported:

09/24/21 16:57

 Result	Reporting Limit	Dilution	Batch	Prepared	Analyzed	ELAP#	Method	Note
	<u> </u>	_						
		_						
	<u> </u>	_						

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501

Project Number: Round 3 ASR Water Quality Baseline

Reported: 09/24/21 16:57

Metals (Dissolved) by EPA 200 Series Methods - Quality Control

Analyte(s)	Reporting			Spike Source			%REC		RPD		
	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag	
Batch AH14872 - Metals Digest (D)											
Blank (AH14872 BLK1)	Prepared: 09/01/21 Analyzed: 09/03/21										
Calcium, dissolved	ND	1 0	mg/L			•					
Iron, dissolved	ND	0 10	mg/L								
Magnesium, dissolved	ND	10	mg/L								
Potassium, dissolved	ND	10	mg/L								
Sodium, dissolved	ND	1 0	mg/L								
LCS (AH14872-BS1)		Prepared: 09/01/21 Analyzed: 09/03/21									
Calcium, dissolved	8 37	1 0	mg/L	8 00		105	85-115				
ron, dissolved	1 90	0 10	mg/L	2 00		95 1	85-115				
Magnesium, dissolved	8 66	10	mg/L	8 00		108	85-115				
Potassium, dissolved	8 06	10	mg/L	8 00		101	85-115				
Sodium, dissolved	8 12	1 0	mg/L	8 00		101	85-115				
Duplicate (AH14872-DUP1)	Source: 21H3452-01		Prepared: 09/01/21 Analyzed: 09/03/21								
Calcium, dissolved	48 0	1 0	mg/L		47 3			1 38	20		
ron, dissolved	ND	0 10	mg/L		ND				20		
Magnesium, dissolved	28 7	10	mg/L		28 2			1 74	20		
Potassium, dissolved	4 07	10	mg/L		4 04			0 855	20		
Sodium, dissolved	23 1	1 0	mg/L		22 8			1 01	20		
Matrix Spike (AH14872-MS1)	Source: 21H3452-01			Prepared: (09/01/21 A	/03/21					
Calcium, dissolved	56 4	1 0	mg/L	8 00	47 3	114	70-130				
ron, dissolved	1 91	0 10	mg/L	2 00	ND	95 5	70-130				
Magnesium, dissolved	37 9	10	mg/L	8 00	28 2	122	70-130				
Potassium, dissolved	12 6	10	mg/L	8 00	4 04	107	70-130				
Sodium, dissolved	30 6	1 0	mg/L	8 00	22 8	96 6	70-130				
Matrix Spike (AH14872-MS2)	Source: 21H3374-01		Prepared: 09/01/21 Analyzed: 09/03/21								
Calcium, dissolved	21 6	1 0	mg/L	8 00	12 9	108	70-130				
ron, dissolved	1 95	0 10	mg/L	2 00	ND	97 3	70-130				
Magnesium, dissolved	17 3	1 0	mg/L	8 00	8 10	115	70-130				
Potassium, dissolved	9 84	10	mg/L	8 00	1 75	101	70-130				
Sodium, dissolved	27 1	10	mg/L	8 00	19 7	92 7	70-130				

Alpha Analytical Laboratories, Inc.

email: clientservices@alpha-labs.com

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501 Project Number: Round 3 ASR Water Quality Baseline

Reported: 09/24/21 16:57

Metals (Dissolved) by EPA 200 Series Methods - Quality Control

Analyte(s)	Reporting			Spike	Source		%REC		RPD	
	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AH14872 - Metals Digest (D)										
Matrix Spike Dup (AH14872-MSD1)	Source: 21H3452-01			Prepared: (09/01/21 A					
Calcium, dissolved	56 6	1 0	mg/L	8 00	47 3	117	70-130	0 409	20	
Iron, dissolved	1 87	0 10	mg/L	2 00	ND	93 6	70-130	1 95	20	
Magnesium, dissolved	37 4	10	mg/L	8 00	28 2	115	70-130	1 46	20	
Potassium, dissolved	12 4	1 0	mg/L	8 00	4 04	105	70-130	1 10	20	
Sodium, dissolved	30 8	1 0	mg/L	8 00	22 8	99 2	70-130	0 666	20	
Batch AI13118 - EPA 245.1 Hg Water										
Blank (AI13118-BLK1)				Prepared: 09/02/21 Analyzed: 09/03/21						
Mercury, dissolved	ND	0 20	ug/L							
LCS (AI13118-BS1)				Prepared: (09/02/21 A					
Mercury, dissolved	2 56	0 20	ug/L	2 50		102	85-115			
Duplicate (AI13118 DUP1)	Source: 21H2633-02			Prepared: 09/02/21 Analyzed: 09/03/21						
Mercury, dissolved	ND	0 20	ug/L		ND				20	
Matrix Spike (AI13118-MS1)	Source: 21H2633-02			Prepared: 09/02/21 Analyzed: 09/03/21						
Mercury, dissolved	2 52	0 20	ug/L	2 50	ND	101	70-130			
Matrix Spike Dup (AI13118-MSD1)	Source: 21H2633-02			Prepared: 09/02/21 Analyzed: 09/03/21						
Mercury, dissolved	2 51	0 20	ug/L	2 50	ND	100	70-130	0 437	20	

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501

Project Number: Round 3 ASR Water Quality Baseline

Reported: 09/24/21 16:57

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AH14197 - EPA 200.8 (D)										
Blank (AH14197-BLK1)				Prepared: (08/24/21 Aı	nalyzed: 08	/27/21			
Aluminum, dissolved	ND	10	ug/L							
Antimony, dissolved	ND	0 50	ug/L							
Arsenic, dissolved	ND	0 50	ug/L							
Barium, dissolved	ND	0 50	ug/L							
Beryllium, dissolved	ND	0 10	ug/L							
Boron, dissolved	ND	50	ug/L							
Cadmium, dissolved	ND	0 10	ug/L							
Chromium, dissolved	ND	0 50	ug/L							
Copper, dissolved	0 591	0 50	ug/L							
Lead, dissolved	ND	0 25	ug/L							
Manganese, dissolved	ND	5 0	ug/L							
Molybdenum, dissolved	ND	0 25	ug/L							
Nickel, dissolved	ND	0 50	ug/L							
Selenium, dissolved	ND	2 0	ug/L							
Silver, dissolved	ND	0 10	ug/L							
Thallium, dissolved	ND	0 10	ug/L							
Vanadium, dissolved	ND	10	ug/L							
Zinc, dissolved	ND	5 0	ug/L							
LCS (AH14197-BS1)				Prepared: ()8/24/21 Aı	nalvzed: 08	/27/21			
Aluminum, dissolved	554	10	ug/L	520		107	85-115			
Antimony, dissolved	20 8	0 50	ug/L	20 0		104	85-115			
Arsenic, dissolved	21 1	0 50	ug/L	20 0		105	85-115			
Barium, dissolved	20 3	0 50	ug/L	20 0		102	85-115			
Beryllium, dissolved	20 7	0 10	ug/L	20 0		104	85-115			
Boron, dissolved	106	50	ug/L	100		106	85-115			
Cadmium, dissolved	20 3	0 10	ug/L	20 0		101	85-115			
Chromium, dissolved	20 3	0 50	ug/L	20 0		101	85-115			
Copper, dissolved	22 3	0 50	ug/L	20 0		112	85-115			
Lead, dissolved	20 5	0 25	ug/L	20 0		103	85-115			
Manganese, dissolved	20 5	5 0	ug/L	20 0		102	85-115			
Molybdenum, dissolved	21 3	0 25	ug/L	20 0		106	85-115			
Nickel, dissolved	20 1	0 50	ug/L	20 0		100	85-115			
Selenium, dissolved	21 6	20	ug/L	20 0		108	85-115			
Silver, dissolved	18 0	0 10	ug/L	20 0		90 1	85-115			

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501 Project Number: Round 3 ASR Water Quality Baseline

Reported: 09/24/21 16:57

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AH14197 - EPA 200.8 (D)										
LCS (AH14197-BS1)				Prepared: (08/24/21 At	nalyzed: 08	/26/21			
Thallium, dissolved	20 4	0 10	ug/L	20 0		102	85-115			
Vanadium, dissolved	20 6	10	ug/L	20 0		103	85-115			
Zinc, dissolved	103	5 0	ug/L	100		103	85-115			
Duplicate (AH14197-DUP1)	Sour	ce: 21H263	3-01	Prepared: (08/24/21 A	nalyzed: 08	/27/21			
Aluminum, dissolved	ND	100	ug/L		ND				20	
Antimony, dissolved	ND	0 50	ug/L		ND				20	
Arsenic, dissolved	5 05	0 50	ug/L		4 88			3 43	20	
Barium, dissolved	41 3	0 50	ug/L		40 5			2 00	20	
Beryllium, dissolved	ND	0 10	ug/L		ND				20	
Boron, dissolved	1930	50	ug/L		1910			0 965	20	
Cadmium, dissolved	ND	0 10	ug/L		ND				20	
Chromium, dissolved	11 6	0 50	ug/L		11 5			1 13	20	
Copper, dissolved	24 4	0 50	ug/L		24 2			0 967	20	
Lead, dissolved	0 340	0 25	ug/L		0 296			14 0	20	
Manganese, dissolved	ND	5 0	ug/L		ND				20	
Molybdenum, dissolved	5 45	0 25	ug/L		5 36			1 49	20	
Nickel, dissolved	1 19	0 50	ug/L		1 20			0 848	20	
Selenium, dissolved	5 75	2 0	ug/L		5 43			5 61	20	
Silver, dissolved	ND	0 10	ug/L		0 218			200	20	
Thallium, dissolved	ND	0 10	ug/L		ND				20	
Vanadium, dissolved	6 40	10	ug/L		6 47			1 08	20	
Zinc, dissolved	13 8	5 0	ug/L		13 4			2 85	20	
MRL Check (AH14197-MRL1)				Prepared: (08/24/21 A	nalyzed: 08	/27/21			
Aluminum, dissolved	12 2	10	ug/L	8 00		153	0-200			
Silver, dissolved	0 0833	0 10	ug/L	0 0800		104	0-200			
Thallium, dissolved	0 0721	0 10	ug/L	0 0800		90 1	0-200			
Vanadium, dissolved	0 878	10	ug/L	0 800		110	0-200			

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501 Project Number: Round 3 ASR Water Quality Baseline

Reported: 09/24/21 16:57

		Reporting		Spike	Source		%REC		RPD	F1
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AH14197 - EPA 200.8 (D)										
Matrix Spike (AH14197-MS1)	Sour	ce: 21H263	3-05	Prepared: (08/24/21 Aı	nalyzed: 08	/27/21			
Aluminum, dissolved	616	10	ug/L	520	ND	117	70-130			QM-0
Antimony, dissolved	198	0 50	ug/L	20 0	ND	99 1	70-130			
Arsenic, dissolved	27 4	0 50	ug/L	20 0	7 71	98 7	70-130			
Barium, dissolved	82 4	0 50	ug/L	20 0	65 2	86 1	70-130			
Beryllium, dissolved	18 3	0 10	ug/L	20 0	ND	91 4	70-130			
Boron, dissolved	2380	50	ug/L	100	2470	NR	70-130			QM-42
Cadmium, dissolved	18 5	0 10	ug/L	20 0	ND	92 6	70-130			
Chromium, dissolved	19 5	0 50	ug/L	20 0	ND	97 3	70-130			
Copper, dissolved	23 0	0 50	ug/L	20 0	3 01	100	70-130			
Lead, dissolved	162	0 25	ug/L	20 0	ND	80 8	70-130			
Manganese, dissolved	441	5 0	ug/L	20 0	429	63 4	70-130			QM-0
Molybdenum, dissolved	29 8	0 25	ug/L	20 0	8 61	106	70-130			
lickel, dissolved	24 8	0 50	ug/L	20 0	7 15	88 4	70-130			
Selenium, dissolved	196	2 0	ug/L	20 0	ND	90 8	70-130			
Silver, dissolved	17 2	0 10	ug/L	20 0	ND	86 1	70-130			QM-0
Thallium, dissolved	160	0 10	ug/L	20 0	ND	80 2	70-130			
Vanadium, dissolved	24 9	10	ug/L	20 0	5 33	97 9	70-130			
Zinc, dissolved	98 0	5 0	ug/L	100	7 93	90 0	70-130			
Matrix Spike Dup (AH14197-MSD1)	Sour	ce: 21H263	3-05	Prepared: (08/24/21 Aı	nalvzed: 08	/27/21			
Aluminum, dissolved	621	10	ug/L	520	ND	118	70-130	0 734	20	QM-0
Antimony, dissolved	197	0 50	ug/L	20 0	ND	98 3	70-130	0 783	20	
Arsenic, dissolved	27 3	0 50	ug/L	20 0	7 71	98 0	70-130	0 533	20	
Barium, dissolved	82 5	0 50	ug/L	20 0	65 2	86 3	70-130	0 0474	20	
Beryllium, dissolved	183	0 10	ug/L	20 0	ND	91 7	70-130	0 349	20	
Boron, dissolved	2330	50	ug/L	100	2470	NR	70-130	2 06	20	QM-4
Cadmium, dissolved	187	0 10	ug/L	20 0	ND	93 3	70-130	0 746	20	
Chromium, dissolved	198	0 50	ug/L	20 0	ND	99 0	70-130	1 72	20	
Copper, dissolved	23 1	0 50	ug/L	20 0	3 01	100	70-130	0 257	20	
Lead, dissolved	15 9	0 25	ug/L	20 0	ND	79 6	70-130	1 41	20	
Manganese, dissolved	448	5 0	ug/L	20 0	429	99 2	70-130	1 61	20	
Molybdenum, dissolved	29 8	0 25	ug/L	20 0	8 61	106	70-130	0 125	20	
Vickel, dissolved	25 3	0 50	ug/L	20 0	7 15	90 7	70-130	1 81	20	
Selenium, dissolved	198	2 0	ug/L	20 0	ND	91 7	70-130	0 900	20	
*		-	-							

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501

Project Number: Round 3 ASR Water Quality Baseline

Reported: 09/24/21 16:57

Analyte(s)	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AH14197 - EPA 200.8 (D)										
Matrix Spike Dup (AH14197-MSD1)	Sour	ce: 21H263:	3-05	Prepared: (08/24/21 A	nalyzed: 08	3/26/21			
Thallium, dissolved	15 6	0 10	ug/L	20 0	ND	78 2	70-130	2 57	20	
Vanadium, dissolved	25 3	10	ug/L	20 0	5 33	99 8	70-130	1 46	20	
Zinc, dissolved	98 6	5 0	ug/L	100	7 93	90 7	70-130	0 676	20	

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501

Project Number: Round 3 ASR Water Quality Baseline

Reported: 09/24/21 16:57

Conventional Chemistry Parameters by APHA/EPA Methods - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AH14260 - General Preparation										
Blank (AH14260-BLK1)				Prepared &	Analyzed:	08/20/21				
MBAS, calculated as LAS, mw 340	ND	0 050	mg/L							
LCS (AH14260-BS1)				Prepared &	Analyzed:	08/20/21				
MBAS, calculated as LAS, mw 340	0 201	0 050	mg/L	0 200		101	80-120			
Matrix Spike (AH14260-MS1)	Sour	ce: 21H263	3-01	Prepared &	k Analyzed:	08/20/21				
MBAS, calculated as LAS, mw 340	0 188	0 050	mg/L	0 200	ND	94 0	80-120			
Matrix Spike Dup (AH14260-MSD1)	Sour	ce: 21H263	3-01	Prepared &	k Analyzed:	08/20/21				
MBAS, calculated as LAS, mw 340	0 201	0 050	mg/L	0 200	ND	101	80-120	6 84	20	
Batch AH14310 - NB General Prep										
Blank (AH14310-BLK1)				Prepared &	Analyzed:	08/20/21				
Perchlorate	ND	2 0	ug/L							
LCS (AH14310-BS1)				Prepared &	k Analyzed:	08/20/21				
Perchlorate	9 58	2 0	ug/L	10 0		95 8	85-115			
Duplicate (AH14310-DUP1)	Sour	ce: 21H246	8-01	Prepared &	Analyzed:	08/20/21				
Perchlorate	ND	2 0	ug/L		ND				15	
Matrix Spike (AH14310-MS1)	Sour	ce: 21H241	4-13	Prepared &	Analyzed:	08/20/21				
Perchlorate	9 36	2 0	ug/L	10 0	ND	93 6	70-130			
Matrix Spike Dup (AH14310-MSD1)	Sour	ce: 21H241	4-13	Prepared &	z Analyzed:	08/20/21				
Perchlorate	9 72	2 0	ug/L	10 0	ND	97 2	70-130	3 77	15	

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215 Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501 09/24/21 16:57 Project Number: Round 3 ASR Water Quality Baseline

Conventional Chemistry Parameters by APHA/EPA Methods - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AH14314 - General Prep (BAL)										
Duplicate (AH14314-DUP1)	Sour	ce: 21H263	3-03	Prepared &	Analyzed:	08/18/21				
Turbidity	ND	0 10	NTU		ND				15	
Batch AH14407 - General Preparation										
Blank (AH14407-BLK1)				Prepared &	Analyzed:	08/24/21				
Sulfide	ND	0 10	mg/L							
LCS (AH14407-BS1)				Prepared &	: Analyzed:	08/24/21				
Sulfide	0 230	0 10	mg/L	0 222		104	85-115			
Duplicate (AH14407-DUP1)	Sour	ce: 21H263	3-01	Prepared &						
Sulfide	ND	0 10	mg/L		ND				15	
Matrix Spike (AH14407-MS1)	Sour	ce: 21H263	3-01	Prepared &	: Analyzed:	08/24/21				
Sulfide	0 0910	0 10	mg/L	0 222	ND	41 0	80-120			QM-05
Matrix Spike Dup (AH14407-MSD1)	Sour	ce: 21H263	3-01	Prepared &	: Analyzed:	08/24/21				
Sulfide	0 0900	0 10	mg/L	0 222	ND	40 5	80-120	1 10	15	QM-05
Batch AH14424 - General Preparation										
Blank (AH14424-BLK1)				Prepared: (08/24/21 A	nalyzed: 09	/03/21			
Total Dissolved Solids	ND	10	mg/L							
Duplicate (AH14424-DUP1)	Sour	ce: 21H2320	6-01	Prepared: (08/24/21 A	nalyzed: 09	/03/21			
Total Dissolved Solids	188	10	mg/L		172			8 89	15	

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215 Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501 09/24/21 16:57 Project Number: Round 3 ASR Water Quality Baseline

Conventional Chemistry Parameters by APHA/EPA Methods - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AH14424 - General Preparation										
Duplicate (AH14424-DUP2)	Sour	ce: 21H232	6-02	Prepared: (08/24/21 At	nalyzed: 09	/03/21			
Total Dissolved Solids	156	10	mg/L		154			1 29	15	
Batch AH14703 - General Preparation										
Blank (AH14703-BLK1)				Prepared &	: Analyzed:	08/30/21				
Total Alkalinity as CaCO3	ND	5 0	mg/L							
Carbonate Alkalinity as CaCO3	ND	5 0	mg/L							
Hydroxide Alkalinity as CaCO3	ND	5 0	mg/L							
Bicarbonate Alkalinity as CaCO3	ND	5 0	mg/L							
LCS (AH14703-BS1)				Prepared &	Analyzed:	08/30/21				
Total Alkalinity as CaCO3	90 0	5 0	mg/L	80 0		112	70-130			
Duplicate (AH14703-DUP1)	Sour	ce: 21H263	3-01	Prepared &	: Analyzed:	08/30/21				
Total Alkalinity as CaCO3	310	5 0	mg/L		310			0 00	20	
Carbonate Alkalinity as CaCO3	ND	5 0	mg/L		ND				20	
Hydroxide Alkalinity as CaCO3	ND	5 0	mg/L		ND				20	
Bicarbonate Alkalinity as CaCO3	310	5 0	mg/L		310			0 00	20	
Batch AH14872 - Metals Digest (D)										
Blank (AH14872-BLK1)				Prepared: (09/01/21 At	nalyzed: 09	/03/21			
Hardness, Total	ND	5	mg/L							
Duplicate (AH14872-DUP1)	Sour	ce: 21H345	2-01	Prepared: (09/01/21 At	nalyzed: 09	/03/21			
Hardness, Total	238	5	mg/L		234			1 56	20	

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501

09/24/21 16:57 Project Number: Round 3 ASR Water Quality Baseline

Anions by	EPA Method	300.0 -	Quality	Control
-----------	------------	---------	---------	---------

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AH14195 - EPA 300.0										
Blank (AH14195-BLK1)				Prepared &	Analyzed:	08/19/21				
Nitrate as N	ND	0 20	mg/L							
Fluoride	ND	0 10	mg/L							
Sulfate as SO4	ND	0 50	mg/L							
Chloride	ND	0 50	mg/L							
LCS (AH14195-BS1)				Prepared &	Analyzed:	08/19/21				
Nitrate as N	5 37	0 20	mg/L	5 56		96 7	90-110			
Fluoride	5 59	0 10	mg/L	5 56		101	90-110			
Chloride	10 9	0 50	mg/L	11 1		97 8	90-110			
Sulfate as SO4	22 2	0 50	mg/L	22 2		100	90-110			
Duplicate (AH14195-DUP1)	Sou	ırce: 21H253	0-02	Prepared &	k Analyzed:	08/19/21				
Sulfate as SO4	7 91	0 50	mg/L		7 92			0 0379	20	
Chloride	2 04	0 50	mg/L		2 04			0 0490	20	
Nitrate as N	0 277	0 20	mg/L		0 277			0 244	20	
Fluoride	0 163	0 10	mg/L		0 163			0 00	20	
Matrix Spike (AH14195-MS1)	Soi	ırce: 21H253	0-02	Prepared &	z Analyzed:	08/19/21				
Fluoride	5 01	1 0	mg/L	5 56	ND	90 2	80-120			
Nitrate as N	5 57	2 0	mg/L	5 56	ND	100	80-120			
Chloride	11 7	5 0	mg/L	11 1	ND	87 2	80-120			
Sulfate as SO4	26 4	5 0	mg/L	22 2	7 92	83 3	80-120			
Matrix Spike (AH14195-MS2)	Soi	ırce: 21H268	2-01	Prepared &	z Analyzed:	08/19/21				
Fluoride	4 71	1 0	mg/L	5 56	ND	84 8	80-120			
Nitrate as N	8 55	2 0	mg/L	5 56	3 70	87 3	80-120			
Sulfate as SO4	31 1	5 0	mg/L	22 2	12 9	82 2	80-120			
Chloride	17 1	5 0	mg/L	11 1	7 80	83 8	80-120			

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215 Alameda, CA 94501

Project: Round 3 ASR Water Quality Baseline

Project Number: Round 3 ASR Water Quality Baseline

Reported: 09/24/21 16:57

Anions by EPA Method 300.0 - Quality Control

Analyte(s)	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AH14195 - EPA 300.0										
Matrix Spike Dup (AH14195-MSD1)	Sourc	e: 21H2530	0-02	Prepared &	Analyzed:	08/19/21				
Sulfate as SO4	26 6	5 0	mg/L	22 2	7 92	84 2	80-120	0 796	20	
Fluoride	5 06	10	mg/L	5 56	ND	91 0	80-120	0 883	20	
Nitrate as N	5 61	20	mg/L	5 56	ND	101	80-120	0 717	20	
Chloride	11 8	5 0	mg/L	11 1	ND	88 0	80-120	0 755	20	

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501 Project Number: Round 3 ASR Water Quality Baseline

Reported: 09/24/21 16:57

Volatile Organic Compounds by EPA Method 524.2 - Quality Control

Analyte(s)	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
• ` ` `	Result	Lillit	Ullits	Level	Result	70KEC	Lillits	KrD	Lillit	Tiag
Batch AH14496 - VOAs in Water GCMS										
Blank (AH14496-BLK1)				Prepared &	k Analyzed:	08/25/21				
Bromodichloromethane	ND	1 00	ug/L							
Bromoform	ND	1 00	ug/L							
Chloroform	ND	1 00	ug/L							
Dibromochloromethane	ND	1 00	ug/L							
Trihalomethanes (total)	ND	1 00	ug/L							
Surrogate: Bromofluorobenzene	25.4		ug/L	25.0		102	70-130			
Surrogate: Dibromofluoromethane	24.6		ug/L	25.0		98.5	70-130			
Surrogate: Toluene-d8	24.8		ug/L	25.0		99.1	70-130			
LCS (AH14496-BS1)				Prepared &	ե Analyzed:	08/25/21				
Bromodichloromethane	4 57	1 00	ug/L	5 00		91 4	70-130			
Bromoform	4 31	1 00	ug/L	5 00		86 2	70-130			
Chloroform	5 19	1 00	ug/L	5 00		104	70-130			
Dibromochloromethane	4 45	1 00	ug/L	5 00		89 0	70-130			
Surrogate: Bromofluorobenzene	27.8		ug/L	25.0		111	70-130			
Surrogate: Dibromofluoromethane	23.5		ug/L	25.0		94.2	70-130			
Surrogate: Toluene-d8	24.8		ug/L	25.0		99.2	70-130			
LCS Dup (AH14496-BSD1)				Prepared &	ն Analyzed:	08/25/21				
Bromodichloromethane	4 59	1 00	ug/L	5 00		91 8	70-130	0 437	30	
Bromoform	4 11	1 00	ug/L	5 00		82 2	70-130	4 75	30	
Chloroform	5 14	1 00	ug/L	5 00		103	70-130	0 968	30	
Dibromochloromethane	4 58	1 00	ug/L	5 00		91 6	70-130	2 88	30	
Surrogate: Bromofluorobenzene	28.1		ug/L	25.0		113	70-130			
Surrogate: Dibromofluoromethane	22.4		ug/L	25.0		89.5	70-130			
Surrogate: Toluene-d8	24.9		ug/L	25.0		99.6	70-130			
Matrix Spike (AH14496-MS1)	So	urce: 21H246	9-02	Prepared: (08/25/21 A	nalyzed: 08	/26/21			
Bromodichloromethane	20 5	1 00	ug/L	5 00	14 0	130	70-130			<u> </u>
Bromoform	4 73	1 00	ug/L	5 00	ND	94 6	70-130			
Chloroform	79 8	1 00	ug/L	5 00	67 2	253	70-130			QM-
Dibromochloromethane	8 71	1 00	ug/L	5 00	3 65	101	70-130			
Surrogate: Bromofluorobenzene	28.3		ug/L	25.0		113	70-130			
Surrogate: Dibromofluoromethane	23.0		ug/L	25.0		91.8	70-130			

email: clientservices@alpha-labs.com

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline Project Number: Round 3 ASR Water Quality Baseline

Alameda, CA 94501

Reported: 09/24/21 16:57

Volatile Organic Compounds by EPA Method 524.2 - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AH14496 - VOAs in Water GCMS										
Matrix Spike (AH14496-MS1)	Sour	ce: 21H246	9-02	Prepared: (08/25/21 A	nalyzed: 08	3/26/21			
Surrogate: Toluene-d8	24.4		ug/L	25.0		97.6	70-130			
Matrix Spike (AH14496-MS2)	Sour	ce: 21H261	1-01	Prepared: ()8/25/21 A	nalyzed: 08	/26/21			
Bromodichloromethane	6 50	1 00	ug/L	5 00	1 77	94 6	70-130			
Bromoform	4 42	1 00	ug/L	5 00	ND	88 4	70-130			
Chloroform	60 2	1 00	ug/L	5 00	50 7	190	70-130			QM-05
Dibromochloromethane	4 27	1 00	ug/L	5 00	ND	85 4	70-130			
Surrogate: Bromofluorobenzene	27.8		ug/L	25.0		111	70-130			
Surrogate: Dibromofluoromethane	21.4		ug/L	25.0		85.8	70-130			
Surrogate: Toluene-d8	23.7		ug/L	25.0		94.7	70-130			

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501 Project Number: Round 3 ASR Water Quality Baseline

Reported: 09/24/21 16:57

Haloacetic Acids by EPA Method 552.2 - Quality Control

		Reporting		Spike	Source		%REC		RPD	El
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AH14766 - EPA 552.2										
Blank (AH14766-BLK1)				Prepared: (08/31/21 A	nalyzed: 09	/01/21			
Monobromoacetic Acid	ND	1 0	ug/L							
Monochloroacetic Acid	ND	2 0	ug/L							
Dibromoacetic Acid	ND	10	ug/L							
Dichloroacetic Acid	ND	10	ug/L							
Trichloroacetic Acid	ND	10	ug/L							
Total Haloacetic Acids (HAA5)	ND	10	ug/L							
Surrogate: 2,3-Dibromopropionic Acid	8.28		ug/L	9.85		84.1	70-130			
Surrogate: 2-Bromopropionic Acid	10.9		ug/L	10.0		109	70-130			
LCS (AH14766-BS1)				Prepared: (08/31/21 A	nalyzed: 09	/01/21			
Monobromoacetic Acid	28 6	1 0	ug/L	25 0		114	70-130			
Monochloroacetic Acid	28 6	2 0	ug/L	25 0		114	70-130			
Dibromoacetic Acid	24 9	10	ug/L	25 0		99 7	70-130			
Dichloroacetic Acid	28 5	10	ug/L	25 0		114	70-130			
Trichloroacetic Acid	24 5	10	ug/L	25 0		98 0	70-130			
Surrogate: 2,3-Dibromopropionic Acid	9.70		ug/L	9.85		98.5	70-130			
Surrogate: 2-Bromopropionic Acid	12.6		ug/L	10.0		126	70-130			
Matrix Spike (AH14766-MS1)	Sou	ırce: 21H263	3-01	Prepared: (08/31/21 A:	nalyzed: 09	/02/21			
Monobromoacetic Acid	31 8	1 0	ug/L	25 0	ND	127	70-130			
Monochloroacetic Acid	30 4	2 0	ug/L	25 0	ND	121	70-130			
Dibromoacetic Acid	28 2	10	ug/L	25 0	ND	113	70-130			
Dichloroacetic Acid	31 0	10	ug/L	25 0	ND	124	70-130			
Trichloroacetic Acid	27 6	10	ug/L	25 0	ND	110	70-130			
Surrogate: 2,3-Dibromopropionic Acid	11.8		ug/L	9.85		120	70-130			
Surrogate: 2-Bromopropionic Acid	14.3		ug/L	10.0		143	70-130			S-0
Matrix Spike (AH14766-MS2)	Sou	ırce: 21H273	8-01	Prepared: (08/31/21 A	nalyzed: 09	/02/21			
Monobromoacetic Acid	25 7	1 0	ug/L	25 0	ND	103	70-130			
Monochloroacetic Acid	51 4	2 0	ug/L	25 0	ND	205	70-130			QM-0'
Dibromoacetic Acid	23 8	1 0	ug/L	25 0	ND	95 0	70-130			
Dichloroacetic Acid	26 3	1 0	ug/L	25 0	ND	105	70-130			
Trichloroacetic Acid	24 2	1 0	ug/L	25 0	ND	96 7	70-130			
Surrogate: 2,3-Dibromopropionic Acid	10.5		ug/L	9.85		107	70-130			

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Project Number: Round 3 ASR Water Quality Baseline

Alameda, CA 94501

Reported:

09/24/21 16:57

Haloacetic Acids by EPA Method 552.2 - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag

ug/L

Batch AH14766 - EPA 552.2

Matrix Spike (AH14766-MS2) Source: 21H2738-01 Prepared: 08/31/21 Analyzed: 09/02/21

11.5

Surrogate: 2-Bromopropionic Acid

115

email: clientservices@alpha-labs.com

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501

Project Number: Round 3 ASR Water Quality Baseline

Reported: 09/24/21 16:57

Notes and Definitions

FILT	The sampl	e was filte	ered in the	lab prior	to analysis
------	-----------	-------------	-------------	-----------	-------------

QM-01 The spike recovery for this QC sample is outside of established control limits possibly due to a sample matrix interference.

QM-05 The spike recovery was outside acceptance limits for the MS and/or MSD due to matrix interference. The LCS and/or LCSD

were within acceptance limits showing that the laboratory is in control and the data is acceptable.

QM-07 The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS

recovery.

QM-4X The spike recovery was outside of QC acceptance limits for the MS and/or MSD due to analyte concentration at 4 times or

greater the spike concentration. The QC batch was accepted based on LCS and/or LCSD recoveries within the acceptance

limits.

R-01 The Reporting Limit for this analyte has been raised to account for matrix interference.

S-GC Surrogate recovery outside of control limits. The data was accepted based on valid recovery of the remaining surrogates.

ND Analyte NOT DETECTED at or above the reporting limit

dry Sample results reported on a dry weight basis

REC Recovery

RPD Relative Percent Difference

Corporate Laboratory (1651) 707-468-0401 208 Mason Street, Ukiah CA 95482

Los Angeles (Service Center) 310-743-5711 1230 E 233rd St #205, Carson CA 90745

North Bay Laboratory (2303) 707-769-3128 110 Liberty Street, Petaluma CA 94952

Bay Area Laboratory (2728) 925-828-6226 262 Rickenbacker Circle, Livermore CA 94551

Chain of Custody Record

Reports and Involces delivered by email as PDF files

clientservices@alpha-labs.com

www.alpha-labs.com	n Diogo I aborato	ory (3055) 760-930	-2555			-	ante	al 1/a	Harr	l ab	أدر		(2021	N 04	6-686	. 540	٠.								ז כ	, ,	10	,	~	つ	,	11
WATERS, SEDIMENTS, SOLIDS		Vest, Ste A, Carlsb			10	_	909	an va 30 Un	ion	Park	Wa	y #1	13, E	ik G	iove o-ood	CA 9	95624	ŀ			Lab	No.			1	H	2	<u>b</u>	<u>ر</u>	5	PØ_	9 of 6
Report to	Involce	e to (if different)		Т	_	-	Proje	ect in	fo		_	-			_		-	Anai	ysis	Req	uest		_		_				TA	ī	7	Temp *C
Company:	Contact:				rojec								Π		T -															dard		Ukiah
Todd Groundwater					Rou	nd 3		R Wat		Qual	ity											_	_					ĺ	10-d		15	3.0
Attn:	Email Address:	-		P	rojec	t Nu	mbe	r				1				١.	1					ū	٧Ż					L	0		╝	Livermore
Nicole Grimm											. {	,							,,	Ì		Cd Cr Cu	Dissolved 200.8 metals - Mn Mo Ni Pb Sb Se TI V Žn						RUS day	SH: 25%	6	5.8
Phone:	Phone:			F	O N	umb	er:					9			1				Alkatinity, Total / Chloride / Fluoride / MBAS		Na	Dissolved 200.8 metals - Ag Al As B Ba Be	Sp					ĺ	0		ı	Elk Grove
510-747-6920										C -	4	dua			1				de / f		Fe K Mg Na	SBE	N.		_ ا			2.		75%	\dashv	
Physical Address:				F	requ	ency	r:					er.S.	itray						luori		Fe	AI A	δ		etal			ı	0		ſ	Petaluma
2490 Mariner Square Loop, Suite 215, Ala	meda CA 94501										į	ers	Juan	ج ا	l				le/F	fate	-Ca	- Ag	-М	문	g g			\vdash	Oth	er	┪	
Email address:			Col	ntain	er .	Pre	serva	ation		Matri	i×	ntain	喜	Pigi	l				hloric	/Sul	etals	etals	etais	Į.	SSO			ı	0	1		Carlsbad
ngrimm@toddgroundwater.com	_				11						11	ပိုင်	BAL - TCEC GW 30hr Quantitray	BAL - Color and Turbidity	g.				0/E	Nitrate as N / TDS / Sulfate	Dissolved 200.7 metals - Ca	.8 щ	8. E	Dissolved 245.1 CVAA - Hg	Lab Filtration for Dissolved Metals	5		١.		days		
Field Sampler - Printed Name and Signature:	_ <		<u>.</u>	÷	П				Vater	ē	П	ber	8	or ar	텵				Tot	./N	3 200	1 200	1 200	1245	fion 1	Metals Digestion		- <u> </u> -		size		Los Angeles
Mule Grima			vial bott	ootte	₫	203	إرا	. .	y V	ewat		N N	Ę	2	F	L ₂	≥	g	linity,	te as	olvec	olvec	olvec	olvec	瞿	is D		1.	آ ،	П	П	
Sample Identification	Samp Time	led on Date	40mL vial Glass bottle	Poly	Other	Nazs		활동	틝	Wastewater	S G	Total Number of Containers per Sample	BAL	BAL	NB - Perchlorate	₹	THM	Sulfide	Alka	Nitra	Diss	Diss	Diss	Diss	룝	Met	ı	250mL	흵누	Half G	bacti	Source Code
21.0.2	hich			x	П	×	T		×	T	1	1	×															П	Τ	П	×	
3123	11:50	3/13/21	×	\forall	П		П	×	×	-		1	t	×	╁╴	<u> </u>	·								T	T		П	T	П	Ħ	-
		}	+	,	Н	+	╫	┪,	╏	+	ť	1	┢	一	×						-			\vdash	Ť	┢		x	十	Ħ	Ħ	-
		}	+	7	Н	+	╁┤	+	Ĥ	+	- 1	1	┢	╁	╫	×,	-	-	_					├	H	┢		H	十	H	H	
			×	\dashv	Н	+	╂┤	<u> </u>	Ĥ	+	4	Ŀ	╀	╀	╁	Ĥ	-	┝						-	┝	┝	┢	${\sf H}$	+	₩	H	
			<u>*</u>	ot	41	×	44	+	Ľ	4		3	ļ_	╀	╄	_	×		_					_		┝-	╀	${f H}$	+	╁┨	H	
			Ш	х	Ц	\perp	$\perp \downarrow$	×	Ľ	\perp	1 (1	L	L	_	_	↓	х		_				_			-	×.	4	┦	Ц	
				x			Ш	×	×		ţ	1						L	x	×	x	x	×	x	×	×		Ц	╧	Ľ	Ш	
· ·							\prod	Τ	,			ľ							•	is :									ľ			•
			╅	<u>.</u>	Ť	1	\top	٦,	П	T	T			T	厂						,								T	П	П	
	· · · · · · · · · · · · · · · · · · ·		+	H	+	- 1	Н	+	H	+	+	,	╁╴	十	十一	T		Г	┝∸	_	_		Γ	<u> </u>	ï	┢	1	H	†	††	Ħ	
<u> </u>			+	${\mathbb H}$	+-	╁	╫	+	Н	\dashv	+	┢	╁╌	╁╴	-	╁╴	┢	╁	٠-	┢	-		-	┢	┢	┢	+	H	十	H	H	
Relinguished by	<u> </u>	Di - t - d		Ш	Ш	\perp	┦	<u> </u>	Щ	<u> </u>	Ц	_	ــــــــــــــــــــــــــــــــــــــ	Dat	<u></u>		╄╌	ļ		<u></u>		L_	٠.,	<u> </u> Addi	itiona	al Re	gulr	 eme	L, nta	Ш		
		Received t	у <u>.</u>			_	╁╴		Tim		-	+-		<u> </u>	Γ.		╁╌		CΔ	DD'										_	_	
2	<u> </u>	27					╀-	16		_		+-	<u>g</u>]	4	2	_	┨	0	Wr	ito-C	n E	DT		8	State	Sys	tem h	lo: -		—		
9		كالح			_		\perp	19	0	<i>-</i>	_	بــــــــــــــــــــــــــــــــــــــ	9/4	8	4	<u> </u>	┌		CA					cilii.		L	D 1/-					
		ĨĹ_					7	<u>2</u>	ال	<u>s_</u>			<u>}/</u>	<u>/8</u>	\mathbb{Z}_{S}	1		0	Ge	oTra	acke						D No:		_	_		
		C									-	[]	7	•	•		1		ED	FR	epoi	1	San	nplln	ıg Co	mpa	iny Lo	ıg Co	ode:			

WORK ORDER

Printed: 8/19/2021 10:31:02AM

21H2633

Alpha Analytical Laboratories Ukiah to North Bay Chain of Custody

Client: Todd Groundwater Project: Round 3 ASR Water	r Quality Baseline		DP_TODENG Round 3 ASR Wate	Bid: r Qualit PO #:	Round 3 ASR	Water Quality
Date Due: 09/02/21 Received By: James Bix Logged In By: Sean Fole			ived: 08/18/21 22:15 ged 08/19/21 10:02			
Samples Received at:	deg C	All containers	received and intact:	YES N	0	
Analysis	Department	Expires	Comments			
21H2633-01 3121 [Water] San NB Perchlorate EPA 314.0	npled 08/18/21 09:10 NB Wet Chem	09/15/21 23	:59	_Lab I	Filter -	
21H2633-02 12-5-23A20 [Wate NB Perchlorate EPA 314.0	r] Sampled 08/18/21 NB Wet Chem	09:55 09/15/21 23	:59	Lab-l	Filter	
21H2633-03 3357 [Water] San NB Perchlorate EPA 314.0	npled 08/18/21 10:30 NB Wet Chem	09/15/21 23	:59	<u>Jab I</u>	ilter	
11H2633-04 3123 [Water] San NB Perchlorate EPA 314.0	npled 08/18/21 11:50 NB Wet Chem	09/15/21 23	:59	Lah-I	Hiter	
1 H2633-05 3127 [Water] Sam NB Perchlorate EPA 314.0	npled 08/18/21 12:25 NB Wet Chem	09/15/21 23:	:59	Lab-F	itter	
1H2633-06 Hollister #2 [Wate NB Perchlorate EPA 314.0	r] Sampled 08/18/21 NB Wet Chem	13:15 09/15/21 23:	59	Lab F	ilter	<u></u>
Containers Supplied: 250mL Poly Unpres (C)						
250mL Poly Unpres (C)						
250mL Poly Unpres (C)						
250mL Poly Unpres (C)						
250mL Poly Unpres (C) 250mL Poly Unpres (C)						:
Relinquished By	8/19/2 Date	Z/Time	Received By	\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-	7 20 Date	Time
It Dr.	* 220h1	12:30	Medical by:	< /	8(20)21	Time
Relinquished By	Date	Time	Received By	7	Date	Time

email: clientservices@alpha-labs.com

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

24 September 2021

Todd Groundwater

Attn: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Alameda, CA 94501

RE: Round 3 ASR Water Quality Baseline

Work Order: 21H2633

Enclosed are the results of analyses for samples received by the laboratory on 08/18/21 22:15. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Alisabeth J. Wilcox For David S. Pingatore

Project Manager

email: clientservices@alpha-labs.com

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501

Project Number: Round 3 ASR Water Quality Baseline

Reported:

09/24/21 16:57

Bay Area: 262 Rickenbacker Circle | Livermore, CA 94551 | T: 925-828-6226 | F: 925-828-6309 | ELAP# 2728 Central Valley: 9090 Union Park Way Suite 113 | Elk Grove, CA 95624 | T: 916-686-5190 | F: 916-686-5192 | ELAP# 2922 North Bay: 110 Liberty Street | Petaluma, CA 94952 | T: 707-769-3128 | F: 707-769-8093 | ELAP# 2303 San Diego: 2722 Loker Avenue West Suite A | Carlsbad, CA 92010 | T: 760-930-2555 | F: 760-930-2510 | ELAP# 3055

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
3127	21H2633-05	Water	08/18/21 12:25	08/18/21 22:15

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501

Project Number: Round 3 ASR Water Quality Baseline

	Result	Reporting Limit	Dilution	Batch	Prepared	Analyzed	ELAP#	Method	Note
		_	_						
			<u> </u>						
_									
		_	I						
			Ī						
			Ī						

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Alameda, CA 94501

Project: Round 3 ASR Water Quality Baseline

Project Number: Round 3 ASR Water Quality Baseline

	Result	Reporting Limit	Dilution	Batch	Prepared	Analyzed	ELAP#	Method	Note
									_
			_						
			-						
			Ī						
			I						
			Ī						
			i						
		_	Ī						
			_				_		
=		_	-						
			I						
			i						
			Ī						

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215 Alameda, CA 94501

Project: Round 3 ASR Water Quality Baseline

Project Number: Round 3 ASR Water Quality Baseline

 Result	Reporting Limit Dil	lution Batch	Prepared	Analyzed	ELAP#	Method	Note
	_						
							_
 ≣							
 	_						
	_						

email: clientservices@alpha-labs.com

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Alameda, CA 94501

Project: Round 3 ASR Water Quality Baseline

Project Number: Round 3 ASR Water Quality Baseline

09/24/21 16:57

Reported:

Result Reporting Limit Dilution Batch Prepared Analyzed ELAP# Method Note

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Alameda, CA 94501

Project: Round 3 ASR Water Quality Baseline

Project Number: Round 3 ASR Water Quality Baseline

09/24/21 16:57

Result	Reporting Limit Dilution	Batch Pr	repared Analyzed	ELAP#	Method N
			<u>·</u>		
	·				
					<u> </u>
					ļ
	= i				
					ſ
					<u> </u>
	— i				
	!				
	= :				

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Alameda, CA 94501

Project: Round 3 ASR Water Quality Baseline

Project Number: Round 3 ASR Water Quality Baseline

	Result	Reporting Limit	Dilution	Batch	Prepared	Analyzed	ELAP#	Method	Note
			Ī						
		_							
			Ī						
<u> </u>		_							
<u> </u>			I						
		_	_			<u> </u>			
			I						

email: clientservices@alpha-labs.com

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Alameda, CA 94501

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline Project Number: Round 3 ASR Water Quality Baseline

Reported: 09/24/21 16:57

Result Reporting Limit Dilution Batch Prepared Analyzed ELAP# Method Note

email: clientservices@alpha-labs.com

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Project Number: Round 3 ASR Water Quality Baseline Alameda, CA 94501

Reported: 09/24/21 16:57

Result Reporting Limit Dilution Batch Prepared Analyzed ELAP# Method Note

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501 Project Number: Round 3 ASR Water Quality Baseline

	Result	Reporting Limit Dilut	tion Batch	Prepared	Analyzed	ELAP# Method	Note
		= :					
		_ ;					
3127 (21H2633-05)		Sample Type: Wate	er	Sampled	l: 08/18/21 12:	25	
Metals (Dissolved) by EPA 200 Series Methods	ND //	0.20	4.712110	00/02/21 00 47	00/02/21 00 0	10 4554 ED1 245 1	FILT
Mercury, dissolved	ND ug/L	0 20 1		09/02/21 08:47		20 1551 EPA 245 1	
Calcium, dissolved	47 mg/L	1.0 1		09/01/21 13:35		37 1551 EPA 200 7	
Iron, dissolved	ND mg/L	0 10 1		09/01/21 13:35		37 1551 EPA 200 7	
Magnesium, dissolved	54 mg/L	1.0 1		09/01/21 13:35		37 1551 EPA 200 7	
Potassium, dissolved	2.9 mg/L	1.0 1				37 1551 EPA 200 7	
Sodium, dissolved	190 mg/L	1.0 1	AH148/2	09/01/21 13:35	09/03/21 17:3	37 1551 EPA 200 7	
Metals (Dissolved) by EPA Method 200.8 ICP/MS	ND //	10 1	41114107	00/04/01 15 10	00/02/21 12	77 4774 FD4 200 0	FILT
Aluminum, dissolved	ND ug/L	10 1				57 1551 EPA 200 8	
Antimony, dissolved	ND ug/L	0 50 1		08/24/21 17:10		31 1551 EPA 200 8	
Arsenic, dissolved	7.7 ug/L	0.50 1		08/24/21 17:10		31 1551 EPA 200 8	
Barium, dissolved	65 ug/L	0.50 1		08/24/21 17:10		31 1551 EPA 200 8	
Beryllium, dissolved	ND ug/L	0 10 1		08/24/21 17:10		31 1551 EPA 200 8	
Boron, dissolved	2500 ug/L	500 10		08/24/21 17:10		99 1551 EPA 200 8	
Cadmium, dissolved Chromium, dissolved	ND ug/L	0 10 1 0 50 1		08/24/21 17:10 08/24/21 17:10		31 1551 EPA 200 8 31 1551 EPA 200 8	
Copper, dissolved	ND ug/L			08/24/21 17:10		31 1551 EPA 200 8	
Lead, dissolved	3.0 ug/L ND ug/L	0.50 1 0 25 1		08/24/21 17:10		31 1551 EPA 200 8	
Manganese, dissolved	430 ug/L	5.0 1		08/24/21 17:10		31 1551 EPA 200 8	
Molybdenum, dissolved	430 ug/L 8.6 ug/L	0.25 1		08/24/21 17:10		31 1551 EPA 200 8	
Nickel, dissolved	7.1 ug/L	0.50 1		08/24/21 17:10		31 1551 EPA 200 8	
Selenium, dissolved	ND ug/L	2 0 1		08/24/21 17:10		31 1551 EPA 200 8	
Silver, dissolved	ND ug/L	0 10 1		08/24/21 17:10		57 1551 EPA 200 8	
Thallium, dissolved	ND ug/L	0 10 1		08/24/21 17:10		31 1551 EPA 200 8	
Vanadium, dissolved	5.3 ug/L	1.0 1		08/24/21 17:10		31 1551 EPA 200 8	
Zinc, dissolved	7.9 ug/L	5.0 1		08/24/21 17:10		31 1551 EPA 200 8	
	ug/L	5.0 1				1001 =1112000	

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Alameda, CA 94501

Project: Round 3 ASR Water Quality Baseline

Project Number: Round 3 ASR Water Quality Baseline

	Result	Reporting Limit D	Dilution	Batch	Prepared	Analyzed	ELAP#	Method	Note
3127 (21H2633-05)		Sample Type: W	Vater		Sampled	: 08/18/21 12:2	5		
Conventional Chemistry Parameters by APHA/I	EPA Methods								
Color	ND CU	5 0	1	AH14313	08/18/21 16:48	08/18/21 16:4	8 2728	SM2120B	
MBAS, calculated as LAS, mw 340	ND mg/L	0 050	1	AH14260	08/20/21 08 15	08/20/21 16 30	1551	SM5540C	
Perchlorate	ND ug/L	2 0	1	AH14310	08/20/21 08:00	08/20/21 19:5	4 2303	EPA 314 0	
Sulfide	ND mg/L	0 10	1	AH14407	08/24/21 06:00	08/24/21 06:0	1551	SM4500-S2 D	
Total Dissolved Solids	880 mg/L	10	1	AH14424	08/24/21 10:40	09/03/21 14:5	7 1551	SM2540C	
Turbidity	0.60 NTU	0.10	1	AH14314	08/18/21 16:57	08/18/21 16:5	7 2728	SM2130B	
Bicarbonate Alkalinity as CaCO3	330 mg/L	5.0	1	AH14703	08/30/21 08:00	08/30/21 12:2	1 1551	SM2320B	
Carbonate Alkalinity as CaCO3	ND mg/L	5 0	1	AH14703	08/30/21 08:00	08/30/21 12:2	1 1551	SM2320B	
Hydroxide Alkalinity as CaCO3	ND mg/L	5 0	1	AH14703	08/30/21 08:00	08/30/21 12:2	1 1551	SM2320B	
Total Alkalinity as CaCO3	330 mg/L	5.0	1	AH14703	08/30/21 08:00	08/30/21 12:2	1 1551	SM2320B	
Hardness, Total	340 mg/L	5	1	AH14872	09/01/21 13:35	09/03/21 17:3	7 1551	SM2340B	
Anions by EPA Method 300.0									
Chloride	150 mg/L	5.0	10	AH14195	08/19/21 18:00	08/19/21 18:0	1551	EPA 300 0	
Fluoride	0.46 mg/L	0.10	1	AH14195	08/19/21 17:43	08/19/21 17:43	3 1551	EPA 300 0	
Nitrate as N	0.27 mg/L	0.20	1	AH14195	08/19/21 17:43	08/19/21 17:43	3 1551	EPA 300 0	
Sulfate as SO4	150 mg/L	5.0	10	AH14195	08/19/21 18:00	08/19/21 18:0	1551	EPA 300 0	
Microbiological Parameters by APHA Standard	Methods								
Total Coliforms	1.0 MPN/100ml	L 1.0	1	AH14327	08/18/21 16:35	08/19/21 16:3:	5 2728	SM9223B	
E Coli	ND MPN/100mI	1 0	1	AH14327	08/18/21 16:35	08/19/21 16:3:	5 2728	SM9223B	
Volatile Organic Compounds by EPA Method 52	4.2								
Bromodichloromethane	ND ug/L	1 00	1	AH14496	08/25/21 15:00	08/26/21 05:5	7 1551	EPA 524 2	
Bromoform	ND ug/L	1 00	1	AH14496	08/25/21 15:00	08/26/21 05:5	7 1551	EPA 524 2	
Chloroform	ND ug/L	1 00	1	AH14496	08/25/21 15:00	08/26/21 05:5	7 1551	EPA 524 2	
Dibromochloromethane	ND ug/L	1 00	1	AH14496	08/25/21 15:00	08/26/21 05:5	7 1551	EPA 524 2	
Trihalomethanes (total)	ND ug/L	1 00	1	AH14496	08/25/21 15:00	08/26/21 05:5	7 1551	EPA 524 2	
Surrogate: Bromofluorobenzene	94.7 %	70-130		AH14496	08/25/21 15:00	08/26/21 05:5	7 1551	EPA 524.2	
Surrogate: Dibromofluoromethane	89.9 %	70-130		AH14496	08/25/21 15:00	08/26/21 05:5	7 1551	EPA 524.2	
Surrogate: Toluene-d8	99.5 %	70-130		AH14496	08/25/21 15:00	08/26/21 05:5	7 1551	EPA 524.2	

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215 Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501 Project Number: Round 3 ASR Water Quality Baseline

	Result	Reporting Limit Dilut	ion Batch	Prepared	Analyzed	ELAP# Method	Note
3127 (21H2633-05)		Sample Type: Wate	r	Sample	d: 08/18/21 12:	25	
Haloacetic Acids by EPA Method 552.2							
Monobromoacetic Acid	ND ug/L	10 1	AH14766	08/31/21 07:00	09/02/21 05:5	52 1551 EPA 552 2	
Monochloroacetic Acid	ND ug/L	20 1	AH14766	08/31/21 07 00	09/02/21 05 5	52 1551 EPA 552 2	
Dibromoacetic Acid	ND ug/L	10 1	AH14766	08/31/21 07:00	09/02/21 05:5	52 1551 EPA 552 2	
Dichloroacetic Acid	ND ug/L	10 1	AH14766	08/31/21 07:00	09/02/21 05:5	52 1551 EPA 552 2	
Trichloroacetic Acid	ND ug/L	10 1	AH14766	08/31/21 07:00	09/02/21 05:5	52 1551 EPA 552 2	
Total Haloacetic Acids (HAA5)	ND ug/L	10 1	AH14766	08/31/21 07:00	09/02/21 05:5	52 1551 EPA 552 2	
Surrogate: 2,3-Dibromopropionic Acid	123 %	70-130	AH14766	08/31/21 07:00	09/02/21 05:3	52 1551 EPA 552.2	
Surrogate: 2-Bromopropionic Acid	128 %	70-130	AH14766	08/31/21 07:00	09/02/21 05:3	52 1551 EPA 552.2	
		<u> </u>		<u>-</u>			
		:					
		= 1					

email: clientservices@alpha-labs.com

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501

Project Number: Round 3 ASR Water Quality Baseline

Reported: 09/24/21 16:57

Result Reporting Limit Dilution Batch Prepared Analyzed ELAP# Method Note

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501 Project Number: Round 3 ASR Water Quality Baseline Reported:

09/24/21 16:57

 Result	Reporting Limit	Dilution	Batch	Prepared	Analyzed	ELAP#	Method	Note
	<u> </u>	_						
		_						
	<u> </u>	_						

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501

Project Number: Round 3 ASR Water Quality Baseline

Reported: 09/24/21 16:57

Metals (Dissolved) by EPA 200 Series Methods - Quality Control

A ::=1=+=(=)	D14	Reporting	TT14.	Spike	Source	0/DEC	%REC	DDD	RPD	Flag
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AH14872 - Metals Digest (D)										
Blank (AH14872 BLK1)				Prepared: (09/01/21 Aı	nalyzed: 09	/03/21			
Calcium, dissolved	ND	1 0	mg/L							
Iron, dissolved	ND	0 10	mg/L							
Magnesium, dissolved	ND	10	mg/L							
Potassium, dissolved	ND	10	mg/L							
Sodium, dissolved	ND	1 0	mg/L							
LCS (AH14872-BS1)				Prepared: (09/01/21 Aı	nalyzed: 09	/03/21			
Calcium, dissolved	8 37	1 0	mg/L	8 00		105	85-115			
ron, dissolved	1 90	0 10	mg/L	2 00		95 1	85-115			
Magnesium, dissolved	8 66	10	mg/L	8 00		108	85-115			
Potassium, dissolved	8 06	10	mg/L	8 00		101	85-115			
Sodium, dissolved	8 12	1 0	mg/L	8 00		101	85-115			
Ouplicate (AH14872-DUP1)	Sour	ce: 21H345	2-01	Prepared: (09/01/21 Aı	nalyzed: 09	/03/21			
Calcium, dissolved	48 0	1 0	mg/L		47 3			1 38	20	
ron, dissolved	ND	0 10	mg/L		ND				20	
Magnesium, dissolved	28 7	10	mg/L		28 2			1 74	20	
Potassium, dissolved	4 07	10	mg/L		4 04			0 855	20	
Sodium, dissolved	23 1	1 0	mg/L		22 8			1 01	20	
Matrix Spike (AH14872-MS1)	Sour	ce: 21H345	2-01	Prepared: (2 00 95 1 85-115 8 00 108 85-115 8 00 101 85-115 8 00 101 85-115 Prepared: 09/01/21 Analyzed: 09/03/21 47 3 1 38 ND 28 2 1 74 4 04 0 855					
Calcium, dissolved	56 4	1 0	mg/L	8 00	47 3	114	70-130			
ron, dissolved	1 91	0 10	mg/L	2 00	ND	95 5	70-130			
Magnesium, dissolved	37 9	10	mg/L	8 00	28 2	122	70-130			
Potassium, dissolved	12 6	10	mg/L	8 00	4 04	107	70-130			
Sodium, dissolved	30 6	1 0	mg/L	8 00	22 8	96 6	70-130			
Matrix Spike (AH14872-MS2)	Sour	ce: 21H337	4-01	Prepared: (09/01/21 Aı	nalyzed: 09	/03/21			
Calcium, dissolved	21 6	1 0	mg/L	8 00	12 9	108	70-130			
ron, dissolved	1 95	0 10	mg/L	2 00	ND	97 3	70-130			
Magnesium, dissolved	17 3	1 0	mg/L	8 00	8 10	115	70-130			
Potassium, dissolved	9 84	10	mg/L	8 00	1 75	101	70-130			
Sodium, dissolved	27 1	10	mg/L	8 00	19 7	92 7	70-130			

email: clientservices@alpha-labs.com

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501

Project Number: Round 3 ASR Water Quality Baseline

Reported: 09/24/21 16:57

Metals (Dissolved) by EPA 200 Series Methods - Quality Control

		Reporting		Spike	Source		%REC		RPD		
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag	
Batch AH14872 - Metals Digest (D)											
Matrix Spike Dup (AH14872-MSD1)	Sou	rce: 21H345	2-01	Prepared: (09/01/21 A	nalyzed: 09	/03/21				
Calcium, dissolved	56 6	1 0	mg/L	8 00	47 3	117	70-130	0 409	20		
Iron, dissolved	1 87	0 10	mg/L	2 00	ND	93 6	70-130	1 95	20		
Magnesium, dissolved	37 4	1 0	mg/L	8 00	28 2	115	70-130	1 46	20		
Potassium, dissolved	12 4	10	mg/L	8 00	4 04	105	70-130	1 10	20		
Sodium, dissolved	30 8	10	mg/L	8 00	22 8	99 2	70-130	0 666	20		
Batch AI13118 - EPA 245.1 Hg Water											
Blank (AI13118-BLK1)				Prepared: (09/02/21 A	nalyzed: 09	/03/21				
Mercury, dissolved	ND	0 20	ug/L								
LCS (AI13118-BS1)				Prepared: (09/02/21 A	nalyzed: 09	/03/21	1 95 20 1 46 20 1 10 20 0 666 20			
Mercury, dissolved	2 56	0 20	ug/L	2 50		102	85-115				
Duplicate (AI13118 DUP1)	Sou	rce: 21H263	3-02	Prepared: (09/02/21 A	nalyzed: 09	/03/21				
Mercury, dissolved	ND	0 20	ug/L		ND				20		
Matrix Spike (AI13118-MS1)	Sou	rce: 21H263	3-02	Prepared: ()9/02/21 A	nalyzed: 09	/03/21				
Mercury, dissolved	2 52	0 20	ug/L	2 50	ND	101	70-130				
Matrix Spike Dup (AI13118-MSD1)	Sou	rce: 21H263	3-02	Prepared: ()9/02/21 A	nalyzed: 09	/03/21				
Mercury, dissolved	2 51	0 20	ug/L	2 50	ND	100	70-130	0 437	20		

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501

Project Number: Round 3 ASR Water Quality Baseline

Reported: 09/24/21 16:57

Analyta(a)	Result	Reporting Limit	Units	Spike	Source	%REC	%REC	RPD	RPD Limit	Flag
Analyte(s)	Result	Limit	Units	Level	Result	70KEC	Limits	KPD	Limit	1 lag
Batch AH14197 - EPA 200.8 (D)										
Blank (AH14197-BLK1)				Prepared: (08/24/21 Aı	nalyzed: 08	/27/21			
Aluminum, dissolved	ND	10	ug/L							
Antimony, dissolved	ND	0 50	ug/L							
Arsenic, dissolved	ND	0 50	ug/L							
Barium, dissolved	ND	0 50	ug/L							
Beryllium, dissolved	ND	0 10	ug/L							
Boron, dissolved	ND	50	ug/L							
Cadmium, dissolved	ND	0 10	ug/L							
Chromium, dissolved	ND	0 50	ug/L							
Copper, dissolved	0 591	0 50	ug/L							
Lead, dissolved	ND	0 25	ug/L							
Manganese, dissolved	ND	5 0	ug/L							
Molybdenum, dissolved	ND	0 25	ug/L							
Nickel, dissolved	ND	0 50	ug/L							
Selenium, dissolved	ND	20	ug/L							
Silver, dissolved	ND	0 10	ug/L							
Thallium, dissolved	ND	0 10	ug/L							
Vanadium, dissolved	ND	10	ug/L							
Zinc, dissolved	ND	5 0	ug/L							
LCS (AH14197-BS1)				Prenared: (08/24/21 Aı	nalyzed: 08	/27/21			
Aluminum, dissolved	554	10	ug/L	520	00/21/21 71	107	85-115			
Antimony, dissolved	20 8	0 50	ug/L	20 0		104	85-115			
Arsenic, dissolved	21 1	0 50	ug/L	20 0		105	85-115			
Barium, dissolved	20 3	0 50	ug/L	20 0		102	85-115			
Beryllium, dissolved	20 7	0 10	ug/L	20 0		104	85-115			
Boron, dissolved	106	50	ug/L	100		106	85-115			
Cadmium, dissolved	20 3	0 10	ug/L	20 0		101	85-115			
Chromium, dissolved	20 3	0 50	ug/L	20 0		101	85-115			
Copper, dissolved	22 3	0 50	ug/L	20 0		112	85-115			
Lead, dissolved	20 5	0 25	ug/L	20 0		103	85-115			
Manganese, dissolved	20 5	5 0	ug/L	20 0		102	85-115			
Molybdenum, dissolved	21 3	0 25	ug/L ug/L	20 0		106	85-115			
Nickel, dissolved	20 1	0 50	ug/L	20 0		100	85-115			
Selenium, dissolved	21 6	2 0	ug/L	20 0		108	85-115			
Silver, dissolved	18 0	0 10	ug/L ug/L	20 0		90 1	85-115			

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501 Project Number: Round 3 ASR Water Quality Baseline

Reported: 09/24/21 16:57

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AH14197 - EPA 200.8 (D)										
LCS (AH14197-BS1)				Prepared: (08/24/21 A	nalyzed: 08	/26/21			
Thallium, dissolved	20 4	0 10	ug/L	20 0		102	85-115			
Vanadium, dissolved	20 6	10	ug/L	20 0		103	85-115			
Zinc, dissolved	103	5 0	ug/L	100		103	85-115			
Duplicate (AH14197-DUP1)	Sou	rce: 21H263	3-01	Prepared: (08/24/21 A	nalyzed: 08	/27/21			
Aluminum, dissolved	ND	100	ug/L		ND				20	
Antimony, dissolved	ND	0 50	ug/L		ND				20	
Arsenic, dissolved	5 05	0 50	ug/L		4 88			3 43	20	
Barium, dissolved	41 3	0 50	ug/L		40 5			2 00	20	
Beryllium, dissolved	ND	0 10	ug/L		ND				20	
Boron, dissolved	1930	50	ug/L		1910			0 965	20	
Cadmium, dissolved	ND	0 10	ug/L		ND				20	
Chromium, dissolved	11 6	0 50	ug/L		11 5			1 13	20	
Copper, dissolved	24 4	0 50	ug/L		24 2			0 967	20	
Lead, dissolved	0 340	0 25	ug/L		0 296			14 0	20	
Manganese, dissolved	ND	5 0	ug/L		ND				20	
Molybdenum, dissolved	5 45	0 25	ug/L		5 36			1 49	20	
Nickel, dissolved	1 19	0 50	ug/L		1 20			0 848	20	
Selenium, dissolved	5 75	2 0	ug/L		5 43			5 61	20	
Silver, dissolved	ND	0 10	ug/L		0 218			200	20	
Thallium, dissolved	ND	0 10	ug/L		ND				20	
Vanadium, dissolved	6 40	1 0	ug/L		6 47			1 08	20	
Zinc, dissolved	13 8	5 0	ug/L		13 4			2 85	20	
MRL Check (AH14197-MRL1)				Prepared: (08/24/21 A	nalyzed: 08	/27/21			
Aluminum, dissolved	12 2	10	ug/L	8 00		153	0-200			
Silver, dissolved	0 0833	0 10	ug/L	0 0800		104	0-200			
Thallium, dissolved	0 0721	0 10	ug/L	0 0800		90 1	0-200			
Vanadium, dissolved	0 878	10	ug/L	0 800		110	0-200			

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501 Project Number: Round 3 ASR Water Quality Baseline

Reported: 09/24/21 16:57

Analyte(s)	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AH14197 - EPA 200.8 (D)										
Matrix Spike (AH14197-MS1)	So	urce: 21H263	3-05	Prepared: (08/24/21 Aı	nalyzed: 08	/27/21			
Aluminum, dissolved	616	10	ug/L	520	ND	117	70-130			QM-0
Antimony, dissolved	19 8	0 50	ug/L	20 0	ND	99 1	70-130			
Arsenic, dissolved	27 4	0 50	ug/L	20 0	7 71	98 7	70-130			
Barium, dissolved	82 4	0 50	ug/L	20 0	65 2	86 1	70-130			
Beryllium, dissolved	18 3	0 10	ug/L	20 0	ND	91 4	70-130			
Boron, dissolved	2380	50	ug/L	100	2470	NR	70-130			QM-42
Cadmium, dissolved	18 5	0 10	ug/L	20 0	ND	92 6	70-130			
Chromium, dissolved	19 5	0 50	ug/L	20 0	ND	97 3	70-130			
Copper, dissolved	23 0	0 50	ug/L	20 0	3 01	100	70-130			
Lead, dissolved	16 2	0 25	ug/L	20 0	ND	80 8	70-130			
Manganese, dissolved	441	5 0	ug/L	20 0	429	63 4	70-130			QM-0
Molybdenum, dissolved	29 8	0 25	ug/L	20 0	8 61	106	70-130			
Nickel, dissolved	24 8	0 50	ug/L	20 0	7 15	88 4	70-130			
Selenium, dissolved	19 6	2 0	ug/L	20 0	ND	90 8	70-130			
Silver, dissolved	17 2	0 10	ug/L	20 0	ND	86 1	70-130			QM-0
Thallium, dissolved	16 0	0 10	ug/L	20 0	ND	80 2	70-130			
Vanadium, dissolved	24 9	1 0	ug/L	20 0	5 33	97 9	70-130			
Zinc, dissolved	98 0	5 0	ug/L	100	7 93	90 0	70-130			
Matrix Spike Dup (AH14197-MSD1)	So	urce: 21H263	3-05	Prepared: (08/24/21 Aı	nalyzed: 08	/27/21			
Aluminum, dissolved	621	10	ug/L	520	ND	118	70-130	0 734	20	QM-0
Antimony, dissolved	19 7	0 50	ug/L	20 0	ND	98 3	70-130	0 783	20	
Arsenic, dissolved	27 3	0 50	ug/L	20 0	7 71	98 0	70-130	0 533	20	
Barium, dissolved	82 5	0 50	ug/L	20 0	65 2	86 3	70-130	0 0474	20	
Beryllium, dissolved	18 3	0 10	ug/L	20 0	ND	91 7	70-130	0 349	20	
Boron, dissolved	2330	50	ug/L	100	2470	NR	70-130	2 06	20	QM-42
Cadmium, dissolved	18 7	0 10	ug/L	20 0	ND	93 3	70-130	0 746	20	
Chromium, dissolved	19 8	0 50	ug/L	20 0	ND	99 0	70-130	1 72	20	
Copper, dissolved	23 1	0 50	ug/L	20 0	3 01	100	70-130	0 257	20	
Lead, dissolved	15 9	0 25	ug/L	20 0	ND	79 6	70-130	1 41	20	
Manganese, dissolved	448	5 0	ug/L	20 0	429	99 2	70-130	1 61	20	
Molybdenum, dissolved	29 8	0 25	ug/L	20 0	8 61	106	70-130	0 125	20	
Nickel, dissolved	25 3	0 50	ug/L	20 0	7 15	90 7	70-130	1 81	20	
Selenium, dissolved	19 8	2 0	ug/L	20 0	ND	91 7	70-130	0 900	20	
Silver, dissolved	17 6	0 10	ug/L	20 0	ND	88 1	70-130	2 40	20	QM-0

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501

Project Number: Round 3 ASR Water Quality Baseline

Reported: 09/24/21 16:57

Analyte(s)	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AH14197 - EPA 200.8 (D)										
Matrix Spike Dup (AH14197-MSD1)	Sour	ce: 21H263:	3-05	Prepared: (08/24/21 A	nalyzed: 08	3/26/21			
Thallium, dissolved	15 6	0 10	ug/L	20 0	ND	78 2	70-130	2 57	20	
Vanadium, dissolved	25 3	10	ug/L	20 0	5 33	99 8	70-130	1 46	20	
Zinc, dissolved	98 6	5 0	ug/L	100	7 93	90 7	70-130	0 676	20	

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215 Project: Round 3 ASR Water Quality Baseline Reported: Alameda, CA 94501 09/24/21 16:57 Project Number: Round 3 ASR Water Quality Baseline

Conventional Chemistry Parameters by APHA/EPA Methods - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AH14260 - General Preparation										
Blank (AH14260-BLK1)				Prepared &	Analyzed:	08/20/21				
MBAS, calculated as LAS, mw 340	ND	0 050	mg/L							
LCS (AH14260-BS1)				Prepared &	z Analyzed:	08/20/21				
MBAS, calculated as LAS, mw 340	0 201	0 050	mg/L	0 200		101	80-120			
Matrix Spike (AH14260-MS1)	Soui	rce: 21H263	3-01	Prepared &	Analyzed:	08/20/21				
MBAS, calculated as LAS, mw 340	0 188	0 050	mg/L	0 200	ND	94 0	80-120			
Matrix Spike Dup (AH14260-MSD1)	Soui	rce: 21H263	3-01	Prepared &	Analyzed:	08/20/21				
MBAS, calculated as LAS, mw 340	0 201	0 050	mg/L	0 200	ND	101	80-120	6 84	20	
Batch AH14310 - NB General Prep										
Blank (AH14310-BLK1)				Prepared &	Analyzed:	08/20/21				
Perchlorate	ND	2 0	ug/L							
LCS (AH14310-BS1)				Prepared &	Analyzed:	08/20/21				
Perchlorate	9 58	2 0	ug/L	10 0		95 8	85-115			
Duplicate (AH14310-DUP1)	Soui	rce: 21H246	8-01	Prepared &	Analyzed:	08/20/21				
Perchlorate	ND	2 0	ug/L		ND				15	
Matrix Spike (AH14310-MS1)	Soui	rce: 21H241	4-13	Prepared &	Analyzed:	08/20/21				
Perchlorate	9 36	2 0	ug/L	10 0	ND	93 6	70-130			
Matrix Spike Dup (AH14310-MSD1)	Soui	rce: 21H241	4-13	Prepared &	z Analyzed:	08/20/21				
Perchlorate	9 72	2 0	ug/L	10 0	ND	97 2	70-130	3 77	15	

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215 Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501 09/24/21 16:57 Project Number: Round 3 ASR Water Quality Baseline

Conventional Chemistry Parameters by APHA/EPA Methods - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AH14314 - General Prep (BAL)										
Duplicate (AH14314-DUP1)	Sou	rce: 21H263	3-03	Prepared &	Analyzed:	08/18/21				
Turbidity	ND	0 10	NTU		ND				15	
Batch AH14407 - General Preparation										
Blank (AH14407-BLK1)				Prepared &	Analyzed:	08/24/21				
Sulfide	ND	0 10	mg/L							
LCS (AH14407-BS1)				Prepared &	. Analyzed:	08/24/21				
Sulfide	0 230	0 10	mg/L	0 222		104	85-115			
Duplicate (AH14407-DUP1)	Sour	rce: 21H263	3-01	Prepared &	z Analyzed:	08/24/21				
Sulfide	ND	0 10	mg/L		ND				15	
Matrix Spike (AH14407-MS1)	Sou	rce: 21H263	3-01	Prepared &	z Analyzed:	08/24/21				
Sulfide	0 0910	0 10	mg/L	0 222	ND	41 0	80-120			QM-05
Matrix Spike Dup (AH14407-MSD1)	Sou	rce: 21H263:	3-01	Prepared &	. Analyzed:	08/24/21				
Sulfide	0 0900	0 10	mg/L	0 222	ND	40 5	80-120	1 10	15	QM-05
Batch AH14424 - General Preparation										
Blank (AH14424-BLK1)				Prepared: (08/24/21 A	nalyzed: 09	/03/21			
Total Dissolved Solids	ND	10	mg/L							
Duplicate (AH14424-DUP1)	Sou	rce: 21H232	6-01	Prepared: ()8/24/21 A	nalyzed: 09	/03/21			
Total Dissolved Solids	188	10	mg/L		172			8 89	15	

Reported:

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215 Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501 09/24/21 16:57 Project Number: Round 3 ASR Water Quality Baseline

Conventional Chemistry Parameters by APHA/EPA Methods - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AH14424 - General Preparation										
Duplicate (AH14424-DUP2)	Sour	ce: 21H232	6-02	Prepared: (08/24/21 At	nalyzed: 09	/03/21			
Total Dissolved Solids	156	10	mg/L		154			1 29	15	
Batch AH14703 - General Preparation										
Blank (AH14703-BLK1)				Prepared &	: Analyzed:	08/30/21				
Total Alkalinity as CaCO3	ND	5 0	mg/L							
Carbonate Alkalinity as CaCO3	ND	5 0	mg/L							
Hydroxide Alkalinity as CaCO3	ND	5 0	mg/L							
Bicarbonate Alkalinity as CaCO3	ND	5 0	mg/L							
LCS (AH14703-BS1)				Prepared &	Analyzed:	08/30/21				
Total Alkalinity as CaCO3	90 0	5 0	mg/L	80 0		112	70-130			
Duplicate (AH14703-DUP1)	Sour	ce: 21H263	3-01	Prepared &	: Analyzed:	08/30/21				
Total Alkalinity as CaCO3	310	5 0	mg/L		310			0 00	20	
Carbonate Alkalinity as CaCO3	ND	5 0	mg/L		ND				20	
Hydroxide Alkalinity as CaCO3	ND	5 0	mg/L		ND				20	
Bicarbonate Alkalinity as CaCO3	310	5 0	mg/L		310			0 00	20	
Batch AH14872 - Metals Digest (D)										
Blank (AH14872-BLK1)				Prepared: (09/01/21 At	nalyzed: 09	/03/21			
Hardness, Total	ND	5	mg/L							
Duplicate (AH14872-DUP1)	Sour	ce: 21H345	2-01	Prepared: (09/01/21 At	nalyzed: 09	/03/21			
Hardness, Total	238	5	mg/L		234			1 56	20	

Reported:

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501 Project Number: Round 3 ASR Water Quality Baseline

Reported: 09/24/21 16:57

Anions by EPA Method 300.0 - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AH14195 - EPA 300.0										
Blank (AH14195-BLK1)				Prepared &	Analyzed:	08/19/21				
Nitrate as N	ND	0 20	mg/L							
Fluoride	ND	0 10	mg/L							
Sulfate as SO4	ND	0 50	mg/L							
Chloride	ND	0 50	mg/L							
LCS (AH14195-BS1)				Prepared &	: Analyzed:	08/19/21				
Nitrate as N	5 37	0 20	mg/L	5 56		96 7	90-110			
Fluoride	5 59	0 10	mg/L	5 56		101	90-110			
Chloride	10 9	0 50	mg/L	11 1		97 8	90-110			
Sulfate as SO4	22 2	0 50	mg/L	22 2		100	90-110			
Duplicate (AH14195-DUP1)	Sou	urce: 21H253	0-02	Prepared &	: Analyzed:	08/19/21				
Sulfate as SO4	7 91	0 50	mg/L		7 92			0 0379	20	
Chloride	2 04	0 50	mg/L		2 04			0 0490	20	
Nitrate as N	0 277	0 20	mg/L		0 277			0 244	20	
Fluoride	0 163	0 10	mg/L		0 163			0 00	20	
Matrix Spike (AH14195-MS1)	Soi	urce: 21H253	0-02	Prepared &	Analyzed:	08/19/21				
Fluoride	5 01	1 0	mg/L	5 56	ND	90 2	80-120			
Nitrate as N	5 57	2 0	mg/L	5 56	ND	100	80-120			
Chloride	11 7	5 0	mg/L	11 1	ND	87 2	80-120			
Sulfate as SO4	26 4	5 0	mg/L	22 2	7 92	83 3	80-120			
Matrix Spike (AH14195-MS2)	Sou	urce: 21H268	2-01	Prepared &	Analyzed:	08/19/21				
Fluoride	4 71	1 0	mg/L	5 56	ND	84 8	80-120			
Nitrate as N	8 55	2 0	mg/L	5 56	3 70	87 3	80-120			
Sulfate as SO4	31 1	5 0	mg/L	22 2	12 9	82 2	80-120			
Chloride	17 1	5 0	mg/L	11 1	7 80	83 8	80-120			

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215 Alameda, CA 94501

Project: Round 3 ASR Water Quality Baseline

Project Number: Round 3 ASR Water Quality Baseline

Reported: 09/24/21 16:57

Anions by EPA Method 300.0 - Quality Control

Analyte(s)	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AH14195 - EPA 300.0										
Matrix Spike Dup (AH14195-MSD1)	Sourc	e: 21H2530	0-02	Prepared &	Analyzed:	08/19/21				
Sulfate as SO4	26 6	5 0	mg/L	22 2	7 92	84 2	80-120	0 796	20	
Fluoride	5 06	10	mg/L	5 56	ND	91 0	80-120	0 883	20	
Nitrate as N	5 61	20	mg/L	5 56	ND	101	80-120	0 717	20	
Chloride	11 8	5 0	mg/L	11 1	ND	88 0	80-120	0 755	20	

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501 Project Number: Round 3 ASR Water Quality Baseline

Reported: 09/24/21 16:57

Volatile Organic Compounds by EPA Method 524.2 - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AH14496 - VOAs in Water GCMS										
Blank (AH14496-BLK1)				Prepared &	Analyzed:	08/25/21				
Bromodichloromethane	ND	1 00	ug/L							
Bromoform	ND	1 00	ug/L							
Chloroform	ND	1 00	ug/L							
Dibromochloromethane	ND	1 00	ug/L							
Trihalomethanes (total)	ND	1 00	ug/L							
Surrogate: Bromofluorobenzene	25.4		ug/L	25.0		102	70-130			
Surrogate: Dibromofluoromethane	24.6		ug/L	25.0		98.5	70-130			
Surrogate: Toluene-d8	24.8		ug/L	25.0		99.1	70-130			
LCS (AH14496-BS1)				Prepared &	z Analyzed:	08/25/21				
Bromodichloromethane	4 57	1 00	ug/L	5 00		91 4	70-130			
Bromoform	4 31	1 00	ug/L	5 00		86 2	70-130			
Chloroform	5 19	1 00	ug/L	5 00		104	70-130			
Dibromochloromethane	4 45	1 00	ug/L	5 00		89 0	70-130			
Surrogate: Bromofluorobenzene	27.8		ug/L	25.0		111	70-130			
Surrogate: Dibromofluoromethane	23.5		ug/L	25.0		94.2	70-130			
Surrogate: Toluene-d8	24.8		ug/L	25.0		99.2	70-130			
LCS Dup (AH14496-BSD1)				Prepared &	z Analyzed:	08/25/21				
Bromodichloromethane	4 59	1 00	ug/L	5 00		91 8	70-130	0 437	30	
Bromoform	4 11	1 00	ug/L	5 00		82 2	70-130	4 75	30	
Chloroform	5 14	1 00	ug/L	5 00		103	70-130	0 968	30	
Dibromochloromethane	4 58	1 00	ug/L	5 00		91 6	70-130	2 88	30	
Surrogate: Bromofluorobenzene	28.1		ug/L	25.0		113	70-130			
Surrogate: Dibromofluoromethane	22.4		ug/L	25.0		89.5	70-130			
Surrogate: Toluene-d8	24.9		ug/L	25.0		99.6	70-130			
Matrix Spike (AH14496-MS1)	So	urce: 21H246	9-02	Prepared: (08/25/21 A	nalyzed: 08	/26/21			
Bromodichloromethane	20 5	1 00	ug/L	5 00	14 0	130	70-130			
Bromoform	4 73	1 00	ug/L	5 00	ND	94 6	70-130			
Chloroform	79 8	1 00	ug/L	5 00	67 2	253	70-130			QM-
Dibromochloromethane	8 71	1 00	ug/L	5 00	3 65	101	70-130			
Surrogate: Bromofluorobenzene	28.3		ug/L	25.0		113	70-130			
Surrogate: Dibromofluoromethane	23.0		ug/L	25.0		91.8	70-130			

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501

Project Number: Round 3 ASR Water Quality Baseline

Reported: 09/24/21 16:57

Volatile Organic Compounds by EPA Method 524.2 - Quality Control

Analyte(s)	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AH14496 - VOAs in Water GCMS										
Matrix Spike (AH14496-MS1)	Sour	ce: 21H246	9-02	Prepared: (08/25/21 A	nalyzed: 08	/26/21			
Surrogate: Toluene-d8	24.4		ug/L	25.0		97.6	70-130			
Matrix Spike (AH14496-MS2)	Sour	ce: 21H261	1-01	Prepared: (08/25/21 A	nalyzed: 08	/26/21			
Bromodichloromethane	6 50	1 00	ug/L	5 00	1 77	94 6	70-130			
Bromoform	4 42	1 00	ug/L	5 00	ND	88 4	70-130			
Chloroform	60 2	1 00	ug/L	5 00	50 7	190	70-130			QM-05
Dibromochloromethane	4 27	1 00	ug/L	5 00	ND	85 4	70-130			
Surrogate: Bromofluorobenzene	27.8		ug/L	25.0		111	70-130			
Surrogate: Dibromofluoromethane	21.4		ug/L	25.0		85.8	70-130			
Surrogate: Toluene-d8	23.7		ug/L	25.0		94.7	70-130			

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501 Project Number: Round 3 ASR Water Quality Baseline

Reported: 09/24/21 16:57

Haloacetic Acids by EPA Method 552.2 - Quality Control

		Reporting		Spike	Source		%REC		RPD	171
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AH14766 - EPA 552.2										
Blank (AH14766-BLK1)				Prepared: (08/31/21 A	nalyzed: 09	/01/21			
Monobromoacetic Acid	ND	1 0	ug/L							
Monochloroacetic Acid	ND	2 0	ug/L							
Dibromoacetic Acid	ND	10	ug/L							
Dichloroacetic Acid	ND	10	ug/L							
Trichloroacetic Acid	ND	10	ug/L							
Total Haloacetic Acids (HAA5)	ND	1 0	ug/L							
Surrogate: 2,3-Dibromopropionic Acid	8.28		ug/L	9.85		84.1	70-130			
Surrogate 2 Bromopropionic Acid	10 9		ug/L	10 0		109	70 130			
LCS (AH14766-BS1)				Prepared: (08/31/21 A	nalyzed: 09	/01/21			
Monobromoacetic Acid	28 6	1 0	ug/L	25 0		114	70-130			
Monochloroacetic Acid	28 6	2 0	ug/L	25 0		114	70-130			
Dibromoacetic Acid	24 9	10	ug/L	25 0		99 7	70-130			
Dichloroacetic Acid	28 5	10	ug/L	25 0		114	70-130			
Trichloroacetic Acid	24 5	10	ug/L	25 0		98 0	70-130			
Surrogate: 2,3-Dibromopropionic Acid	9.70		ug/L	9.85		98.5	70-130			
Surrogate: 2-Bromopropionic Acid	12.6		ug/L	10.0		126	70-130			
Matrix Spike (AH14766-MS1)	Sou	ırce: 21H263	3-01	Prepared: (08/31/21 A	nalyzed: 09	/02/21			
Monobromoacetic Acid	31 8	1 0	ug/L	25 0	ND	127	70-130			
Monochloroacetic Acid	30 4	2 0	ug/L	25 0	ND	121	70-130			
Dibromoacetic Acid	28 2	10	ug/L	25 0	ND	113	70-130			
Dichloroacetic Acid	31 0	10	ug/L	25 0	ND	124	70-130			
Trichloroacetic Acid	27 6	1 0	ug/L	25 0	ND	110	70-130			
Surrogate: 2,3-Dibromopropionic Acid	11.8		ug/L	9.85		120	70-130			
Surrogate: 2-Bromopropionic Acid	14.3		ug/L	10.0		143	70-130			S-0
Matrix Spike (AH14766-MS2)	Sou	ırce: 21H273	8-01	Prepared: (08/31/21 A	nalyzed: 09	/02/21			
Monobromoacetic Acid	25 7	1 0	ug/L	25 0	ND	103	70-130			
Monochloroacetic Acid	51 4	2 0	ug/L	25 0	ND	205	70-130			QM-07
Dibromoacetic Acid	23 8	10	ug/L	25 0	ND	95 0	70-130			
Dichloroacetic Acid	26 3	1 0	ug/L	25 0	ND	105	70-130			
Trichloroacetic Acid	24 2	1 0	ug/L	25 0	ND	96 7	70-130			
Surrogate: 2,3-Dibromopropionic Acid	10.5		ug/L	9.85		107	70-130			

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Project Number: Round 3 ASR Water Quality Baseline

Alameda, CA 94501

Reported:

09/24/21 16:57

Haloacetic Acids by EPA Method 552.2 - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag

ug/L

Batch AH14766 - EPA 552.2

Matrix Spike (AH14766-MS2) Source: 21H2738-01 Prepared: 08/31/21 Analyzed: 09/02/21

11.5

Surrogate: 2-Bromopropionic Acid

115

Alpha Analytical Laboratories, Inc.

email: clientservices@alpha-labs.com

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501

Project Number: Round 3 ASR Water Quality Baseline

Reported: 09/24/21 16:57

Notes and Definitions

FILT	The sampl	e was filte	ered in the	lab prior	to analysis
------	-----------	-------------	-------------	-----------	-------------

QM-01 The spike recovery for this QC sample is outside of established control limits possibly due to a sample matrix interference.

QM-05 The spike recovery was outside acceptance limits for the MS and/or MSD due to matrix interference. The LCS and/or LCSD

were within acceptance limits showing that the laboratory is in control and the data is acceptable.

QM-07 The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS

recovery.

QM-4X The spike recovery was outside of QC acceptance limits for the MS and/or MSD due to analyte concentration at 4 times or

greater the spike concentration. The QC batch was accepted based on LCS and/or LCSD recoveries within the acceptance

limits.

R-01 The Reporting Limit for this analyte has been raised to account for matrix interference.

S-GC Surrogate recovery outside of control limits. The data was accepted based on valid recovery of the remaining surrogates.

ND Analyte NOT DETECTED at or above the reporting limit

dry Sample results reported on a dry weight basis

REC Recovery

RPD Relative Percent Difference

Corporate Laboratory (1551) 707-468-0401 208 Mason Street, Ukiah CA 95482

Los Angeles (Service Center) 310-743-5711 1230 E 233rd St #205, Carson CA 90745

San Diego Laboratory (3055) 760-930-2555 2722 Loker Ave West, Ste A, Carlsbad CA 92010 North Bay Laboratory (2303) 707-769-3128 110 Liberty Street, Fletaluma CA 94952

Bay Area Laboratory (2728) 925-828-6226 262 Rickenbacker Circle, Livermore CA 94551

Central Valley Laboratory (2922) 916-686-5190 9090 Union Park Way #113, Elk Grove CA 95624

Chain of Custody Record

Reports and Invoices delivered by email as PDF files

clientservices@alpha-labs.com

Lab No	2142633	Pg	of	0
test.	TATE	To To	10	_

Report to		e to (ir dinerent)		↓		rojec	er min			 						<u>чпан</u>	/SIS I	tequ	est.						l'	T/	\T	ľ	Temp *(;
Company:	Contact:			Proje Ro	ect Na und 3	Me: ASR	Wate	r Ous	alify	Ì			İ			Ì		ł				Ţ	Г	Т			dard	T	Ukiah	
Todd Groundwater				<u> </u>		Base	oline]				ı	- 1				- 1	.	۔ ا		1		l	10-	-	ı	3Q	Į
Attn:	Email Address:			Proje	ct Nu	mber:					i								-1:	2 5	>	1			_		1/2	┵	Livermor	e
Nicole Grimm									_					1			ړ			5 5	= g					RUS day	3H: 25%		9-8	
· \	Phone:			PON	lumbe	r.				Ξ̈́				-	l		₩ W	- [,	، ا چ	8 B	g S		1			Ó		t	Elk Grove	•
510-747-6920										Sample ID			ı		-	-	- -		g l		<u> </u>				-2.	L	75%	4		
Physical Address:	•			Freq	uency												ig	- 1	<u>:</u> ا ج	Ž :	ğ	100	3		~	0		ŀ	Petaluma	
2490 Mariner Square Loop, Suite 215, Alar	meda ĈA 94501									Total Number of Containers per	BAL - TCEC GW 30hr Quantitray	_					Alkalinity, Total / Chloride / Fluoride / MBAS	age ,	Dissolved 200.7 metals - Ca Fe K Mg Na	Dissulved zou.o metals - Ag Al As B Ba Be Cd Cr Cu	Ē £	l ab Filtration for Dissolved Metals		1	┝	Oth	_	4		
Email address:			Conta	iner	Pre	servat	ion	Ma	trix	ţaj.	٥ تو	bidit					ğ	5	: :		s le	. }				0	•	H	Carlsbad	
ngrimm@toddgroundwater.com					П	Ш	Ш	Н		ဦ	N 30	Į.			ı	- 1	ភ្	3	B		[3	1 2	3 2	.		U		L		
Field Sampler - Printed Name and Signature:	_		ر ا ا			П				er of	ပ်	an	lorat				평 년	5 3		3 3	45.1	ļ \$	stio		L-		days	H	Los Angele	es.
M'all Grimm	7		實質量	ā	ខ	Н		wate		Ę,	퓔	용	erch	-			[≥]	as	g j			12	į	' 		oly		7		1
Sample Identification		led on	40mL vial Glass bottle Poly bottle U	Glass jar Other	8252 Cl		g	Wastewater	Soil	ta N	Ä.	BAL - Color and Turbidity	-B	HAAS	MHL.	Sulfide	Alkalinity, Total / Chloride /	rrate	SSO		Dissolved 200.0 metals - mm	Į Į	Metals Digestion		ᄪ		Half G	<u>-</u>	Source Co	
	Time		4 0 g	_ဖ ြ		티		15	ŏΟ	Y Ĕ	1-1	"	-	井	- 	~ +	<u>₹</u>	Z 1	4	+	15	+=	2	+	25	히는	물	3		- Lucia
2105	15:32	8/18/51	×	Н	×	Щ	Ш,	`	4	41	x	_	4	4	4	4	4.	4	_	4	4	┸	\perp	Щ	Ц	┸	L)	<u> </u>		
3127			×	Ш			x	×		1		×		ı						1					П		Ш			ľ
		[×	П	П	П	x ;	П	Т,	1		П	x		T	T	T			T	T	T	T		×	1	П	T		
				H	H	Н,	Η,	H	+	1	H	┪	\dashv	×	十	\dagger	+	╁	+	+	╆	$^{+}$	\dagger	+	H	+	┞┼	╁		
		l 1	+	╁	H	╁┼	H	H	┿	3	H	\dashv	\dashv	+	+	╁	+	┿	╬	+	╁	╁	╀	+	+	╀	╀	╀		_
			<u>* </u>	₩	<u>*</u> -	Н	₩,	\mathcal{H}	4	. 3	Н		\dashv	4	×	+	4	\downarrow	4	4	4	╀	4	\bot	4	╀	H	Ļ		
			×	Ш	Ц	×	Π,	Ш		1	Ц		_			×	\perp								x			L		
			x		Ш		×,	┨╏		1		-					x	x i	x ;	: ا ،	x ،	×	×				×	Γ		
				П		П	П	П				T				2		T	T	1	\top					T	\sqcap	✝	.*	
-	" - ' - "		-		T	H	什	††				┪	_†	寸	十	╁	┪.	\dagger	+	\dagger	十	十	+	+	+	╁	╁	╁		_
	• "		++-	-		Н	╁╂	╁┼	1.7	1	 E	-	+	╬		+	+	╁	+	+	╀	╀	╀	٠.	4	+	╙	╀		<u></u>
	'	<u>.</u> .	$\bot \bot$	Щ	Ш		Ш	Ш			Ш	_	_	4		\perp	\perp		÷	1		1			╧	┖				<u></u>
<u></u>			*		ŀ		Ш	ŀ			.	1	4			, ,	*							Н				Γ		
Relinquished by		Received b	у				Tir	ne				Date		\perp		- 31 -					Add	ition	al Re	quire	men	ts	_ _	-	**	
D		ET				1.0	ر د	5			8	18	26		0		A D					Stat-	Cyc	tem No						ヿ
W]	_	18					71				7/2	1/	37			V	Vrite	-On	ED.	Γ		- late	- ays	-	<u>" – </u>					
<u> </u>	_	- 130							=-}	1	2/2	/	7	\dashv	_	C	A			F	acilit	y Glo	bal II	No:					 _	
لال		<u> کالہ</u>				4	2	<u>د،</u>		<u> ~~</u>	s file	4	<u> </u>	1	0) G	eoT									4				⁻
									\ 				`				DFI	kep:	ort	SE	unpill	ig Co	ompa	ny Lóg	j Cot	je:	-			-
															_		_	_	_	_	_	_	_	_	_	_		_		

WORK ORDER

Printed: 8/19/2021 10:31:02AM

21H2633

Alpha Analytical Laboratories Ukiah to North Bay Chain of Custody

Client: Todd Groundwater Project: Round 3 ASR Water	r Quality Baseline		DP_TODENG Round 3 ASR Wate	Bid: r Qualit PO #:	Round 3 ASR	Water Quality
Date Due: 09/02/21 Received By: James Bix Logged In By: Sean Fole			ived: 08/18/21 22:15 ged 08/19/21 10:02			
Samples Received at:	deg C	All containers	received and intact:	YES N	0	
Analysis	Department	Expires	Comments			
21H2633-01 3121 [Water] San NB Perchlorate EPA 314.0	npled 08/18/21 09:10 NB Wet Chem	09/15/21 23	:59	_Lab I	Filter -	
21H2633-02 12-5-23A20 [Wate NB Perchlorate EPA 314.0	r] Sampled 08/18/21 NB Wet Chem	09:55 09/15/21 23	:59	Lab-l	Filter	
21H2633-03 3357 [Water] San NB Perchlorate EPA 314.0	npled 08/18/21 10:30 NB Wet Chem	09/15/21 23	:59	<u>Jab I</u>	ilter	
11H2633-04 3123 [Water] San NB Perchlorate EPA 314.0	npled 08/18/21 11:50 NB Wet Chem	09/15/21 23	:59	Lah-I	Hiter	
1 H2633-05 3127 [Water] Sam NB Perchlorate EPA 314.0	npled 08/18/21 12:25 NB Wet Chem	09/15/21 23:	:59	Lab-F	itter	
1H2633-06 Hollister #2 [Wate NB Perchlorate EPA 314.0	r] Sampled 08/18/21 NB Wet Chem	13:15 09/15/21 23:	59	Lab F	ilter	<u></u>
Containers Supplied: 250mL Poly Unpres (C)						
250mL Poly Unpres (C)						
250mL Poly Unpres (C)						
250mL Poly Unpres (C)						
250mL Poly Unpres (C) 250mL Poly Unpres (C)						:
Relinquished By	8/19/2 Date	Z/Time	Received By	\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-	7 20 Date	Time
It Dr.	* 220h1	12:30	Medical by:	< /	8(20)21	Time
Relinquished By	Date	Time	Received By	7	Date	Time

Alpha Analytical Laboratories, Inc.

email: clientservices@alpha-labs.com

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

24 September 2021

Todd Groundwater

Attn: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Alameda, CA 94501

RE: Round 3 ASR Water Quality Baseline

Work Order: 21H2633

Enclosed are the results of analyses for samples received by the laboratory on 08/18/21 22:15. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Alisabeth J. Wilcox For David S. Pingatore

Project Manager

Alpha Analytical Laboratories, Inc.

email: clientservices@alpha-labs.com

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501

Project Number: Round 3 ASR Water Quality Baseline

Reported:

09/24/21 16:57

Bay Area: 262 Rickenbacker Circle | Livermore, CA 94551 | T: 925-828-6226 | F: 925-828-6309 | ELAP# 2728 Central Valley: 9090 Union Park Way Suite 113 | Elk Grove, CA 95624 | T: 916-686-5190 | F: 916-686-5192 | ELAP# 2922 North Bay: 110 Liberty Street | Petaluma, CA 94952 | T: 707-769-3128 | F: 707-769-8093 | ELAP# 2303 San Diego: 2722 Loker Avenue West Suite A | Carlsbad, CA 92010 | T: 760-930-2555 | F: 760-930-2510 | ELAP# 3055

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
12-5-23A20	21H2633-02	Water	08/18/21 09:55	08/18/21 22:15

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501 Project Number: Round 3 ASR Water Quality Baseline

	Result	Reporting Limit	Dilution	Batch	Prepared	Analyzed	ELAP#	Method	Note
			I						
			-						
			I						
		_							
			•						
			Ī						
			<u>I</u>						
			Ī						
			I						
			I						
<u> </u>			I						
_									
			Ī						
<u> </u>		_	I						

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Alameda, CA 94501

Project: Round 3 ASR Water Quality Baseline

Project Number: Round 3 ASR Water Quality Baseline

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501

Project Number: Round 3 ASR Water Quality Baseline

	Result	Reporting Limit	Dilution	Batch	Prepared	Analyzed	ELAP#	Method	Note
		_	_						
		=							
			Ī						
			Ī						
			Ī						
12-5-23A20 (21H2633-02)		Sample Type:	Water		Sampled	: 08/18/21 09:5	55		
Metals (Dissolved) by EPA 200 Series Methods									FILT
Mercury, dissolved	ND u	g/L 0 20	1	AI13118	09/02/21 08:47	09/03/21 08:5	2 1551	EPA 245 1	
Calcium, dissolved	38 m	ng/L 1.0	1	AH14872	09/01/21 13:35	09/03/21 17:1	7 1551	EPA 200 7	
Iron, dissolved	ND m	ng/L 0 10	1	AH14872	09/01/21 13:35	09/03/21 17:1	7 1551	EPA 200 7	
Magnesium, dissolved	51 m	ng/L 1.0	1	AH14872	09/01/21 13:35	09/03/21 17:1	7 1551	EPA 200 7	
Potassium, dissolved	2.4 m	ng/L 1.0	1	AH14872	09/01/21 13:35	09/03/21 17:1	7 1551	EPA 200 7	
Sodium, dissolved	210 m	ng/L 1.0	1	AH14872	09/01/21 13:35	09/03/21 17:1	7 1551	EPA 200 7	
Metals (Dissolved) by EPA Method 200.8 ICP/MS									FILT
Aluminum, dissolved	ND u	g/L 10	1	AH14197	08/24/21 17:10	09/03/21 13:3	8 1551	EPA 200 8	
Antimony, dissolved	ND u	g/L 0 50	1	AH14197	08/24/21 17:10	08/26/21 04:0	8 1551	EPA 200 8	
Arsenic, dissolved	7.2 u	g/L 0.50	1	AH14197	08/24/21 17:10	08/26/21 04:0	8 1551	EPA 200 8	
Barium, dissolved	62 u	g/L 0.50	1	AH14197	08/24/21 17:10	08/26/21 04:0	8 1551	EPA 200 8	
Beryllium, dissolved	ND u	g/L 0 10	1	AH14197	08/24/21 17:10	08/26/21 04:0	8 1551	EPA 200 8	
Boron, dissolved	4100 u	g/L 500	10	AH14197	08/24/21 17:10	08/27/21 15:4	6 1551	EPA 200 8	
Cadmium, dissolved	ND u	g/L 0 10	1	AH14197	08/24/21 17:10	08/26/21 04:0	8 1551	EPA 200 8	
Chromium, dissolved	6.8 u	g/L 0.50	1	AH14197	08/24/21 17:10	08/26/21 04:0	8 1551	EPA 200 8	
Copper, dissolved	2.0 u	g/L 0.50	1	AH14197	08/24/21 17:10	08/26/21 04:0	8 1551	EPA 200 8	
Lead, dissolved	ND u	=	1	AH14197	08/24/21 17:10	08/26/21 04:0	8 1551	EPA 200 8	
Manganese, dissolved	ND u		1	AH14197	08/24/21 17:10	08/26/21 04:0	8 1551	EPA 200 8	
Molybdenum, dissolved	9.4 u	g/L 0.25	1	AH14197	08/24/21 17:10	08/26/21 04:0	8 1551	EPA 200 8	
Nickel, dissolved	0.77 u		1	AH14197	08/24/21 17:10	08/26/21 04:0			
Selenium, dissolved	ND u	=	1	AH14197		08/26/21 04:0			
Silver, dissolved	ND u	=	1		08/24/21 17:10	09/03/21 13:3			
Thallium, dissolved	ND u		1		08/24/21 17:10	08/26/21 04:0			
Vanadium, dissolved	7.3 u		1		08/24/21 17:10	08/26/21 04:0			
Zinc, dissolved	ND u	g/L 5 0	1	AH14197	08/24/21 17:10	08/26/21 04:0	8 1551	EPA 200 8	

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline Alameda, CA 94501

Reported: 09/24/21 16:57 Project Number: Round 3 ASR Water Quality Baseline

	Result	Reporting Limit Dile	lution	Batch	Prepared	Analyzed	ELAP#	# Method	Note
12-5-23A20 (21H2633-02)		Sample Type: Wat	ter		Sampled	: 08/18/21 09:5	5		
Conventional Chemistry Parameters by APH	A/EPA Methods								
Color	ND CU	5 0	1 A	H14313	08/18/21 16:48	08/18/21 16:48	3 2728	SM2120B	
MBAS, calculated as LAS, mw 340	ND mg/L	0 050	1 A	H14260	08/20/21 08 15	08/20/21 16 30	1551	SM5540C	
Perchlorate	ND ug/L	2 0	1 A	H14310	08/20/21 08:00	08/20/21 19:21	2303	EPA 314 0	
Sulfide	ND mg/L	0 10	1 A	H14407	08/24/21 06:00	08/24/21 06:00	1551	SM4500-S2 D	
Total Dissolved Solids	920 mg/L	10	1 A	H14424	08/24/21 10:40	09/03/21 14:57	1551	SM2540C	
Turbidity	0.10 NTU	0.10	1 Al	H14314	08/18/21 16:57	08/18/21 16:57	2728	SM2130B	
Bicarbonate Alkalinity as CaCO3	340 mg/L	5.0	1 A	H14703	08/30/21 08:00	08/30/21 12:21	1551	SM2320B	
Carbonate Alkalinity as CaCO3	ND mg/L	5 0	1 Al	H14703	08/30/21 08:00	08/30/21 12:21	1551	SM2320B	
Hydroxide Alkalinity as CaCO3	ND mg/L	5 0	1 A	H14703	08/30/21 08:00	08/30/21 12:21	1551	SM2320B	
Total Alkalinity as CaCO3	340 mg/L	5.0	1 A	H14703	08/30/21 08:00	08/30/21 12:21	1551	SM2320B	
Hardness, Total	306 mg/L	5	1 A	H14872	09/01/21 13:35	09/03/21 17:17	1551	SM2340B	
Anions by EPA Method 300.0									
Chloride	180 mg/L	5.0	10 Al	H14195	08/19/21 16:20	08/19/21 16:20	1551	EPA 300 0	
Fluoride	0.41 mg/L	0.10	1 A	H14195	08/19/21 15:47	08/19/21 15:47	1551	EPA 300 0	
Nitrate as N	0.82 mg/L	0.20	1 A	H14195	08/19/21 15:47	08/19/21 15:47	1551	EPA 300 0	
Sulfate as SO4	120 mg/L	5.0	10 Al	H14195	08/19/21 16:20	08/19/21 16:20	1551	EPA 300 0	
Microbiological Parameters by APHA Standa	rd Methods								
Total Coliforms	ND MPN/100mL	1 0	1 A	H14327	08/18/21 16:35	08/19/21 16:35	2728	SM9223B	
E Coli	ND MPN/100mL	1 0	1 A	H14327	08/18/21 16:35	08/19/21 16:35	2728	SM9223B	
Volatile Organic Compounds by EPA Method	524.2								
Bromodichloromethane	ND ug/L	1 00	1 A	H14496	08/25/21 15:00	08/26/21 00:05	1551	EPA 524 2	
Bromoform	ND ug/L	1 00	1 A	H14496	08/25/21 15:00	08/26/21 00:05	1551	EPA 524 2	
Chloroform	ND ug/L	1 00	1 A	H14496	08/25/21 15:00	08/26/21 00:05	1551	EPA 524 2	
Dibromochloromethane	ND ug/L	1 00	1 A	H14496	08/25/21 15:00	08/26/21 00:05	1551	EPA 524 2	
Trihalomethanes (total)	ND ug/L	1 00	1 A	H14496	08/25/21 15:00	08/26/21 00:05	1551	EPA 524 2	
Surrogate: Bromofluorobenzene	95.8 %	70-130	AI	H14496	08/25/21 15:00	08/26/21 00:03	1551	EPA 524.2	
Surrogate: Dibromofluoromethane	84.8 %	70-130	AI	H14496	08/25/21 15:00	08/26/21 00:03	1551	EPA 524.2	
Surrogate: Toluene-d8	97.0 %	70-130	Ai	H14496	08/25/21 15:00	08/26/21 00:03	1551	EPA 524.2	

Alpha Analytical Laboratories, Inc.

email: clientservices@alpha-labs.com

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215 Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501 Project Number: Round 3 ASR Water Quality Baseline

	Result	Reporting Limit Dilut	tion Batch	Prepared	Analyzed	ELAP#	Method	Note
12-5-23A20 (21H2633-02)		Sample Type: Wate	er	Sampleo	d: 08/18/21 09:	55		
Haloacetic Acids by EPA Method 552.2								
Monobromoacetic Acid	ND ug/L	10 1	AH14766	08/31/21 07:00	09/02/21 03:4	45 1551 EPA	A 552 2	
Monochloroacetic Acid	ND ug/L	20 1	AH14766	08/31/21 07 00	09/02/21 03 4	45 1551 EPA	A 552 2	
Dibromoacetic Acid	ND ug/L	10 1	AH14766	08/31/21 07:00	09/02/21 03:4	45 1551 EPA	A 552 2	
Dichloroacetic Acid	ND ug/L	10 1	AH14766	08/31/21 07:00	09/02/21 03:4	45 1551 EPA	A 552 2	
Trichloroacetic Acid	ND ug/L	10 1	AH14766	08/31/21 07:00	09/02/21 03:4	45 1551 EPA	A 552 2	
Total Haloacetic Acids (HAA5)	ND ug/L	10 1	AH14766	08/31/21 07:00	09/02/21 03:4	45 1551 EPA	A 552 2	
Surrogate: 2,3-Dibromopropionic Acid	102 %	70-130	AH14766	08/31/21 07:00	09/02/21 03:4	45 1551 EPA	1 552.2	
Surrogate: 2-Bromopropionic Acid	117 %	70-130	AH14766	08/31/21 07:00		45 1551 EPA		
		_ ;						
		i						
		!						

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Alameda, CA 94501

Project: Round 3 ASR Water Quality Baseline

Project Number: Round 3 ASR Water Quality Baseline

	Result	Reporting Limit	Dilution	Batch	Prepared	Analyzed	ELAP#	Method	Note
			Ī						
		_							
			Ī						
<u> </u>		_							
<u> </u>			I						
		_	_			<u> </u>			
			I						

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215 Alameda, CA 94501

Project: Round 3 ASR Water Quality Baseline

Project Number: Round 3 ASR Water Quality Baseline

Result	Reporting Limit Dilution	Batch	Prepared	Analyzed	ELAP# Method	Note
	= i					
	= :					
	= :					
	= i					
					_	
	- !					
≣						
	= :					
	- 1					
	= !					
	= :					
					1551 EPA 200 8	
	= :					
	= :					
	= ;					
	— I					

Alpha Analytical Laboratories, Inc.

email: clientservices@alpha-labs.com

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Project Number: Round 3 ASR Water Quality Baseline Alameda, CA 94501

Reported: 09/24/21 16:57

Result Reporting Limit Dilution Batch Prepared Analyzed ELAP# Method Note

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501

Project Number: Round 3 ASR Water Quality Baseline

Result	Reporting Limit Dilution	Batch	Prepared	Analyzed	ELAP#	Method	Note
	- 1						
	= :						
	= i						
	= :						
	= i						
	= :						
	= i						
							FILT
	= i						
	= :						
	= i						
	= :						
	= i						
	= :						
	- 1						
	= :						
	= :						
	= i						
	- 1						

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Alameda, CA 94501

Project: Round 3 ASR Water Quality Baseline

Project Number: Round 3 ASR Water Quality Baseline

	Result	Reporting Limit	Dilution	Batch	Prepared	Analyzed	ELAP#	Method	Note
			I						
		=							
			Ī						
		_							
			ī						
			<u> </u>						
<u> </u>			I						

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Reported:

Alameda, CA 94501

Project Number: Round 3 ASR Water Quality Baseline

09/24/21 16:57

Result	Reporting Limit Dilution	Batch	Prepared	Analyzed	ELAP# N	Method	Note
	= i						
	_ !						
	= :						
	= i						
	= 1						
	_ !						
	= :						
	_ i						
	= :						
	— i						
	= i						
	- 1						
	- 1						

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215 Alameda, CA 94501

Project: Round 3 ASR Water Quality Baseline Project Number: Round 3 ASR Water Quality Baseline

Reported:

09/24/21 16:57

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501 Project Number: Round 3 ASR Water Quality Baseline Reported:

09/24/21 16:57

 Result	Reporting Limit	Dilution	Batch	Prepared	Analyzed	ELAP#	Method	Note
	<u> </u>	_						
		_						
	<u> </u>	_						

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501

Project Number: Round 3 ASR Water Quality Baseline

Reported: 09/24/21 16:57

Metals (Dissolved) by EPA 200 Series Methods - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AH14872 - Metals Digest (D)										
Blank (AH14872 BLK1)				Prepared: (09/01/21 A	nalyzed: 09	/03/21			
Calcium, dissolved	ND	1 0	mg/L							
Iron, dissolved	ND	0 10	mg/L							
Magnesium, dissolved	ND	10	mg/L							
Potassium, dissolved	ND	10	mg/L							
Sodium, dissolved	ND	1 0	mg/L							
LCS (AH14872-BS1)				Prepared: (09/01/21 A	nalyzed: 09	/03/21			
Calcium, dissolved	8 37	1 0	mg/L	8 00		105	85-115			
ron, dissolved	1 90	0 10	mg/L	2 00		95 1	85-115			
Magnesium, dissolved	8 66	10	mg/L	8 00		108	85-115			
Potassium, dissolved	8 06	10	mg/L	8 00		101	85-115			
odium, dissolved	8 12	1 0	mg/L	8 00		101	85-115			
Duplicate (AH14872-DUP1)	Sour	ce: 21H345	2-01	Prepared: (09/01/21 A	nalyzed: 09	/03/21			
Calcium, dissolved	48 0	1 0	mg/L		47 3			1 38	20	
ron, dissolved	ND	0 10	mg/L		ND				20	
Magnesium, dissolved	28 7	10	mg/L		28 2			1 74	20	
Potassium, dissolved	4 07	10	mg/L		4 04			0 855	20	
Sodium, dissolved	23 1	1 0	mg/L		22 8			1 01	20	
Matrix Spike (AH14872-MS1)	Sour	ce: 21H345	2-01	Prepared: (09/01/21 A	nalyzed: 09	/03/21			
Calcium, dissolved	56 4	1 0	mg/L	8 00	47 3	114	70-130			
ron, dissolved	1 91	0 10	mg/L	2 00	ND	95 5	70-130			
Magnesium, dissolved	37 9	10	mg/L	8 00	28 2	122	70-130			
Potassium, dissolved	12 6	10	mg/L	8 00	4 04	107	70-130			
Sodium, dissolved	30 6	1 0	mg/L	8 00	22 8	96 6	70-130			
Matrix Spike (AH14872-MS2)	Sour	ce: 21H337	4-01	Prepared: (09/01/21 A	nalyzed: 09	/03/21			
Calcium, dissolved	21 6	1 0	mg/L	8 00	12 9	108	70-130			
ron, dissolved	1 95	0 10	mg/L	2 00	ND	97 3	70-130			
Magnesium, dissolved	17 3	1 0	mg/L	8 00	8 10	115	70-130			
Potassium, dissolved	9 84	1 0	mg/L	8 00	1 75	101	70-130			
Sodium, dissolved	27 1	10	mg/L	8 00	19 7	92 7	70-130			

Alpha Analytical Laboratories, Inc.

email: clientservices@alpha-labs.com

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501 Project Number: Round 3 ASR Water Quality Baseline

Reported: 09/24/21 16:57

Metals (Dissolved) by EPA 200 Series Methods - Quality Control

		Reporting		Spike	Source		%REC		RPD		
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag	
Batch AH14872 - Metals Digest (D)											
Matrix Spike Dup (AH14872-MSD1)	Sou	rce: 21H345	2-01	Prepared: (09/01/21 A	nalyzed: 09	/03/21				
Calcium, dissolved	56 6	1 0	mg/L	8 00	47 3	117	70-130	0 409	20		
Iron, dissolved	1 87	0 10	mg/L	2 00	ND	93 6	70-130	1 95	20		
Magnesium, dissolved	37 4	10	mg/L	8 00	28 2	115	70-130	1 46	20		
Potassium, dissolved	12 4	10	mg/L	8 00	4 04	105	70-130	1 10	20		
Sodium, dissolved	30 8	1 0	mg/L	8 00	22 8	99 2	70-130	0 666	20		
Batch AI13118 - EPA 245.1 Hg Water											
Blank (AI13118-BLK1)				Prepared: (09/02/21 A	nalyzed: 09	/03/21				
Mercury, dissolved	ND	0 20	ug/L								
LCS (AI13118-BS1)				Prepared: (09/02/21 A	nalyzed: 09	/03/21				
Mercury, dissolved	2 56	0 20	ug/L	2 50		102	85-115				
Duplicate (AI13118 DUP1)	Sou	rce: 21H263	3-02	Prepared: (09/02/21 A	nalyzed: 09	/03/21				
Mercury, dissolved	ND	0 20	ug/L		ND				20		
Matrix Spike (AI13118-MS1)	Sou	rce: 21H263	3-02	Prepared: ()9/02/21 A	nalyzed: 09	/03/21				
Mercury, dissolved	2 52	0 20	ug/L	2 50	ND	101	70-130				
Matrix Spike Dup (AI13118-MSD1)	Sou	rce: 21H263	3-02	Prepared: ()9/02/21 A	nalyzed: 09	/03/21				
Mercury, dissolved	2 51	0 20	ug/L	2 50	ND	100	70-130	0 437	20		

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501

Project Number: Round 3 ASR Water Quality Baseline

Reported: 09/24/21 16:57

Analyta(a)	Result	Reporting Limit	Units	Spike	Source	%REC	%REC	RPD	RPD Limit	Flag
Analyte(s)	Result	Limit	Units	Level	Result	70KEC	Limits	KPD	Limit	1 lag
Batch AH14197 - EPA 200.8 (D)										
Blank (AH14197-BLK1)				Prepared: (08/24/21 Aı	nalyzed: 08	/27/21			
Aluminum, dissolved	ND	10	ug/L							
Antimony, dissolved	ND	0 50	ug/L							
Arsenic, dissolved	ND	0 50	ug/L							
Barium, dissolved	ND	0 50	ug/L							
Beryllium, dissolved	ND	0 10	ug/L							
Boron, dissolved	ND	50	ug/L							
Cadmium, dissolved	ND	0 10	ug/L							
Chromium, dissolved	ND	0 50	ug/L							
Copper, dissolved	0 591	0 50	ug/L							
Lead, dissolved	ND	0 25	ug/L							
Manganese, dissolved	ND	5 0	ug/L							
Molybdenum, dissolved	ND	0 25	ug/L							
Nickel, dissolved	ND	0 50	ug/L							
Selenium, dissolved	ND	20	ug/L							
Silver, dissolved	ND	0 10	ug/L							
Thallium, dissolved	ND	0 10	ug/L							
Vanadium, dissolved	ND	10	ug/L							
Zinc, dissolved	ND	5 0	ug/L							
LCS (AH14197-BS1)				Prenared: (08/24/21 Aı	nalyzed: 08	/27/21			
Aluminum, dissolved	554	10	ug/L	520	00/21/21 71	107	85-115			
Antimony, dissolved	20 8	0 50	ug/L	20 0		104	85-115			
Arsenic, dissolved	21 1	0 50	ug/L	20 0		105	85-115			
Barium, dissolved	20 3	0 50	ug/L	20 0		102	85-115			
Beryllium, dissolved	20 7	0 10	ug/L	20 0		104	85-115			
Boron, dissolved	106	50	ug/L	100		106	85-115			
Cadmium, dissolved	20 3	0 10	ug/L	20 0		101	85-115			
Chromium, dissolved	20 3	0 50	ug/L	20 0		101	85-115			
Copper, dissolved	22 3	0 50	ug/L	20 0		112	85-115			
Lead, dissolved	20 5	0 25	ug/L	20 0		103	85-115			
Manganese, dissolved	20 5	5 0	ug/L	20 0		102	85-115			
Molybdenum, dissolved	21 3	0 25	ug/L ug/L	20 0		106	85-115			
Nickel, dissolved	20 1	0 50	ug/L	20 0		100	85-115			
Selenium, dissolved	21 6	2 0	ug/L	20 0		108	85-115			
Silver, dissolved	18 0	0 10	ug/L ug/L	20 0		90 1	85-115			

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501 Project Number: Round 3 ASR Water Quality Baseline

Reported: 09/24/21 16:57

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AH14197 - EPA 200.8 (D)										
LCS (AH14197-BS1)				Prepared: (08/24/21 Aı	nalyzed: 08	/26/21			
Thallium, dissolved	20 4	0 10	ug/L	20 0		102	85-115			
Vanadium, dissolved	20 6	10	ug/L	20 0		103	85-115			
Zinc, dissolved	103	5 0	ug/L	100		103	85-115			
Duplicate (AH14197-DUP1)	Sour	ce: 21H263	3-01	Prepared: (08/24/21 Aı	nalyzed: 08	/27/21			
Aluminum, dissolved	ND	100	ug/L		ND				20	
Antimony, dissolved	ND	0 50	ug/L		ND				20	
Arsenic, dissolved	5 05	0 50	ug/L		4 88			3 43	20	
Barium, dissolved	41 3	0 50	ug/L		40 5			2 00	20	
Beryllium, dissolved	ND	0 10	ug/L		ND				20	
Boron, dissolved	1930	50	ug/L		1910			0 965	20	
Cadmium, dissolved	ND	0 10	ug/L		ND				20	
Chromium, dissolved	11 6	0 50	ug/L		11 5			1 13	20	
Copper, dissolved	24 4	0 50	ug/L		24 2			0 967	20	
Lead, dissolved	0 340	0 25	ug/L		0 296			14 0	20	
Manganese, dissolved	ND	5 0	ug/L		ND				20	
Molybdenum, dissolved	5 45	0 25	ug/L		5 36			1 49	20	
Nickel, dissolved	1 19	0 50	ug/L		1 20			0 848	20	
Selenium, dissolved	5 75	2 0	ug/L		5 43			5 61	20	
Silver, dissolved	ND	0 10	ug/L		0 218			200	20	
Thallium, dissolved	ND	0 10	ug/L		ND				20	
Vanadium, dissolved	6 40	10	ug/L		6 47			1 08	20	
Zinc, dissolved	13 8	5 0	ug/L		13 4			2 85	20	
MRL Check (AH14197-MRL1)				Prepared: (08/24/21 Aı	nalyzed: 08	/27/21			
Aluminum, dissolved	12 2	10	ug/L	8 00		153	0-200			
Silver, dissolved	0 0833	0 10	ug/L	0 0800		104	0-200			
Thallium, dissolved	0 0721	0 10	ug/L	0 0800		90 1	0-200			
Vanadium, dissolved	0 878	10	ug/L	0 800		110	0-200			

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501 Project Number: Round 3 ASR Water Quality Baseline

Reported: 09/24/21 16:57

		Reporting		Spike	Source		%REC		RPD	T.I
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AH14197 - EPA 200.8 (D)										
Matrix Spike (AH14197-MS1)	Sour	ce: 21H263	3-05	Prepared: (08/24/21 Aı	nalyzed: 08	/27/21			
Aluminum, dissolved	616	10	ug/L	520	ND	117	70-130			QM-0
Antimony, dissolved	198	0 50	ug/L	20 0	ND	99 1	70-130			
Arsenic, dissolved	27 4	0 50	ug/L	20 0	7 71	98 7	70-130			
Barium, dissolved	82 4	0 50	ug/L	20 0	65 2	86 1	70-130			
Beryllium, dissolved	18 3	0 10	ug/L	20 0	ND	91 4	70-130			
Boron, dissolved	2380	50	ug/L	100	2470	NR	70-130			QM-42
Cadmium, dissolved	18 5	0 10	ug/L	20 0	ND	92 6	70-130			
Chromium, dissolved	19 5	0 50	ug/L	20 0	ND	97 3	70-130			
Copper, dissolved	23 0	0 50	ug/L	20 0	3 01	100	70-130			
Lead, dissolved	16 2	0 25	ug/L	20 0	ND	80 8	70-130			
Manganese, dissolved	441	5 0	ug/L	20 0	429	63 4	70-130			QM-0
Molybdenum, dissolved	29 8	0 25	ug/L	20 0	8 61	106	70-130			
Nickel, dissolved	24 8	0 50	ug/L	20 0	7 15	88 4	70-130			
Selenium, dissolved	196	20	ug/L	20 0	ND	90 8	70-130			
Silver, dissolved	17 2	0 10	ug/L	20 0	ND	86 1	70-130			QM-0
Thallium, dissolved	16 0	0 10	ug/L	20 0	ND	80 2	70-130			
Vanadium, dissolved	24 9	10	ug/L	20 0	5 33	97 9	70-130			
Zinc, dissolved	98 0	5 0	ug/L	100	7 93	90 0	70-130			
Matrix Spike Dup (AH14197-MSD1)	Sour	ce: 21H263	3-05	Prepared: (08/24/21 Aı	nalyzed: 08	/27/21			
Aluminum, dissolved	621	10	ug/L	520	ND	118	70-130	0 734	20	QM-0
Antimony, dissolved	197	0 50	ug/L	20 0	ND	98 3	70-130	0 783	20	
Arsenic, dissolved	27 3	0 50	ug/L	20 0	7 71	98 0	70-130	0 533	20	
Barium, dissolved	82 5	0 50	ug/L	20 0	65 2	86 3	70-130	0 0474	20	
Beryllium, dissolved	183	0 10	ug/L	20 0	ND	91 7	70-130	0 349	20	
Boron, dissolved	2330	50	ug/L	100	2470	NR	70-130	2 06	20	QM-4
Cadmium, dissolved	18 7	0 10	ug/L	20 0	ND	93 3	70-130	0 746	20	
Chromium, dissolved	198	0 50	ug/L	20 0	ND	99 0	70-130	1 72	20	
Copper, dissolved	23 1	0 50	ug/L	20 0	3 01	100	70-130	0 257	20	
Lead, dissolved	15 9	0 25	ug/L	20 0	ND	79 6	70-130	1 41	20	
Manganese, dissolved	448	5 0	ug/L	20 0	429	99 2	70-130	1 61	20	
Molybdenum, dissolved	29 8	0 25	ug/L	20 0	8 61	106	70-130	0 125	20	
Nickel, dissolved	25 3	0 50	ug/L	20 0	7 15	90 7	70-130	1 81	20	
Selenium, dissolved	19 8	2 0	ug/L	20 0	ND	91 7	70-130	0 900	20	
	17 6	0 10	ug/L	20 0	ND	88 1	70-130		20	QM-0

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501

Project Number: Round 3 ASR Water Quality Baseline

Reported: 09/24/21 16:57

Analyte(s)	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AH14197 - EPA 200.8 (D)										
Matrix Spike Dup (AH14197-MSD1)	Sour	ce: 21H263:	3-05	Prepared: (08/24/21 A	nalyzed: 08	3/26/21			
Thallium, dissolved	15 6	0 10	ug/L	20 0	ND	78 2	70-130	2 57	20	
Vanadium, dissolved	25 3	10	ug/L	20 0	5 33	99 8	70-130	1 46	20	
Zinc, dissolved	98 6	5 0	ug/L	100	7 93	90 7	70-130	0 676	20	

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501

Project Number: Round 3 ASR Water Quality Baseline

Reported: 09/24/21 16:57

Conventional Chemistry Parameters by APHA/EPA Methods - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AH14260 - General Preparation										
Blank (AH14260-BLK1)				Prepared &	Analyzed:	08/20/21				
MBAS, calculated as LAS, mw 340	ND	0 050	mg/L							
LCS (AH14260-BS1)				Prepared &	a Analyzed:	08/20/21				
MBAS, calculated as LAS, mw 340	0 201	0 050	mg/L	0 200		101	80-120			
Matrix Spike (AH14260-MS1)	Sour	ce: 21H263	3-01	Prepared &	k Analyzed:	08/20/21				
MBAS, calculated as LAS, mw 340	0 188	0 050	mg/L	0 200	ND	94 0	80-120			
Matrix Spike Dup (AH14260-MSD1)	Sour	ce: 21H263	3-01	Prepared &	k Analyzed:	08/20/21				
MBAS, calculated as LAS, mw 340	0 201	0 050	mg/L	0 200	ND	101	80-120	6 84	20	
Batch AH14310 - NB General Prep										
Blank (AH14310-BLK1)				Prepared &	Analyzed:	08/20/21				
Perchlorate	ND	2 0	ug/L							
LCS (AH14310-BS1)				Prepared &	k Analyzed:	08/20/21				
Perchlorate	9 58	2 0	ug/L	10 0		95 8	85-115			
Duplicate (AH14310-DUP1)	Sour	ce: 21H246	8-01	Prepared &	Analyzed:	08/20/21				
Perchlorate	ND	2 0	ug/L		ND				15	
Matrix Spike (AH14310-MS1)	Sour	ce: 21H241	4-13	Prepared &	Analyzed:	08/20/21				
Perchlorate	9 36	2 0	ug/L	10 0	ND	93 6	70-130			
Matrix Spike Dup (AH14310-MSD1)	Sour	ce: 21H241	4-13	Prepared &	Analyzed:	08/20/21				
Perchlorate	9 72	2 0	ug/L	10 0	ND	97 2	70-130	3 77	15	

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215 Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501 09/24/21 16:57 Project Number: Round 3 ASR Water Quality Baseline

Conventional Chemistry Parameters by APHA/EPA Methods - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AH14314 - General Prep (BAL)										
Duplicate (AH14314-DUP1)	Sour	ce: 21H263	3-03	Prepared &	Analyzed:	08/18/21				
Turbidity	ND	0 10	NTU		ND				15	
Batch AH14407 - General Preparation										
Blank (AH14407-BLK1)				Prepared &	Analyzed:	08/24/21				
Sulfide	ND	0 10	mg/L							
LCS (AH14407-BS1)				Prepared &	: Analyzed:	08/24/21				
Sulfide	0 230	0 10	mg/L	0 222		104	85-115			
Duplicate (AH14407-DUP1)	Sour	ce: 21H263	3-01	Prepared &	: Analyzed:	08/24/21				
Sulfide	ND	0 10	mg/L		ND				15	
Matrix Spike (AH14407-MS1)	Sour	ce: 21H263	3-01	Prepared &	: Analyzed:	08/24/21				
Sulfide	0 0910	0 10	mg/L	0 222	ND	41 0	80-120			QM-05
Matrix Spike Dup (AH14407-MSD1)	Sour	ce: 21H263	3-01	Prepared &	: Analyzed:	08/24/21				
Sulfide	0 0900	0 10	mg/L	0 222	ND	40 5	80-120	1 10	15	QM-05
Batch AH14424 - General Preparation										
Blank (AH14424-BLK1)				Prepared: (08/24/21 At	nalyzed: 09	/03/21			
Total Dissolved Solids	ND	10	mg/L							
Duplicate (AH14424-DUP1)	Sour	ce: 21H2320	6-01	Prepared: (08/24/21 A	nalyzed: 09	/03/21			
Total Dissolved Solids	188	10	mg/L		172			8 89	15	

Reported:

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215 Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501 09/24/21 16:57 Project Number: Round 3 ASR Water Quality Baseline

Conventional Chemistry Parameters by APHA/EPA Methods - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AH14424 - General Preparation										
Duplicate (AH14424-DUP2)	Sour	ce: 21H232	6-02	Prepared: (08/24/21 At	nalyzed: 09	/03/21			
Total Dissolved Solids	156	10	mg/L		154			1 29	15	
Batch AH14703 - General Preparation										
Blank (AH14703-BLK1)				Prepared &	: Analyzed:	08/30/21				
Total Alkalinity as CaCO3	ND	5 0	mg/L							
Carbonate Alkalinity as CaCO3	ND	5 0	mg/L							
Hydroxide Alkalinity as CaCO3	ND	5 0	mg/L							
Bicarbonate Alkalinity as CaCO3	ND	5 0	mg/L							
LCS (AH14703-BS1)				Prepared &	Analyzed:	08/30/21				
Total Alkalinity as CaCO3	90 0	5 0	mg/L	80 0		112	70-130			
Duplicate (AH14703-DUP1)	Sour	ce: 21H263	3-01	Prepared &	: Analyzed:	08/30/21				
Total Alkalinity as CaCO3	310	5 0	mg/L		310			0 00	20	
Carbonate Alkalinity as CaCO3	ND	5 0	mg/L		ND				20	
Hydroxide Alkalinity as CaCO3	ND	5 0	mg/L		ND				20	
Bicarbonate Alkalinity as CaCO3	310	5 0	mg/L		310			0 00	20	
Batch AH14872 - Metals Digest (D)										
Blank (AH14872-BLK1)				Prepared: (09/01/21 At	nalyzed: 09	/03/21			
Hardness, Total	ND	5	mg/L							
Duplicate (AH14872-DUP1)	Sour	ce: 21H345	2-01	Prepared: (09/01/21 At	nalyzed: 09	/03/21			
Hardness, Total	238	5	mg/L		234			1 56	20	

Reported:

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501

09/24/21 16:57 Project Number: Round 3 ASR Water Quality Baseline

Anions by	EPA Method	300.0 -	Quality	Control
-----------	------------	---------	---------	---------

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AH14195 - EPA 300.0										
Blank (AH14195-BLK1)				Prepared &	Analyzed:	08/19/21				
Nitrate as N	ND	0 20	mg/L							
Fluoride	ND	0 10	mg/L							
Sulfate as SO4	ND	0 50	mg/L							
Chloride	ND	0 50	mg/L							
LCS (AH14195-BS1)				Prepared &	Analyzed:	08/19/21				
Nitrate as N	5 37	0 20	mg/L	5 56		96 7	90-110			
Fluoride	5 59	0 10	mg/L	5 56		101	90-110			
Chloride	10 9	0 50	mg/L	11 1		97 8	90-110			
Sulfate as SO4	22 2	0 50	mg/L	22 2		100	90-110			
Duplicate (AH14195-DUP1)	Sou	ırce: 21H253	0-02	Prepared &	k Analyzed:	08/19/21				
Sulfate as SO4	7 91	0 50	mg/L		7 92			0 0379	20	
Chloride	2 04	0 50	mg/L		2 04			0 0490	20	
Nitrate as N	0 277	0 20	mg/L		0 277			0 244	20	
Fluoride	0 163	0 10	mg/L		0 163			0 00	20	
Matrix Spike (AH14195-MS1)	Soi	ırce: 21H253	0-02	Prepared &	z Analyzed:	08/19/21				
Fluoride	5 01	1 0	mg/L	5 56	ND	90 2	80-120			
Nitrate as N	5 57	2 0	mg/L	5 56	ND	100	80-120			
Chloride	11 7	5 0	mg/L	11 1	ND	87 2	80-120			
Sulfate as SO4	26 4	5 0	mg/L	22 2	7 92	83 3	80-120			
Matrix Spike (AH14195-MS2)	Soi	ırce: 21H268	2-01	Prepared &	z Analyzed:	08/19/21				
Fluoride	4 71	1 0	mg/L	5 56	ND	84 8	80-120			
Nitrate as N	8 55	2 0	mg/L	5 56	3 70	87 3	80-120			
Sulfate as SO4	31 1	5 0	mg/L	22 2	12 9	82 2	80-120			
Chloride	17 1	5 0	mg/L	11 1	7 80	83 8	80-120			

Reported:

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215 Alameda, CA 94501

Project: Round 3 ASR Water Quality Baseline

Project Number: Round 3 ASR Water Quality Baseline

Reported: 09/24/21 16:57

Anions by EPA Method 300.0 - Quality Control

Analyte(s)	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AH14195 - EPA 300.0										
Matrix Spike Dup (AH14195-MSD1)	Sourc	e: 21H2530	0-02	Prepared &	Analyzed:	08/19/21				
Sulfate as SO4	26 6	5 0	mg/L	22 2	7 92	84 2	80-120	0 796	20	
Fluoride	5 06	10	mg/L	5 56	ND	91 0	80-120	0 883	20	
Nitrate as N	5 61	20	mg/L	5 56	ND	101	80-120	0 717	20	
Chloride	11 8	5 0	mg/L	11 1	ND	88 0	80-120	0 755	20	

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501 Project Number: Round 3 ASR Water Quality Baseline

Reported: 09/24/21 16:57

Volatile Organic Compounds by EPA Method 524.2 - Quality Control

Analyte(s)	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
• ` ` `	Result	Lillit	Ullits	Level	Result	70KEC	Lillits	KrD	Lillit	Tiag
Batch AH14496 - VOAs in Water GCMS										
Blank (AH14496-BLK1)				Prepared &	k Analyzed:	08/25/21				
Bromodichloromethane	ND	1 00	ug/L							
Bromoform	ND	1 00	ug/L							
Chloroform	ND	1 00	ug/L							
Dibromochloromethane	ND	1 00	ug/L							
Trihalomethanes (total)	ND	1 00	ug/L							
Surrogate: Bromofluorobenzene	25.4		ug/L	25.0		102	70-130			
Surrogate: Dibromofluoromethane	24.6		ug/L	25.0		98.5	70-130			
Surrogate: Toluene-d8	24.8		ug/L	25.0		99.1	70-130			
LCS (AH14496-BS1)				Prepared &	ե Analyzed:	08/25/21				
Bromodichloromethane	4 57	1 00	ug/L	5 00		91 4	70-130			
Bromoform	4 31	1 00	ug/L	5 00		86 2	70-130			
Chloroform	5 19	1 00	ug/L	5 00		104	70-130			
Dibromochloromethane	4 45	1 00	ug/L	5 00		89 0	70-130			
Surrogate: Bromofluorobenzene	27.8		ug/L	25.0		111	70-130			
Surrogate: Dibromofluoromethane	23.5		ug/L	25.0		94.2	70-130			
Surrogate: Toluene-d8	24.8		ug/L	25.0		99.2	70-130			
LCS Dup (AH14496-BSD1)				Prepared &	ն Analyzed:	08/25/21				
Bromodichloromethane	4 59	1 00	ug/L	5 00		91 8	70-130	0 437	30	
Bromoform	4 11	1 00	ug/L	5 00		82 2	70-130	4 75	30	
Chloroform	5 14	1 00	ug/L	5 00		103	70-130	0 968	30	
Dibromochloromethane	4 58	1 00	ug/L	5 00		91 6	70-130	2 88	30	
Surrogate: Bromofluorobenzene	28.1		ug/L	25.0		113	70-130			
Surrogate: Dibromofluoromethane	22.4		ug/L	25.0		89.5	70-130			
Surrogate: Toluene-d8	24.9		ug/L	25.0		99.6	70-130			
Matrix Spike (AH14496-MS1)	So	urce: 21H246	9-02	Prepared: (08/25/21 A	nalyzed: 08	/26/21			
Bromodichloromethane	20 5	1 00	ug/L	5 00	14 0	130	70-130			<u> </u>
Bromoform	4 73	1 00	ug/L	5 00	ND	94 6	70-130			
Chloroform	79 8	1 00	ug/L	5 00	67 2	253	70-130			QM-
Dibromochloromethane	8 71	1 00	ug/L	5 00	3 65	101	70-130			
Surrogate: Bromofluorobenzene	28.3		ug/L	25.0		113	70-130			
Surrogate: Dibromofluoromethane	23.0		ug/L	25.0		91.8	70-130			

Alpha Analytical Laboratories, Inc.

email: clientservices@alpha-labs.com

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline Project Number: Round 3 ASR Water Quality Baseline

Alameda, CA 94501

Reported: 09/24/21 16:57

Volatile Organic Compounds by EPA Method 524.2 - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AH14496 - VOAs in Water GCMS										
Matrix Spike (AH14496-MS1)	Sour	ce: 21H246	9-02	Prepared: (08/25/21 A	nalyzed: 08	3/26/21			
Surrogate: Toluene-d8	24.4		ug/L	25.0		97.6	70-130			
Matrix Spike (AH14496-MS2)	Sour	ce: 21H261	1-01	Prepared: ()8/25/21 A	nalyzed: 08	/26/21			
Bromodichloromethane	6 50	1 00	ug/L	5 00	1 77	94 6	70-130			
Bromoform	4 42	1 00	ug/L	5 00	ND	88 4	70-130			
Chloroform	60 2	1 00	ug/L	5 00	50 7	190	70-130			QM-05
Dibromochloromethane	4 27	1 00	ug/L	5 00	ND	85 4	70-130			
Surrogate: Bromofluorobenzene	27.8		ug/L	25.0		111	70-130			
Surrogate: Dibromofluoromethane	21.4		ug/L	25.0		85.8	70-130			
Surrogate: Toluene-d8	23.7		ug/L	25.0		94.7	70-130			

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501 Project Number: Round 3 ASR Water Quality Baseline

Reported: 09/24/21 16:57

Haloacetic Acids by EPA Method 552.2 - Quality Control

		Reporting		Spike	Source		%REC		RPD	El
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch AH14766 - EPA 552.2										
Blank (AH14766-BLK1)				Prepared: (08/31/21 A	nalyzed: 09	/01/21			
Monobromoacetic Acid	ND	1 0	ug/L							
Monochloroacetic Acid	ND	2 0	ug/L							
Dibromoacetic Acid	ND	10	ug/L							
Dichloroacetic Acid	ND	10	ug/L							
Trichloroacetic Acid	ND	10	ug/L							
Total Haloacetic Acids (HAA5)	ND	10	ug/L							
Surrogate: 2,3-Dibromopropionic Acid	8.28		ug/L	9.85		84.1	70-130			
Surrogate: 2-Bromopropionic Acid	10.9		ug/L	10.0		109	70-130			
LCS (AH14766-BS1)				Prepared: (08/31/21 A	nalyzed: 09	/01/21			
Monobromoacetic Acid	28 6	1 0	ug/L	25 0		114	70-130			
Monochloroacetic Acid	28 6	2 0	ug/L	25 0		114	70-130			
Dibromoacetic Acid	24 9	10	ug/L	25 0		99 7	70-130			
Dichloroacetic Acid	28 5	10	ug/L	25 0		114	70-130			
Trichloroacetic Acid	24 5	10	ug/L	25 0		98 0	70-130			
Surrogate: 2,3-Dibromopropionic Acid	9.70		ug/L	9.85		98.5	70-130			
Surrogate: 2-Bromopropionic Acid	12.6		ug/L	10.0		126	70-130			
Matrix Spike (AH14766-MS1)	Sou	ırce: 21H263	3-01	Prepared: (08/31/21 A:	nalyzed: 09	/02/21			
Monobromoacetic Acid	31 8	1 0	ug/L	25 0	ND	127	70-130			
Monochloroacetic Acid	30 4	2 0	ug/L	25 0	ND	121	70-130			
Dibromoacetic Acid	28 2	10	ug/L	25 0	ND	113	70-130			
Dichloroacetic Acid	31 0	10	ug/L	25 0	ND	124	70-130			
Trichloroacetic Acid	27 6	10	ug/L	25 0	ND	110	70-130			
Surrogate: 2,3-Dibromopropionic Acid	11.8		ug/L	9.85		120	70-130			
Surrogate: 2-Bromopropionic Acid	14.3		ug/L	10.0		143	70-130			S-0
Matrix Spike (AH14766-MS2)	Sou	ırce: 21H273	8-01	Prepared: (08/31/21 A	nalyzed: 09	/02/21			
Monobromoacetic Acid	25 7	1 0	ug/L	25 0	ND	103	70-130			
Monochloroacetic Acid	51 4	2 0	ug/L	25 0	ND	205	70-130			QM-0'
Dibromoacetic Acid	23 8	1 0	ug/L	25 0	ND	95 0	70-130			
Dichloroacetic Acid	26 3	1 0	ug/L	25 0	ND	105	70-130			
Trichloroacetic Acid	24 2	1 0	ug/L	25 0	ND	96 7	70-130			
Surrogate: 2,3-Dibromopropionic Acid	10.5		ug/L	9.85		107	70-130			

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Project Number: Round 3 ASR Water Quality Baseline

Alameda, CA 94501

Reported:

09/24/21 16:57

Haloacetic Acids by EPA Method 552.2 - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte(s)	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag

ug/L

Batch AH14766 - EPA 552.2

Matrix Spike (AH14766-MS2) Source: 21H2738-01 Prepared: 08/31/21 Analyzed: 09/02/21

11.5

Surrogate: 2-Bromopropionic Acid

115

Alpha Analytical Laboratories, Inc.

email: clientservices@alpha-labs.com

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

Todd Groundwater

Project Manager: Nicole Grimm

2490 Mariner Square Loop, Suite 215

Project: Round 3 ASR Water Quality Baseline

Alameda, CA 94501

Project Number: Round 3 ASR Water Quality Baseline

Reported: 09/24/21 16:57

Notes and Definitions

FILT	The sampl	e was filte	ered in the	lab prior	to analysis
------	-----------	-------------	-------------	-----------	-------------

QM-01 The spike recovery for this QC sample is outside of established control limits possibly due to a sample matrix interference.

QM-05 The spike recovery was outside acceptance limits for the MS and/or MSD due to matrix interference. The LCS and/or LCSD

were within acceptance limits showing that the laboratory is in control and the data is acceptable.

QM-07 The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS

recovery.

QM-4X The spike recovery was outside of QC acceptance limits for the MS and/or MSD due to analyte concentration at 4 times or

greater the spike concentration. The QC batch was accepted based on LCS and/or LCSD recoveries within the acceptance

limits.

R-01 The Reporting Limit for this analyte has been raised to account for matrix interference.

S-GC Surrogate recovery outside of control limits. The data was accepted based on valid recovery of the remaining surrogates.

ND Analyte NOT DETECTED at or above the reporting limit

dry Sample results reported on a dry weight basis

REC Recovery

RPD Relative Percent Difference

Corporate Laboratory (1551) 707-468-0401 208 Mason Street, Uklah CA 95482

Los Angeles (Service Center) 310-743-5711 1230 E 233rd St #205, Carson CA 90745

San Diego Laboratory (3055) 760-930-2555 2722 Loker Ave West, Ste A, Carlsbad CA 92010 North Bay Laboratory (2303) 707-769-3128 110 Liberty Street, Petaluma CA 94952

Bay Area Laboratory (2728) 925-828-6226 262 Rickenbacker Circle, Livermore CA 94551

Central Valley Laboratory (2922) 916-686-5190 9090 Union Park Way #113, Elk Grove CA 95624

Chain of Custody Record

Reports and Invoices delivered by email as PDF files

clientservices@alpha-labs.com

Lab No.	2142633	2 Pg_2	of	6
---------	---------	-----------	----	---

Keport to		to (if different)		Project	Info								inaly	/8ls:	₹equ	iest						L		AT		Temp *C	
Company:	Contact:		Project Na				1			Г	Ī			Π			Ĭ	Ĭ						ndaro		Ukiah	٦
Todd Groundwater			Round 3	ASR W		Quality											_	ا ۽	ļ				_	-day `\		30 Livermore	
Attn:	Email Address:		Project Nu	mber:			7	1	H				ı	ı			ភ្ន	Z				L	C			Livermore	ヿ
Nicole Grimm								Ī	1		ł	i	ı		1		8	ě				٤ ا		ISH: y 259		5.8	-
Phone:	Phone:		PO Numb	эт.			□		ΙI			ı		ă I	-	<u></u>	8	8				`	C	-	~ }	Elk Grove	┪
510-747-6920			1				Sample ID							∝		8	88	9	ŀ			Ļ		/ y 759	04		- 1
Physical Address:			Frequency	:			- S	таў						l gi		ا ق	₹ As	ջ		stats		ן '	2-1a,		<i>"</i>	Petaluma	\dashv
2490 Mariner Square Loop, Suite 215, Alai	meda CA 94501						Sign Sign	nann			1			<u> </u>	<u>ا</u> ڀو	S	Å	٤	£	휥		┡		her	ᅴ		1
Email address:		Co	ntainer Pre	servatio	n	Matrix	<u>.</u>	Ş	[ľ		ġ	<u> </u>	ė l	ģ	<u> </u>	اخ	충		ı	C		· t	Carlsbad	1
ngrlmm@toddgroundwater.com						Ш	S	30 20 20	<u>=</u>	g l				5	8	met	met.	met	ૄ	<u>ē</u>	اء	l	U	,			1
Field Sampler - Printed Name and Signature:	<u> </u>				ğ		20	ő	👸	盲			ı	la l	5	8	ğ	ğ	₹.	윤	캻	-		day	's l	Los Angeles	1
Nicole Grimm	n		ig a te	111	Way	water	quing.	10E	<u>8</u>	erchi			_	<u>-</u>	ask	Ved 2	ved 2	Zed 2	ved 2	Tagi L	. Dig	_		size	_	J	1
Sample Identification	Samp	Date 00 v	Poly bottle ← Glass jar Other Na2S2O3	HN03	None	Waste	Outer Total Number of Containers per	BAL - TCEC GW 30hr Quantitray	BAL - Color and Turbidity	H H	HAAS	MHL	Suffid	Alkalinity, Total / Chloride / Fluoride / MBAS	Nitrate	Dissolved 200.7 metals - Ca Fe K Mg Na	Dissolved 200.8 metals - Ag Al As B Ba Be Cd Cr Cu	Dissolved 200.8 metals - Mn Mo Ni Pb Sb Se TI V Zn	Dissolved 245.1 CVAA - Hg	Lab Filtration for Dissolved Metals	Metals Digestion	250mL	- 500m	HalfG	ag	Source Code	7
12-5-23A20	9:55	9/18	x x		×		1	×															Ť		×	•	1
, , _	•	x		$\ \cdot\ $	x x		1		_x								Т					П	Т	\Box	П		1
			x	††	ŢŢ	† † †	1	t	H	×	┪	\dashv	+	\top	\top	\top		\forall	┪	_	_	H	十	₩	H	<u></u>	┨
i		 	$^{\uparrow \downarrow \downarrow \downarrow \downarrow}$	++	^ ^	+++	+-	+-	$\vdash\vdash$	-	+	-	+	+	+	-	+	+	4	\dashv	_	×	+	┦┤	╁		4
<u> </u>		<u> </u>		×	×		1	_	Ц		×	\perp	\perp		ᆚ		\perp				_ _	Ц	\perp	\perp	Ц		┛
		×	x		×	111	3			ı		×	1				Ì								Н	_	1
			x	×	×		1			П	T	T	x		T		\top	Ţ				×	7	П	П		1
		1	x T	\Box	××	\Box	1	T	H	寸	7	7	7	×	×	×	×	×	x	×	×	H	十	Ţ	\forall		1
	-		+++	╁╂┧	+	H	į		\vdash	\dashv	+	+	-	$\overline{+}$	╫	+	╬	_	<u>^</u>	$\hat{+}$	$\hat{+}$	H	+	┼	╁		+
· · · · · · · · · · · · · · · · · · ·		,		++	+	++	š	┟╌	$\vdash \vdash$	-	-	-+	4	4	4	\bot	4	4	4	4	\perp	\sqcup	4	\bot	Н		4
	·	'			Ŀ	\coprod	ï				\perp	L	r ^a	_''	ľ							Ш		\perp	Ш		11
		·	1111	111				l	ŀί	- 1	-											П	\top	П	П	_	1
		1	 		1	\prod	1		П	丁	7	_	\top	\top	+	†	1	┪	┪	7		H	十	$\dagger \dagger$	П	v	7
Relinquished by		Received by		┼┸┸	Tim	<u> </u>	-		Date		+							L Ad	lditio	onal	Require	⊥L me:	 nts	Ш		·	-
Ne		87		-//	509	,	1	7.	81-	u	┪	_		A D	DW												7
M.		1.0		19	7/1	7	0	//	0/	21	_	0		Vrlte			Т		Sta	ite S	ystem N	o: <u>-</u>		<u> </u>	_		
		900		2:	<u>w</u>		12	יין אני מו	8	12	\dashv	^		A				Faci	lity G	iloba	il ID No:						
<u></u>		- AIS	<u> </u>	2	<u> </u>	0_	10	f F	8/		\dashv	С		eol DF							pany Log		ode;				
							1				_Ļ				_		_					_	_				┛

WORK ORDER

Printed: 8/19/2021 10:31:02AM

21H2633

Alpha Analytical Laboratories Ukiah to North Bay Chain of Custody

Client: Todd Groundwater Project: Round 3 ASR Water	r Quality Baseline		DP_TODENG Round 3 ASR Wate	Bid: r Qualit PO #:	Round 3 ASR	Water Quality
Date Due: 09/02/21 Received By: James Bix Logged In By: Sean Fole			ived: 08/18/21 22:15 ged 08/19/21 10:02			
Samples Received at:	deg C	All containers	received and intact:	YES N	0	
Analysis	Department	Expires	Comments			
21H2633-01 3121 [Water] San NB Perchlorate EPA 314.0	npled 08/18/21 09:10 NB Wet Chem	09/15/21 23	:59	_Lab I	Filter -	
21H2633-02 12-5-23A20 [Wate NB Perchlorate EPA 314.0	r] Sampled 08/18/21 NB Wet Chem	09:55 09/15/21 23	:59	Lab-l	Filter	
21H2633-03 3357 [Water] San NB Perchlorate EPA 314.0	npled 08/18/21 10:30 NB Wet Chem	09/15/21 23	:59	<u>Jab I</u>	ilter	
11H2633-04 3123 [Water] San NB Perchlorate EPA 314.0	npled 08/18/21 11:50 NB Wet Chem	09/15/21 23	:59	Lah-I	Hiter	
1 H2633-05 3127 [Water] Sam NB Perchlorate EPA 314.0	npled 08/18/21 12:25 NB Wet Chem	09/15/21 23:	:59	Lab-F	itter	
1H2633-06 Hollister #2 [Wate NB Perchlorate EPA 314.0	r] Sampled 08/18/21 NB Wet Chem	13:15 09/15/21 23:	59	Lab F	ilter	<u></u>
Containers Supplied: 250mL Poly Unpres (C)						
250mL Poly Unpres (C)						
250mL Poly Unpres (C)						
250mL Poly Unpres (C)						
250mL Poly Unpres (C) 250mL Poly Unpres (C)						:
Relinquished By	8/19/2 Date	Z/Time	Received By	\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-	7 20 Date	Time
It Dr.	* 220h1	12:30	Medical by:	< /	8(20)21	Time
Relinquished By	Date	Time	Received By	7	Date	Time

APPENDIX B

Groundwater Recharge Alternatives Facility Plan, HDR, January 13, 2022

Groundwater Recharge Alternatives Facility Plan

San Benito County Water District

San Benito County, CA January 13, 2022

Contents

1	Intro	oduction	1			
	1.1	Project Goals	1			
2	Well	l Siting	1			
3	Aqui	ifer Storage and Recovery	3			
	3.1	Water Demand and Supply	3			
	3.2	Well Capacity and Sizing	3			
	3.3	Pipeline	4			
	3.4	Water Treatment	7			
		3.4.1 Injection Water Quality and Treatment	10			
	3.5	Phased Facility Plan	15			
		3.5.1 Design Criteria				
4	MAR	R Facilities	22			
	4.1	Well Capacity and Sizing	22			
	4.2	Pipeline	22			
	4.3	Water Treatment	24			
	4.4	Phased Facility Plan	24			
		4.4.1 Design Criteria	25			
5	Alter	Alternative Evaluation				
	5.1	Evaluation Criteria	27			
	5.2	Economic evaluation	27			
	5.3	Summary Comparison of Alternatives	30			
6	Impl	ementation Plan	32			
	6.1	Phasing	32			
	6.2	Phase I and Pilot Program	32			
	6.3	Environmental Compliance and Permitting	33			
		6.3.1 Phase I				
		6.3.2 Phases II and III	34			
		Tables				
Tab	le 3-1.	ASR Well Sizing Design Criteria	4			
Tab	le 3-2.	Key Raw CVP Water Quality Parameters	8			
Tab	le 3-3.	Key Blended Permeate Water Quality Parameters with 50% Bypass	9			
		Key Raw Groundwater Water Quality Parameters				
		Key Blended Water Quality Parameters				
		Blended Concentrate Quality				
		ASR Facilities Design Criteria				
Tab	le 4-1.	Additional MAR Treatment Required in Three Phases	25			

Table 4-2. MAR Facilities Design Criteria	26
Table 5-1. ASR Facilities OPCC	
Table 5-2. MAR Facilities OPCC	
Figures	
Figure 2-1. Preliminary Location of ASR and MAR Wells Identified by Todd Groundwater	2
Figure 3-1. Facility Layout of ASR Program	
Figure 3-2. WTP Process Flow Diagram for Treatment before Injection	
Figure 3-3. ASR and MAR Sampling Well Locations	
Figure 3-4. WTP Process Flow Diagram for Treatment after Recovery	
Figure 3-5. Phased ASR Operation during Wet Year	16
Figure 3-6. Phased ASR Operation during Normal Year	
Figure 3-7. Phased ASR Operation during Dry Year	17
Figure 3-8. Phase I Site Layout of ASR Program	18
Figure 3-9. Phase II Site Layout of ASR Program	19
Figure 3-10. Phase III of ASR Program	20
Figure 4-1. Phased MAR Program Site Layout	23
Figure 4-2. Phased MAR Operation	24
Appendices	
Appendix A. IMSDesign Model Results	35
Appendix B. Water Quality Analysis	36
Appendix C. Class 5 OPCC	37

References

Ellis, R. H. (2021). Capacity Goal for Waer Supply and Storage Alternatives.

HDR. (2011). West Hills Water Treatment Plant Preliminary Design Report.

HDR. (2017). Hollister Urban Area Water and Wastewater Master Plan Update.

HDR. (2018). North Area Groundwater Facility Plan.

Kennedy Jenks. (2009). NF Pilot Study Operations and Test Plan. Todd Groundwater. (2021). North San Benito Groundwater Sustainability Plan.

This page is intentionally left blank.

1 Introduction

The San Benito County Water District (SBCWD, District) purchases surface water through the Central Valley Project (CVP) that distributes raw surface water to the San Benito County area via the Hollister Conduit and its auxiliary pipelines. During dry years, a reduced CVP supply leads to increased groundwater pumping, resulting in less satisfactory water qualities from increased hardness, total dissolved solids (TDS) and mineral content, and potential groundwater depletion. The District's 2017 Water and Wastewater Master Plan Update (HDR, 2017) identified the need for additional highquality surface water to meet future water demands and to improve water quality, especially in hardness and total dissolved solids (TDS). Based on a review of historical CVP allocations and other planning studies, approximately 6,000 acre-feet (AF) of excess CVP water was identified as being available to the District during wet years (Ellis, 2021).

In addition, the District has a need to maintain and improve long-term groundwater levels through recharge, as done previously from 1994 to 2004 via Managed Aquifer Recharge (MAR) programs (Todd Groundwater, 2021).

In 2021, HDR prepared a Draft Evaluation of Water Supply and Storage Alternatives comparing various alternatives to beneficially use the excess CVP water that included groundwater recharge. Alternatives considered include increasing local surface water storage, using CVP water to blend with increased groundwater production, Aquifer Storage and Recovery (ASR) and participating in out-of-basin surface water storage. The study concluded that ASR is the most advantageous and cost-effective method to utilize the excess CVP water for dry year demands. Concurrently, Todd Groundwater (TG) evaluated the feasibility of using MAR programs to recharge depleted groundwater and increase water supply as part of the Sustainable Groundwater Plan project for the District. This study identified potential locations for MAR wells.

1.1 **Project Goals**

The goals of this study are to perform a feasibility study for both ASR and MAR options for increased water supply and groundwater recharge, and recommend one of these for further analysis and development. Specifically, the following goals were established:

- Identify location and capacity of ASR and MAR wells
- Evaluate facilities required for ASR and MAR options including wells, pipelines, treatment, and pumping facilities.
- Develop an opinion of capital cost estimate (OPCC).
- Perform alternatives evaluation of the most suited alternative to maximize the use of CVP supply and provide a sustainable, long-term water supply for the agricultural and M&I needs of the District customers.
- Recommend one alternative and develop an implementation plan.

Well Siting 2

Todd Groundwater performed hydrogeological modeling to determine the best locations for ASR and MAR well locations. The well field locations were modelled by considering various hydrogeological conditions such as maximum draw-up and drawdown, mounding, groundwater movement and impacts from nearby wells. The ability of the wells to capture the available surplus water and the percolation capacity of the aquifer were also considered. To maximize the water quality benefit to municipal supply wells and achieve relatively long residence time of the injected water, the simulated well locations were in the Hollister area near and generally upgradient of City of Hollister (City) and Sunnyslope County Water District (SSCWD) wells. A minimum well spacing of 1,500 feet was assumed to avoid interference and excessive water-level mounding at the wells.

For the ASR wells, the wells were aligned in two rows roughly parallel to the regional groundwater flow direction. This maximizes the efficiency of recovering the injected highquality water because the plumes of injected water would tend to drift toward another ASR well. The wells were also chosen to be along existing roads for ease of property acquisition and obtaining pipeline easements, and close to CVP conveyance pipelines to minimize the length of new pipelines required.

Preliminary well locations for both the ASR and MAR wells are presented in Figure 2-1.

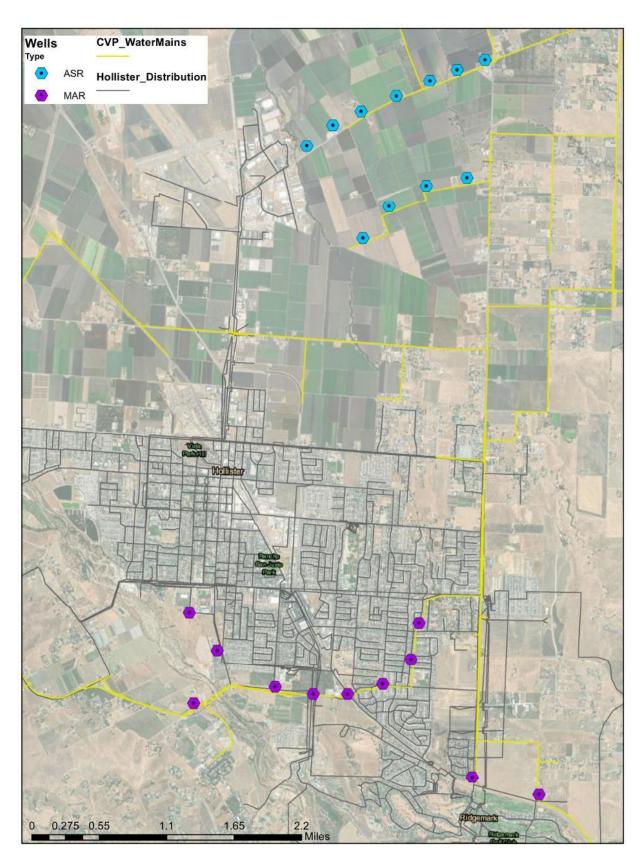


Figure 2-1. Preliminary Location of ASR and MAR Wells Identified by Todd Groundwater

3 Aquifer Storage and Recovery

ASR is the direct injection of water into an aquifer using injection wells for subsequent recovery utilizing the same well. The ASR facilities consist of ASR wells for injection of up to 6,000 AF of treated CVP water and recovery of stored water, a water treatment plant (WTP) to treat CVP water prior to injection and to treat ASR wells' output to drinking water standard prior to distribution, and pipelines that connect the ASR wells, the WTP and the Hollister Urban Area (HUA) distribution system. The major facilities required consist of 11 injection/recovery wells, one WTP and several miles of pipeline. These are described in the following sections.

3.1 Water Demand and Supply

Based on a review of CVP allocations over an extended period of record, it was concluded that 22 wet years occurred in the 83-year period (27% of all years), and approximately 6,000 AF of unused CVP supply was available in a wet year. This excess CVP water can provide for the 4,000 to 6,000 AFY deficit of high quality source water to improve water quality by 2035, as identified in the 2017 Master Plan Update (Ellis, 2021). The projection of additional high quality source water required to meet the District's future demand and water quality goals are currently being revised as part of a master plan update. Although the projected consumption demand is lower than that of the 2017 Master Plan Update, the amount of additional high quality source water required remains relatively unchanged, due to the extended projection horizon to 2045 and the revised hardness goal of 150mg/L to 180mg/L from the previous 220 mg/L goal.

3.2 Well Capacity and Sizing

The full cycle of ASR operation was assumed to be a minimum of one year injection period, followed by one to five years of storage, followed by a minimum of 12-month recovery period that could be spread over multiple dry years. The maximum capacity of the facilities has been sized based on this assumption. The recovery rate of injected water depends on the operation of the ASR wells and the movement of native groundwater. A pilot program will provide the data required to accurately establish the recovery rate. This is further discussed in Section 3.3.

Based on Todd Groundwater's hydrogeology analysis of the ASR site, a single ASR well will have a maximum injection capacity of 500 gpm (0.7 MGD) and a maximum recovery capacity of 1,000 gpm (1.4 MGD) considering allowable draw-up, drawdown, impacts from other wells and other hydrogeological factors. Clogging from precipitates is a common issue in ASR operation, therefore it is assumed that each well will be offline at least 25% of the time for backwash or other maintenance activities. Based on this, eleven ASR wells will be sufficient to inject the full 6,000 AF (5.4 MGD) excess CVP supply. Table 3-1 summarizes the design criteria of ASR wells. Phased well development is further discussed in Section 3.5. The well locations are shown in Figure 3-8 through Figure 3-1. The ASR well locations are slightly modified compared to locations identified by Todd Groundwater to obtain better groundwater water quality and to optimize pipeline routing.

Table 3-1. ASR Well Sizing Design Criteria

Parameter	Design Criteria
Injection Period ¹	9-12 months
Maximum ASR Injection Capacity	6,000 AFY
Storage Period	2 – 4 years
Recovery Period	12 months (in 2 years)
Injection Well Active-Duty Cycle	90%
Max Injection/Recovery Capacity per Well	500/1,000 gpm
Max. ASR Recovery Capacity	6,000 AFY ²
Recovery Rate ³ (of injected water)	75%
Number of Injection Wells	11
Minimum Spacing between Wells	1,500 feet

Notes:

- 1. Assumes a minimum of 12 months to inject 6,000 AF of excess CVP water.
- 2. Assumes that concentrate from treated groundwater is returned to the Hollister Conduit.
- 3. Full recovery refers to zero mixing between the injected water and native groundwater. Recovery rate of 75% assumes 25% of the injected water is replaced by native groundwater through storage.

3.3 **Pipeline**

The ASR facilities require a network of pipelines for raw water conveyance, transporting water between the wells and WTP, and connection to the HUA distribution system. Key pipelines are described below based on their intended function:

- CVP Conveyance Pipeline A 20-inch pipeline conveying source CVP water from the Hollister Conduit branch along Fallon Road to the new WTP. A separate raw water pipe is required to keep the raw water separated from treated water pipe.
- Wellfield Transmission Pipelines A network of pipelines conveying treated water from the WTP to ASR wells and recovered well water to the WTP. These dual direction pipelines vary in size and generally becomes smaller towards network extremities. The dual direction pipe network will be isolated from the raw water pipe and distribution system connection pipe to separate potable ASR injection water from raw water; and to separate recovered water that may need treatment from the potable water in the distribution system.
- Distribution and Transmission Pipelines Two pipelines will convey treated water from the WTP to the HUA distribution system. The first pipeline is an 18-inch transmission pipe that connects to the distribution system at the intersection of Fallon Road and San Felipe Road. The second pipeline is a 12-inch distribution system pipe that runs parallel to an existing 12-inch pipe along San Felipe Road. The existing 12-inch pipe along San Felipe road cannot handle the increased load from the WTP, therefore, a parallel 12-inch distribution system pipe along San Felipe Road is required to expand the distribution system capacity when the ASR program operates at full capacity.
- **Concentrate Pipeline** A 6-inch pipeline conveying nanofiltration (NF) concentrate from the WTP to the Hollister Conduit for blending and beneficial

reuse. The NF system provides treatment to raw CVP water and the extracted ASR water, if required.

The network of ASR pipeline required is shown in Figure 3-1. Facility location and alignments are conceptual and should be further developed during the design phase.

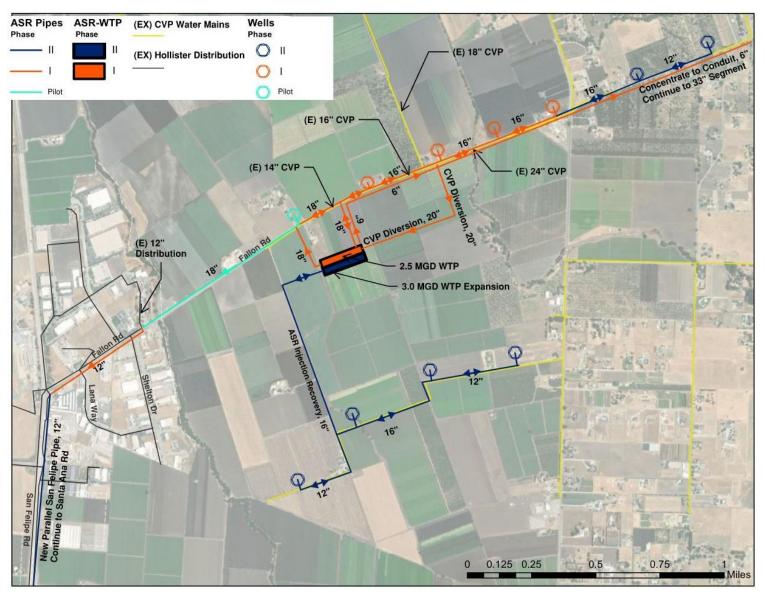


Figure 3-1. Facility Layout of ASR Program

3.4 Water Treatment

A new WTP is required to treat CVP water before injection into the ground and treat extracted water to potable water quality before entering the distribution system. The treatment processes at the WTP should be capable of treating CVP water that can be high in organics and treat the extracted ASR that could have elevated hardness, nitrates, etc., due to blending with native groundwater.

During initial discussions between the District, Todd Groundwater and the Regional Water Quality Control Board (RWQCB), the RWCQB indicated that treatment of surface water is required prior to injection into the aquifer. This is required to prevent the degradation of native groundwater and well fouling in the aquifer which is a potable water source. RWQCB also indicated that they could consider raw surface water injection, but this requires a lengthy permitting and complex demonstration process that often requires separation between existing or future agricultural and municipal wells from the ASR wells. This is unlikely to be applicable for the project as the production wells in the region may be closer to the ASR wells than permitted. Hence, for the purposes of this report, it is assumed that water treatment to potable water standards is required through a WTP.

3.4.1 Injection Water Quality and Treatment

Injection source water is CVP water diverted from the Hollister Conduit, similar to the source water for the West Hills WTP (WHWTP). Quarterly WHWTP source water quality data collected from the San Felipe system, ranging from November 2020 to August 2021 was provided by the District and summarized in Table 3-2. In general, the raw surface water from the Hollister Conduit can be characterized as moderate in total organic carbon (TOC), low turbidity, high bromide and seasonally high iron and manganese levels. Although the TOC levels are moderate, the DBP formation potential is high.

Table 3-2. Key Raw CVP Water Quality Parameters

Item	Unit	Average	95 th %
Turbidity	NTU	1.49	2.61
Manganese ¹	mg/L	0.08	0.18
Iron ¹	mg/L	0.07	0.12
Arsenic	ug/L	2.49	3.22
Barium	ug/L	70	70
Bromide ²	mg/L	0.31	0.43
Zinc ¹	mg/L	0.18	0.39
Boron ³	mg/L	0.2	-
Color		12.5	24.8
TDS	mg/L	288.8	306.5
Hardness	mg/L	110	120
TOC ²	mg/L	3.0	3.5

Notes:

- Raw CVP water has seasonal variability in iron, manganese and zinc concentrations, worse in the summer when San Luis and San Justo Reservoirs are at lower levels. Since the water available for injection at the ASR wells is available during wet years when the water would be supplied from the San Luis Reservoir, any of the San Justo Reservoir data exceptionally high iron and manganese concentrations were excluded in calculations.
- Data obtained from West Hills Water Treatment Plant Preliminary Design Report (HDR, 2011)
- Data obtained from 2009 NF Pilot Study Operations and Test Plan (Kennedy Jenks, 2009)

Different treatment processes were evaluated including an ActifloCarb process like that of the WHWTP followed by either ion exchange or pellet softening, and a membrane WTP with microfiltration (MF) or ultrafiltration (UF) membranes followed by Nanofiltration (NF) membranes. A pellet softening process has limitations on the hardness levels it can treat and the ion exchange process produces brine as a byproduct that is difficult and expensive to dispose. Hence, due to the variability in water quality to be treated, a MF/NF WTP is preliminarily recommended due to its robustness and ability to remove a wide range of contaminants. This should be confirmed following the results of the pilot study.

Using IMSDesign, a membrane design software by membrane manufacturer Hydranautics, a preliminary NF system was modelled and developed by Hydranautics representatives, shown in Appendix A. Table 3-3 presents certain key NF permeate and blended permeate concentrations from the model. This analysis provides approximate treated water quality, potential bypass ratio, concentrate quality and other treatment design parameters.

Table 3-3. Key Blended Permeate Water Quality Parameters with 50% Bypass

Item	Unit	NF Permeate	50% Blended Permeate
Manganese	mg/L	0.015	0.052
Iron	mg/L	0.013	0.046
Arsenic ⁽¹⁾	ug/L	2.49	2.49
Barium	ug/L	10	40
Zinc ⁽¹⁾	ug/L	0.18	0.18
Boron	mg/L	0.2	0.2
Sulfate	mg/L	3.0	22.63
Chloride	mg/L	36.57	62.97
Sodium	mg/L	26.58	44.25
TDS	mg/L	100.31	227.16
Hardness	mg/L	15.81	68.78
TOC	mg/L	0.2	1.0

Figure 3-2 shows the process flow schematic for CVP water treatment. 100% of the WTP influent shall be passed through the MF unit. Depending on the actual water quality, up to 50% of MF-filtrate water can bypass the subsequent NF membranes where dissolved organics and multivalent ions are removed. Concentrate from MF is settled onsite and the liquid is diverted to the head of the plant to minimize water loss. NF concentrate, with a higher concentration of hardness and multivalent ions could be returned to the Hollister Conduit for blending and recovery or otherwise disposed of offsite. This is further discussed under Section 3.4.3.

Figure 3-2. WTP Process Flow Diagram for Treatment before Injection

3.4.2 Recovery Water Quality and Treatment

3.4.2.1 Native Groundwater Quality

Selective wells in the approximate region of the proposed wellsite was performed by Todd Groundwater. The results of the sampling were used to refine the ASR well location and perform a blending analysis of native groundwater with injected groundwater. Figure 3-3 illustrates the sampling locations for both the ASR and MAR alternatives. Detailed information on the sampling results is listed in Appendix B. Table 3-4 highlights the concentrations of several key constituents in groundwater around the ASR location.

Table 3-4. Key Raw Groundwater Water Quality Parameters

Item	Unit	Average ²	Range
Turbidity	NTU	0.27	0.1-0.6
Manganese	mg/L	0.24	0.05-0.43
Iron	mg/L	ND ¹	ND
Arsenic	ug/L	7.64	4.4-14
Barium	ug/L	76.4	34-180
Zinc	ug/L	17.63	7.9-32
Boron	mg/L	2.84	1.5-4.2
Color	-	ND	ND
TDS	mg/L	938	850-1,100
Hardness	mg/L	275	209-336
TOC	mg/L	ND	ND

Notes:

- 1. ND: Non-detected. Measurements are below lab instrument detection level.
- 2. Average concentrations are calculated only based on above-ND measurements.

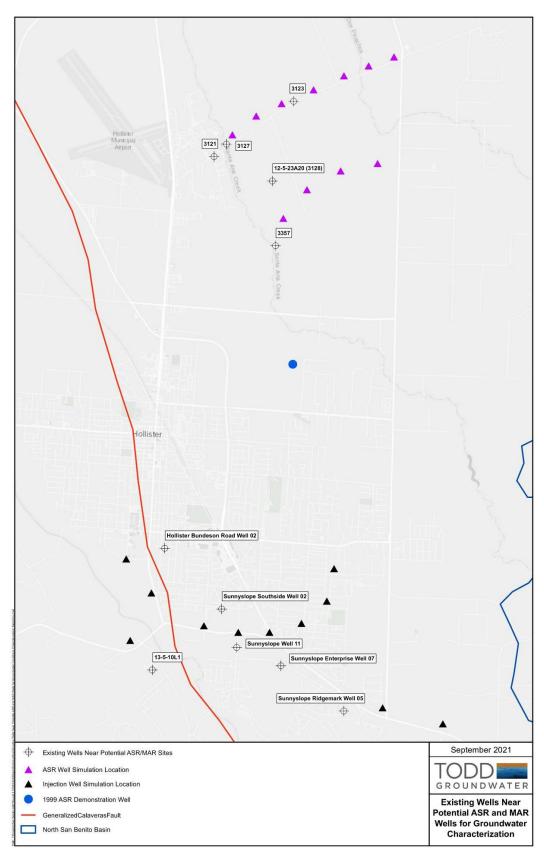


Figure 3-3. ASR and MAR Sampling Well Locations

Generally, the native groundwater quality at the ASR site has a great degree of variability even within as little as 1,500 feet between wells. Overall, native groundwater is high in TDS and hardness and moderately high in arsenic (at one well sampled), boron (in a couple of wells sampled) and manganese (at one well sampled). Depending on the geochemical reactions, groundwater movement and length of storage period, these constituents may appear or be in elevated concentrations in the recovery water due to mixing with native groundwater.

3.4.2.2 Blending Analysis

In the absence of geochemical analysis, a baseline 25% blending ratio (groundwater to injected water) was used to assess the quality of recovered water and the treatment levels needed. This value was derived based on the gap between the injection and recovery period of 2 to 6 years, past ASR projects in the region and review of hydrogeological model for the wells. It is recommended that a full geochemical analysis be performed in the next phase of work.

Two blending scenarios were analyzed with a blending ratio of 25% to capture the potential range of recovery water quality. These four scenarios consist of:

- 75% injected water blended with 25% average native groundwater concentrations of all wells sampled in the region.
- 75% injected water blended with 25% maximum native groundwater concentrations. Maximum concentration is each contaminant's highest measurement across the sampled locations and does not represent a single well source.

3.4.2.3 Recovered Water Quality

The blended concentrations were compared against regulated constituents' state Maximum Contaminant Levels (MCLs), secondary MCLs, Reporting Levels (RLs) and Notification Levels (NLs)1. These comparisons are listed in Appendix B. A summary is provided in Table 3-5.

Table 3-5. Key Blended Water Quality Parameters

Item	Unit	Blended-Avg	Blended-Max	MCL/Sec MCL/NL
Turbidity	NTU	0.32	0.48	5
Manganese	mg/L	0.1	0.15 ⁽¹⁾	0.05 ⁽³⁾
Iron	mg/L	0.035	0.035(2)	0.3 ⁽³⁾
Arsenic ⁽⁴⁾	ug/L	3.8	5.4	10
Barium	mg/L	0.05	0.08	1
Zinc ⁽⁴⁾	mg/L	0.14	0.14	5 ⁽³⁾
Boron	mg/L	0.9	1.2 ⁽⁵⁾	1 ⁽⁶⁾

¹ MCLs are enforced thresholds for state-regulated constituents. Secondary MCLs typically address aesthetics such as taste and odor. RLs are considerably higher than NLs. DDW generally recommends water systems take sources containing constituents exceeding RLs out of service and requires reporting such detections in the annual consumer confidence report (CCR). NLs are advisory in nature and aims to monitor CECs in a water system. If a chemical is confirmed to exceed the NL, DDW requires the water system to notify the governing body of the local agency and recommends consumer notice.

Color	CU	8.83	8.83	15
TDS	mg/L	405	445	500 ⁽⁷⁾
Hardness	mg/L	120	136	150 ⁽⁶⁾
TOC	mg/L	1.1	1.1	1.5

Notes:

- 1. Manganese exceeds secondary MCL due to one well measured significantly higher manganese levels than others. Water will be required to be treated at the WTP if this is the only well being recovered.
- 2. Iron slightly exceeds the secondary MCL due to high concentrations of iron in raw CVP water. Iron was ND in groundwater through sampling.
- Secondary MCLs.
- 4. Arsenic and Zinc were not modeled in the NF model by Hydranautics. The blended calculations assumed no removal of arsenic or zinc through NF.
- Boron concentrations in the sampled well are highly variable. If water is only recovered from the high boron wells, the blending ratio should be maintained below 25% to avoid exceeding the boron NL.
- Notification Level. No primary or secondary MCL exists.
- District's water quality goals based on latest master plan

The results of the blending analysis suggests that there are no regulated constituents exceeding their respective primary MCLs. Some constituents exceed the secondary MCLs, RLs and NLs at maximum blended concentrations. Based on the assumed blended water quality, it is likely that the recovered water may not need to be treated at the WTP before it is sent to the distribution system except during scenarios where water may be recovered from specific wells. Only wellhead disinfection may be required in most operating scenarios. However, since the native groundwater concentrations are variable (especially in hardness), a conservative approach would be to assume that all water recovered from the wells would be sent through the WTP. Even with this assumption, only the NF membranes would be utilized with a high level of bypass. It is unlikely that the water would be routed through the MF membranes.

Additionally, in consistence with the District's historical records, boron is likely to exceed its NL if the blending ratio exceeds 25% (native groundwater to injection water) since sampled boron levels exceed the NL in all wells sampled. Hence, the blending level in the water should be monitored and ensured that it does not exceed 25% to avoid NL exceedance. This needs be monitored on a well-by-well basis as the boron concentrations are highly variable. Additionally, this blending level can be increased if the background boron levels in the distribution system is low, thereby allowing the ASR water to be blended in distribution. This is an operational strategy that the District can use based on the ratio of ASR water in the distribution system under various operating conditions.

3.4.2.4 Recovered Water Treatment

Figure 3-4 demonstrates the process schematic for extracted water treatment. Depending on the actual water quality, up to 100% of the extracted ASR recovery water may bypass the MF process and up to 100% of MF-treated water can bypass the NF process to meet the District's hardness and TDS goals. Concentrate from MF is settled onsite and the liquid is diverted to the back of the head of the plant to minimize loss. NF concentrate, with more concentrated rejects, is delivered to the Hollister Conduit for blending as described in Section 3.4.3.

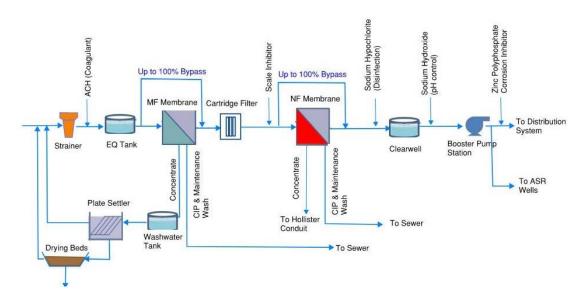


Figure 3-4. WTP Process Flow Diagram for Treatment after Recovery

3.4.3 Concentrate Management

Several concentrate management options available such as beneficial reuse for irrigation, recirculating back to the Hollister Conduit, and discharge to municipal sewer and recycled water system were considered due to favorable source water quality and comparatively concentrate volume. Other options such as deep well injection, evaporation ponds and zero-liquid discharge were not considered due to prohibitive cost and/or permitting requirements.

At 50% bypass ratio during raw CVP water treatment and 77% permeate recovery rate, modelled with IMSDesign, the volume of NF concentrate from treating 6,000 AFY of raw CVP water is approximately 0.61 MGD, or 700 AFY.2 This quantity is significantly less than the average Hollister Conduit flowrate, which ranges between 15,000 AFY to 20,000 AFY during a wet year when the water would be available for injection. As shown in Table 3-6, pumping the concentrate back to the Hollister Conduit results in almost no changes in the Conduit's water quality. Blending calculations assumed that the NF concentrate is blended with 15,000 AFY of raw CVP water.

Item	Unit	Concentrate	Raw CVP	Blended
Manganese	mg/L	0.31	0.08	0.08
Iron	mg/L	0.26	0.07	0.07
Arsenic	ug/L	4.98	2.49	2.50
Barium	mg/L	0.3	0.07	0.07
Zinc	mg/L	0.36	0.18	0.18
Boron	mg/L	0.4	0.2	0.2
Chloride	mg/L	239	83	83.7
Sodium	mg/L	115	58	58.5

² Concentrate volume is calculated by 6,000 AFY x 50% x (1-77%) = 0.613 MGD.

Sulfate	mg/L	153.6	38	38.5
Color	-	-	-	-
TDS	mg/L	1.073	300	304
Hardness	mg/L	422	109	110
TOC	mg/L	6.3	3.2	3.2

Comparatively, options such as irrigation reuse and discharge to local sewer are more sensitive to concentrate quality and have higher permitting requirements. High boron levels will impact crop growths and high chloride and sulfate concentrations may negatively contribute to the wastewater treatment plant's discharge monitoring and recycled water program³. Therefore, after discussions with the District, recirculating the concentrate back to the Hollister Conduit is determined to be the optimal solution to manage the NF concentrate to reduce cost and minimize water loss. The concentrate stream will be pumped back to a Hollister Conduit branch equal to or greater than 33-inch for sufficient blending.

3.5 Phased Facility Plan

The overall ASR program will be developed through a pilot program followed by two phases to reach full-scale operations, to refine operation procedures, control risks, and develop the program in reasonable increments that are consistent with the projected growth in water demands for the region. The operation of each of the facilities in the three phases depends on the year being either a wet, dry or normal precipitation year.

The initial pilot phase of the ASR facilities will consist of one ASR well and piping and provides an opportunity for piloting and demonstration. Operation for the various phases will depend on the type of rainfall year. During a wet year (shown in Figure 3-5), treated water from distribution system will be used for pilot testing injection at one well and the well will be operated to gather recovery water quality and other operation data. Phase I will add four wells, a 2.5 MGD treatment plant and pipeline to convey water among wells, the WTP and the distribution system. This phase provides capacity to utilize approximately half of the excess CVP water available to the District. Phase II provides full program capacity by completing the remaining six wells and expanding the WTP's capacity to 5.5 MGD to process 6,000 AFY of excess CVP water.

³ The Master Reclamation Requirements for the Domestic Water Recycling Facility state that the annual average limits of sodium, chloride and sulfate are 250, 280 and 250 mg/L, respectively.

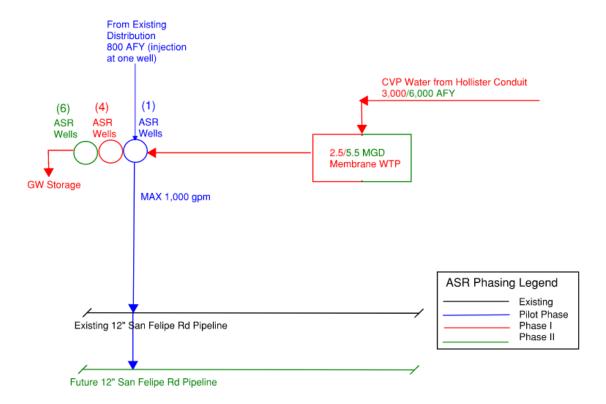


Figure 3-5. Phased ASR Operation during Wet Year

During a normal year (shown in Figure 3-6), there will be no injection activities as there is unlikely excess water, but approximately 3,000 AFY of available CVP water can be treated at the WTP and pumped directly to the distribution system to maximize use of the proposed facilities. The District has the option to purchase water from public or private spot market on a as-needed basis for injection as well, to further bolster local groundwater recharge and storage for future dry years.

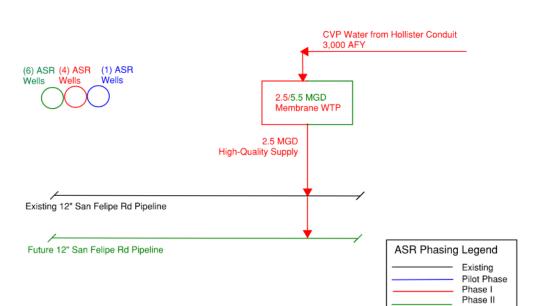


Figure 3-6. Phased ASR Operation during Normal Year

During dry years (shown in Figure 3-7), up to 6,000 AFY will be extracted from the injection wells and NAGW Phase 2 wells and treated at the WTP before being sent to the distribution system.

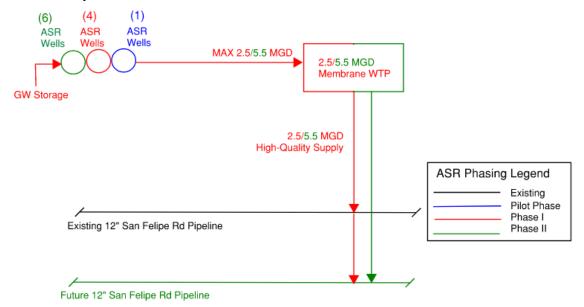


Figure 3-7. Phased ASR Operation during Dry Year

Figure 3-8, Figure 3-9, Figure 3-10 illustrate the facilities required during each phase of the ASR program.

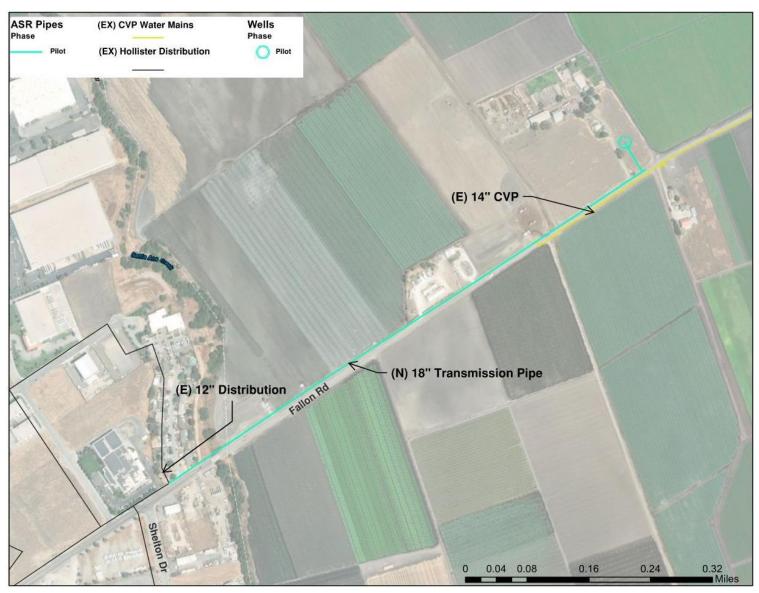


Figure 3-8. Pilot Phase Site Layout of ASR Program

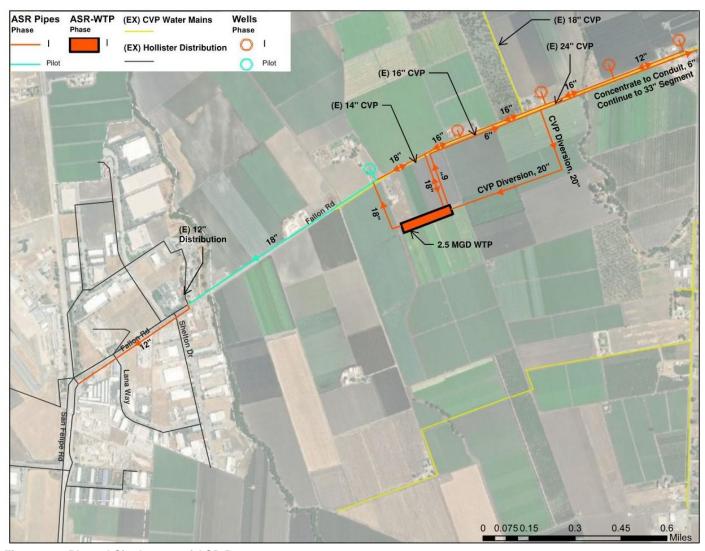


Figure 3-9. Phase I Site Layout of ASR Program

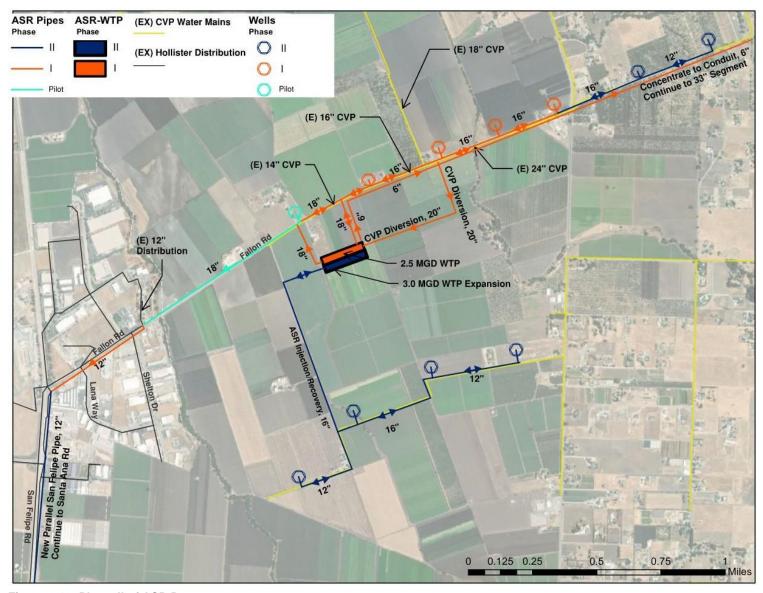


Figure 3-10. Phase II of ASR Program

Design Criteria 3.5.1

Table 3-7 summarizes the design criteria of major ASR facilities by phase and facility type.

Table 3-7. ASR Facilities Design Criteria

Parameter	Unit	Pilot Phase	Phase I	Phase II
Injection Wells				
Total Number	-	1	5	11
Max Injection Capacity (Each)	GPM	500	500	500
Max Total Capacity	AF	800	3000	6,000
Water Treatment Plant				
Total Flowrate	MGD	-	2.5	5.5
Total MF Membrane Capacity	MGD	-	2.5	5.5
Total NF Membrane Capacity	MGD	-	1.3	3.0
CVP Conveyance Pipeline				
Diameter	Inches	-	20	-
Length	Miles	-	0.60	-
Wellfield Transmission Pipelines				
Diameter	Inches	-	16-18	12-16
Length	Miles	-	1.28	3.30
Distribution Transmission Pipelines				
Diameter	Inches	18	12	12
Length	Miles	0.75	0.45	2
Concentrate Pipeline				
Diameter	Inches	-	6	
Length	Miles	-	1.8	

4 MAR Facilities

MAR is the use of water to recharge aquifers for environmental benefit such as replenishing overdraft basins or fending seawater intrusion. MAR allows for groundwater storage when excess water is available and improves groundwater quality in the aquifer by improving long-term salt balance. MAR can be achieved with different operations including infiltration ponds, drains and ASR. In this report, MAR refers to recharge methods using injection wells. The key different between MAR and ASR is that MAR does not allow for near-term recovery.

4.1 Well Capacity and Sizing

Hydrogeological modeling performed by Todd Groundwater identified suitable well locations that are identified in Section 2. The modelled maximum infiltration capacity is 500 gpm per well at 75% duty cycle for a total capacity of 6,000 AFY from 11 wells. These wells have been located at an area that has yet to recover from historical overdraft and away from streams or creeks to maximize recharging of the basin. In addition, the location allows capturing of the high-quality injection water by downstream wells.

4.2 **Pipeline**

The MAR wells will be placed upstream of the groundwater flow direction to existing production wells, so that water quality at these production wells may be potentially improved by the injection. A dedicated pipe network is required from the WTPs to the wells to ensure that only excess CVP surface water is injected at the MAR wells. Use of existing distribution piping may allow groundwater used for water supply to the distribution system to be recycled back for MAR injection. A new raw water supply pipeline is also required to the new WTP.

- WTP to Well Pipes Runs of pipes that connect the WHWTP and a new WTP to the MAR wells.
- **CVP Diversion Pipeline** A 16-inch pipeline conveying excess CVP water to the new WTP.

Figure 4-1 illustrates the overall MAR program layout.

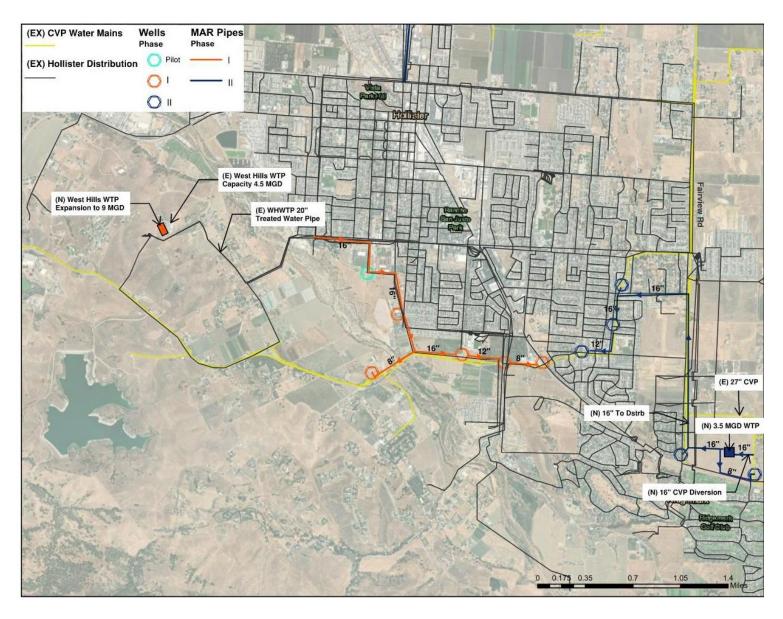


Figure 4-1. Phased MAR Program Site Layout

4.3 Water Treatment

As discussed in Section 3.3, treatment prior to injection is required by the RWQCB regardless of the intended use such as subsequent recovery or basin recharge. Thus, the MAR program also requires treatment processes as part of the program components. Since the MAR wells do not need to treat recovered water, it is feasible to treat excess CVP supply by expanding an existing treatment facility. It is recommended to expand the WHWTP by 4.5 MGD for Phase I MAR water supply. Since the WHWTP has buildout capacity of 9 MGG, a new WTP similar to WHWTP is required to meet Phase II treatment demand.

Phased Facility Plan 4.4

Similar to the ASR program, the MAR program will benefit in operation and permitting development by program phasing. Different than the ASR program, the MAR program only has one operation scenario which is injection, therefore, can only be implemented during a wet year when excess CVP water is available. The phased operation plan is presented in Figure 4-2.

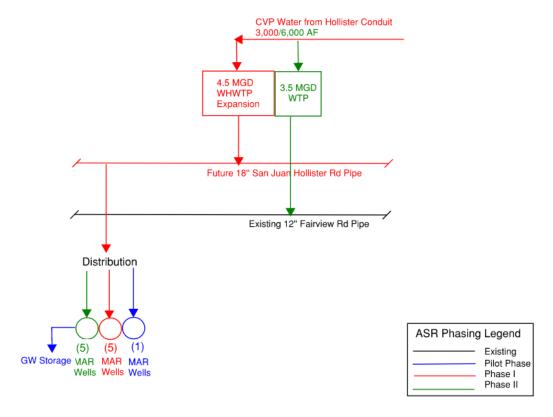


Figure 4-2. Phased MAR Operation

The pilot phase of the MAR program directs up to 800 AFY (500 gpm) distribution water to demonstrate the infiltration operation. Phase I requires treatment of 3,000 AFY of excess CVP water at the WHWTP and adds another five infiltration wells. Phase II requires treatment of the entire 6,000 AFY of excess CVP water and adds another five infiltration wells. At Phase II, the demand for treatment will exceed WHWTP's 9 MGD

capacity as the plant is also planned to supply high-quality water to meet future demands and water quality goals in the service area. Table 4-1 summarizes the sizing of the additional treatment capacity required for the MAR program at the end of Phase II. The 2017 Master Plan Update (HDR, 2017) identified the WHWTP needs to be expanded to 6.75 MGD starting in 2025 and 9 MGD in 2030 to meet future demands and blending goals. However, if the MAR program is carried forward, it would be more economical to expand WHWTP to 9 MGD before 2030. Based on the updated demand projection completed in 2021, by 2035, approximately 1MGD of excess CVP water needs to be treated outside of the WHWTP; and by 2045, approximately 3.5 MGD need to be treated at a new WTP. Therefore, it is recommended that the new WTP be planned for 3.5 MGD capacity to account for supply and blending demands beyond 2035.

Table 4-1. Additional MAR Treatment Required in Three Phases

		2023 (Pilot Phase)	2028 (End of Phase I)	2035 (End of Phase II)
1	Planned WHWTP Capacity per 2017 Master Plan Update (mgd)	4.5	9	9
2	WHWTP Current Production ¹ (mgd)	2.25	2.25	2.25
3	Demand for Additional High-Quality Water per 2022 Master Plan Update ² (mgd)	0.1	0.9	2.3
4	Demand for excess CVP Treatment ³ (mgd)	-	2.5	5.5
5	Additional Treatment Capacity Required (mgd)	-	-	1.05

Notes:

- 1. WHWTP was constructed at 4.5 mgd capacity but is currently only operating at 2.25 MGD due to water
- The 2017 Master Plan Update is currently being reviewed and updated. The latest estimate need for additional high-quality water required for supply and blending goals (based on hardness goal of 180 mg/L) are used in this calculation.
- 3. WHWTP's capacity will be prioritized for future demand and blending supply over the MAR program.

4.4.1 Design Criteria

Table 4-2 summarizes the design criteria of major MAR facilities by phase and facility type.

Table 4-2. MAR Facilities Design Criteria

Parameter	Unit	Pilot Phase Capacity	Total Phase I Capacity	Total Phase II Capacity
Injection Wells				
Total Number	-	1	6	11
Max Injection Capacity (Each)	GPM	500	500	500
Max Total Capacity	AF	800	3000	6,000
Water Treatment Plant (New or Expansion)				
WTP Capacity	MGD	-	4.5 ⁽¹⁾	3.5 ⁽¹⁾
WTP-to-Well Pipes				
Diameter	Inches	-	8-16	8-16
Length	Miles	-	2.6	3
CVP Diversion Pipeline				
Diameter	Inches			16
Length	Miles			0.2

Notes:

^{1.} Phase I will expand the WHWTP to 9mgd from 4.5 mgd capacity. Phase III will build a new WTP with process similar to the WHWTP's on the east side of the service area.

5 Alternative Evaluation

5.1 Evaluation Criteria

The ASR and MAR alternatives were evaluated based on the following criteria:

- Increases ability to use CVP allocation Alternatives will be evaluated based on their ability for beneficial use or storage of an additional 6,000 AF of CVP allocations available in wet years.
- Increases overall water supply This criterion evaluates the ability to increase total water supply available to the District.
- Increases dry year reliability This criterion is defined as contributing to a diverse
 portfolio of water supply sources with the ability to provide sustained yield during
 extended dry periods. Projects that provide new water supply and/or have the
 potential to provide carryover storage from wet years would meet this criterion. The
 goal is to meet 2035 demands in 3 consecutive dry years in combination with
 existing supplies and demand management measures.
- Improve Groundwater Basin Health The proposed alternative should improve the overall groundwater levels, especially in historically depleted area. It should also improve water quality by improving long-term salt balance in groundwater.
- Minimizes cost Capital costs were developed for each of the alternatives and were evaluated to determine the more cost-effective option.

5.2 Economic evaluation

The total capital cost for the ASR and MAR alternatives are provided under Table 5-1 and Table 5-2.

Table 5-1. ASR Facilities OPCC

	Pilot Phase OPCC	Phase I OPCC	Phase II OPCC	Total ASR Facilities Cost
New Water Treatment Plant	\$0	\$9,300,000	\$6,700,000	\$16,000,000
ASR Wells Development	\$1,630,000	\$6,010,000	\$9,020,000	\$16,660,000
Transmission and Distribution Pipeline	\$870,000	\$2,400,000	\$4,060,000	\$7,330,000
Concentrate Management	\$0	\$1,050,000	\$0	\$1,050,000
Subtotal Construction Cost	\$2,500,000	\$18,760,000	\$19,780,000	\$41,040,000
Mobilization, Bonds, and Insurance (6%)	\$150,000	\$1,125,600	\$1,186,800	\$2,462,400

Contractor OH&P (12%)	\$300,000	\$2,251,200	\$2,373,600	\$4,924,800
General Conditions (6%)	\$150,000	\$1,125,600	\$1,186,800	\$2,462,400
Subtotal	\$3,100,000	\$23,300,000	\$24,600,000	\$51,000,000
Contingency (30%)	\$930,000	\$6,990,000	\$7,380,000	\$15,300,000
Total Construction Cost	\$4,030,000	\$30,290,000	\$31,980,000	\$66,300,000
Planning, Design, ESDC, and CM (35%)	\$1,209,000	\$9,087,000	\$9,600,000	\$19,896,000
Total Capital Cost Estimate	\$5,300,000	\$39,400,000	\$41,600,000	\$86,300,000
High End of Range (+50%)	\$7,950,000	\$59,100,000	\$62,400,000	\$129,450,000
Low End of Range (- 25%)	\$3,975,000	\$29,550,000	\$31,200,000	\$64,725,000

- (1) All costs are in \$2021 and are not escalated to the midpoint of construction.
- (2) Costs are referenced to the Engineering News Record (ENR) 2021 San Francisco construction cost index of 13110 from February 2021.
- (3) High and low end of OPCC range is based on AACE Class 5 level estimate.

Table 5-2, MAR Facilities OPCC

	Pilot Phase OPCC	Phase I OPCC	Phase II OPCC	Total MAR Facilities Cost
New Water Treatment Plant	\$0	\$0	\$9,800,000	\$9,800,000
MAR Wells Development	\$1,180,000	\$5,670,000	\$5,670,000	\$12,520,000
Transmission and Distribution Pipeline	\$250,000	\$2,340,000	\$2,760,000	\$5,350,000
WHWTP Expansion (4.5 to 9 MGD)	\$0	\$10,484,100	\$0	\$10,484,100
Subtotal Construction Cost	\$1,430,000	\$18,500,000	\$18,230,000	\$38,160,000
Mobilization, Bonds, and Insurance (6%)	\$85,800	\$1,110,000	\$1,093,800	\$2,289,600
Contractor OH&P (12%)	\$171,600	\$2,220,000	\$2,187,600	\$4,579,200
General Conditions (6%)	\$85,800	\$1,110,000	\$1,093,800	\$2,289,600
Subtotal	\$1,773,200	\$23,000,000	\$22,700,000	\$47,473,200
Contingency (30%)	\$532,000	\$6,900,000	\$6,810,000	\$14,242,000
Total Construction Cost	\$2,305,200	\$29,900,000	\$29,510,000	\$61,715,200
Planning, Design, ESDC, and CM (35%)	\$692,000	\$8,970,000	\$8,860,000	\$18,522,000
Total Capital Cost Estimate	\$3,000,000	\$38,900,000	\$38,400,000	\$80,300,000
High End of Range (+50%)	\$4,500,000	\$58,350,000	\$57,600,000	\$120,450,000
Low End of Range (-25%)	\$2,250,000	\$29,175,000	\$28,800,000	\$60,225,000

- (1) All costs are in \$2021 and are not escalated to the midpoint of construction.
- (2) Costs are referenced to the Engineering News Record (ENR) 2021 San Francisco construction cost index of 13110 from February 2021.
- (3) High and low end of OPCC range is based on AACE Class 5 level estimate.

The OPCC is provided as a range to align with a Class 5 level estimate as defined by the Association for Advancement of Cost Engineering (AACE), detailed in Appendix C. AACE prescribes a Class 5 range for planning level studies used for long term capital planning and budget approval that have a 0% to 2% level project definition. This estimate does not account for unknowns in site conditions, project requirements and changing market conditions, amongst other unknowns. Changing market conditions are especially of concern currently during the COVID-19 pandemic. During this period, substantial material prices increase in primary materials such as wood, steel and concrete, copper, and PVC, along with labor shortages and pre-existing tariffs have produced a volatile situation for owners as general contractors are factoring in uncertainties in their bid estimates.

Considering the current market conditions, it is recommended to retain a higher than usual contingency and assume that capital costs would be closer to the high end of the estimate range rather than the mid-range estimate. It is also recommended that

additional evaluation of the ASR alternative be performed and a more detailed OPCC developed before the costs are used for budgetary purposes since the costs developed for this report were developed for comparative evaluation of alternatives.

5.3 **Summary Comparison of Alternatives**

- Maximize CVP Water Use Both the ASR and MAR alternatives provide the District with the ability to utilize excess CVP water available or bank on cheap water available in the spot market during wet years. The ASR facilities help the District to maximize the excess CVP water available as the water used for injection is exclusively CVP water. However, if the MAR wells extract injection water from the distribution network as originally planned, a portion of groundwater from the municipal wells may be recycled back into the aquifer as the source water for MAR treatment is drawn from the distribution system which has a combination of treated surface water and groundwater. This will reduce the capacity of the wells to maximize CVP water use.
- Increase Water Supply The facilities planned for both alternatives provide the alternatives with the ability to utilize up to 6,000 AF of CVP water when available. However, due to the nature of MAR wells where the stored water is not recovered from the MAR wells, the MAR option does not provide the District with the ability to increase their overall water supply in a measurable way. The water stored using the MAR wells migrates in the groundwater basin and is recovered in the long term through agricultural and municipal wells in the region but is not available on a short to mid-term basis to augment water supply needs.
- Increased Dry Year Reliability ASR wells and facilities provide the District with the ability to provide sustained yields during extended dry periods. The design of the ASR facilities will allow the District to recover up to 6,000 AF across 2 to 3 years, or within a year during critically dry years. However, the MAR water injected may not be available immediately during dry years following a wet year and normal year cycle. With ASR, while high quality treated water is lost due to water migration and blending of treated water and native groundwater, the migration is expected to happen over a long period of time and not significantly affect water quality during a 5 to 6 years wet-normal-dry year cycle.
- Improve Groundwater Basin Health MAR facilities provide the most benefit to the overall groundwater basin health. The wells lead to increased groundwater levels, especially for the areas of the aguifer that are historically overdrawn and improve the water quality for municipal and agricultural which in the region which typically have high hardness, TDS and mineral concentrations. While ASR wells provide some basin recharge benefits, the benefits are lower than the MAR alternative. While a portion of the high quality, treated water is expected to migrate into the basin, majority of the water is expected to be recovered for use in dry years.
- Minimizes Capital Cost The MAR facilities have a total capital cost of \$80,300,000 and the ASR facilities have a total cost of \$86,300,000. While the ASR alternative has a higher cost, it provides the District the ability and flexibility to obtain high quality water when needed. With MAR wells, while the capital

spent on treating CVP water is useful to recharge the basin, the benefit of spending capital on water treatment is not realized due to the lack of the ability to recover the water.

Based on the discussion in this section, the ASR program is recommended as the preferred water supply and groundwater recharge alternative. While the MAR alternative is not recommended for increasing water supply, it is recommended that the District consider using MAR wells as a sustainable groundwater management option for long term groundwater recharge.

6 Implementation Plan

This section describes the phasing, next steps, schedule, environmental considerations and financing requirements for the project.

6.1 Phasing

Based on the evaluation of alternatives under Section 5, ASR is the recommended alternative. The recommended phasing approach to implement the facility plan is summarized again this this section:

- Pilot Phase (2022) Develop a pilot well in the north area that will inject water supplied from the distribution system. Install pipe to connect the ASR well to the distribution system. The total capital cost of the facilities required for this phase is \$5.3 million. The next steps towards Phase I are described under Section 6.2.
- Phase I Implement Phase I of ASR that adds four injection/recovery wells, a new water treatment plant and associated pipelines to obtain up to 3,000 AFY of ASR capacity. The total capital cost of the facilities required for this phase is \$39.4 million.
- Phase II Implement Phase II of ASR that adds up to an additional 2,200 AFY capacity. Expand the water treatment plant capacity, add six injection/recovery wells and associated pipelines. The total capital cost of the facilities required for this phase is \$41.6 million.

6.2 ASR Pilot Program

The next step for the ASR program consists of implementing the pilot phase of the program that involves development of a pilot program and design of facilities required for the pilot program. Preliminary design of pilot facilities is the immediate next step to finalize well location and pipeline alignment, refine design criteria and sizing, identify land requirements, and update cost estimate. Following completion of the preliminary design, additional engineering will include the design, permitting, construction management and startup of the pilot facilities. Once the pilot well has been constructed, the demonstration period will compile information on the following:

- Performance, injection and production testing of the pilot well.
- Assessment of aguifer response to injection.
- Evaluation of well plugging during injection.
- Determination of well backflushing rates and well recovery from backflushing.
- Determination of recovery efficiency.
- Water quality analysis.
- Collect geological information from cuttings.

- Creating of a geochemical and transport model. Confirmation of this model from test data.
- Refine water treatment processes based on water quality testing and geochemical modeling.

Upon completing the hydrological and geochemical analysis, the expected water quality and treatment process should be re-evaluated. Current conditions and assumptions point to good water quality in both CVP raw water and the ASR recovery water. If this remains true in the pilot study, a different treatment process of MF followed by a non-NF TOC removal option, such as via activated carbon, should be considered. Once favorable results are obtained from the wells, the next steps would be to implement Phase II of the program.

6.3 **Environmental Compliance and Permitting**

6.3.1 Pilot Phase

6.3.1.1 CEQA

Because the level of environmental review required by the California Environmental Quality Act (CEQA) is not yet defined, the recommended approach is to prepare a screening-level initial study to justify and support a general "common sense" categorical exemption. Initial work will involve completion of a high-level analysis to determine if there is potential for this phase to result in a significant impact to the environment. Through this process, it will be validated if the project qualifies for a categorical exemption per CEQA and if so, a Notice of Exemption will be prepared to environmentally clear the project.

There are a couple of portions of the transmission pipeline that would impact the categorical exemption process. The design of these portions of the pipeline should be based on obtaining the categorical exemption to not require a more detailed permitting approach and delay the project implementation. For example, the pipeline crossing at Santa Ana Creek should be designed to be supported under the Fallon Road bridge or use trenchless construction methods to not impact the creek. Similarly, the crossing of the drainage ditch at the intersection of Fallon Road and Scagliotti Road should be trenchless and avoid an open-cut of the ditch.

6.3.1.2 **RWQCB**

The ASR pilot project requires a permit with the RWQCB. A notice of intent (NOI) and Form 200 related to the General Information for Water Discharge Requirements is required for the pilot well operation. The State Water Board's ASR General Order (order No. 2012-0010) allows for a pilot well exemption from CEQA with a notice of categorical exemption (CE). If well backflush or recharge water is required to be discharged to the stormwater system, a stormwater Permit and Drinking Water System Discharge Permits are also required for discharges from the pilot well into the storm drain system.

6.3.2 Phases I and II

The following environmental compliance and permitting efforts have been identified as a minimum for the ASR program. Additional permitting requirements will be identified before commencement of Phase II of the program.

- CEQA The pipeline, wells and WTP will be required to comply with CEQA. A programmatic permit approach is recommended to include both Phases I and II.
- National Environmental Policy Act (NEPA) Compliance with NEPA and the provisions of the Warren Act are required to make connections to the Hollister Conduit, which is a federal facility.
- RWQCB A permit is required from the RWQCB for treated water injection into the aquifer.
- Department of Drinking Water (DDW) A DDW permit is required for potable water treated at the WTP before it enters the distribution system.

Appendix A. IMSDesign Model Results

Permeate Blending, Permeate pressure

Project name San Benito ASR Client Name HDR/Sifang

Shannon Calculated by Lopez

HP pump flow 378.47 gpm 45.6 psi Feed pressure Feed temperature 21.9 °C(71.4°F) Feed Water pH

Chemical dose, mg/l, -None

Pumping specific energy 0.53 kWh/kgal Pass NDP 22.3 psi 8.3 gfd Average flux

Permeate flow/train 0.42 mgd Total plant product flow 2.91 mgd Number of trains 3.00 1.10 mgd Raw water flow/train Permeate recovery 77.00 % Blended flow 0.97 mgd Membrane age 0.0 years Flux decline %, per year 7.0 % Fouling factor 1.00 SP increase, per year 7.0 % Inter-stage pipe loss 3.000 psi Feed type **Brackish Surface**

Pretreatment

1/3

MF/UF

Pass-Perm. Flow / Vessel DP Flux Beta Stagewise Pressure Perm. Membrane Membrane PV# x Stage Flow Feed Conc Max Perm. Boost pressure Conc TDS Type Quantity Elem# gfd gfd psi gpm gpm gpm psi psi psi mg/l 204.7 8.3 11.0 15.0 0.0 37.3 75.7 ESNA1-LF2-LD 84 12 x 7M 1-1 31.6 14.5 8.8 1.12 1-2 87.0 29.0 14.5 7.5 9.4 5.0 0.0 26.8 158.1 ESNA1-LF2-LD 42 6 x 7M

lon (mg/l)	Raw Water	Feed Water	Permeate Water	Concentrate 1	Concentrate 2	Blended Water
Hardness, as CaCO3	109.20	109.20	15.851	224.3	421.9	68.78
Ca	22.37	22.37	4.062	45.2	83.7	14.44
Mg	13.00	13.00	1.390	27.1	51.9	7.97
Na	57.75	57.75	26.581	101.6	162.2	44.25
K	3.29	3.29	2.142	5.1	7.1	2.79
Ва	0.070	0.070	0.010	0.1	0.3	0.04
Fe+2 updated conc. is 0.07mg/L	_ 0.07 -0.35 0	0.07 0.350	0.07 0.06 3558	0.013 0.70 8	0.262 1.30 9	0.046 -0.23
Mn+2 updated conc. is 0.08mg/L	_ 0.08 0.23 0	0.08 0.230	0.07 0.04 2	0.146 - 0.5	0.3130.9	0.052 -0.15
CO3	0.34	0.34	0.018	1.4	5.0	0.20
HCO3	103.85	103.85	25.467	203.2	362.6	69.96
SO4	37.63	37.63	2.998	79.4	153.6	22.63
CI	83.13	83.13	36.567	147.9	239.1	62.97
F	0.09	0.09	0.078	0.1	0.1	0.08
NO3	1.78	1.78	0.843	3.1	4.9	1.37
*TOC (SR % = 93.00)	1.60	1.60	0.204	3.3	6.3	1.00
B updated conc. is 0.2mg/L	0.2 -0.05	0.2 -0.05	0.2 0 .050	0.4 -0.1	0.4 -0.1	0.2 0.05
CO2	3.00	3.00	3.00	3.00	3.00	3.00
NH3	0.00	0.00	0.00	0.00	0.00	0.00
TDS	323.93	323.93	100.31	615.61	1072.70	227.16
pH	7.73	7.73	7.14	8.01	8.25	7.56

Saturations	Raw Water	Feed Water	Permeate Water	Concentrate	Limits
CaSO4 / ksp * 100, %	1	1	0	3	400
SrSO4 / ksp * 100, %	0	0	0	0	1200
BaSO4 / ksp * 100, %	201	201	8	1074	10000
SiO2 Saturation, %	0	0	0	0	140
CaF2 / ksp * 100, %	0	0	0	0	50000
Ca3(PO4)2 saturation index	0.0	0.0	0.0	0.0	2.4
CCPP, mg/l	-3.52	-3.52	-5.67	49.66	850
Langelier index	-0.59	-0.59	-2.48	0.99	2.8
Ionic strength	0.01	0.01	0	0.03	
Osmotic pressure, psi	2.9	2.9	1.0	9.2	
TDS / Osmotic pressure mg/l.psi	110.9	110.9	98.7	115.5	

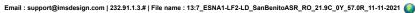
Feed pressure

Feed Water pH

Feed temperature

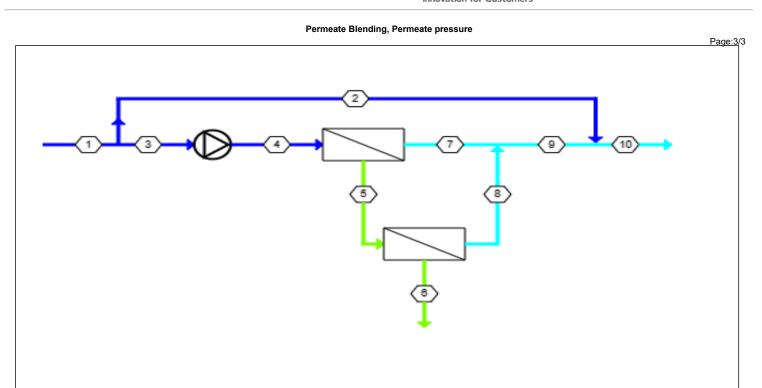
Permeate Blending, Permeate pressure

Project name San Benito ASR Client Name HDR/Sifang Shannon Calculated by Lopez HP pump flow


378.47 gpm 45.6 psi 21.9 °C(71.4°F) 7.73 None

Chemical dose, mg/l, -Pumping specific energy 0.53 kWh/kgal Pass NDP 22.3 psi Average flux 8.3 gfd

2/3 Permeate flow/train 0.42 mgd Total plant product flow 2.91 mgd Number of trains 3.00 1.10 mgd Raw water flow/train Permeate recovery 77.00 % Blended flow 0.97 mgd Membrane age 0.0 years Flux decline %, per year 7.0 % Fouling factor 1.00 SP increase, per year 7.0 % Inter-stage pipe loss 3.000 psi Feed type **Brackish Surface** MF/UF Pretreatment


Pass-	Perm.	Flow / '	Vessel	Flux	DP	Flux	Beta		Stagewise Pressure		Perm.	Membrane	Membrane	PV# x
Stage	Flow	Feed	Conc			Max		Perm.	Boost pressure	Conc	TDS	Type	Quantity	Elem#
	gpm	gpm	gpm	gfd	psi	gfd		psi	psi	psi	mg/l			
1-1	204.7	31.6	14.5	8.8	8.3	11.0	1.12	15.0	0.0	37.3	75.7	ESNA1-LF2-LD	84	12 x 7M
1-2	87.0	29.0	14.5	7.5	7.5	9.4	1.10	5.0	0.0	26.8	158.1	ESNA1-LF2-LD	42	6 x 7M

Pass-	membrane	Feed	Pressure	Conc	NDP	Permeat	e Water	Recovery			Permeate (Pas	sswise c	umulative)
Stage	no.	Pressure	Drop	Osmotic pressure		Flow	Flux		Beta	TDS	Econd (@ 25.0 °C)	Ca	Na	CI
		psi	psi	psi	psi	gpm	gfd	(%)		mg/l	μS/cm	mg/l	mg/l	mg/l
1-1	1	45.6	1.79	3.2	28.7	3.1	11.0	9.7	1.09	46.1	85.5	1.708	12.685	17.271
1-1	2	43.8	1.54	3.4	25.2	2.7	9.7	9.4	1.09	51.3	95.0	1.910	14.084	19.187
1-1	3	42.3	1.33	3.7	23.8	2.5	9.1	9.8	1.10	55.7	103.2	2.087	15.264	20.809
1-1	4	41.0	1.15	4.1	22.4	2.4	8.6	10.3	1.10	60.2	111.4	2.271	16.452	22.445
1-1	5	39.8	0.98	4.4	21.1	2.3	8.1	10.8	1.11	65.0	120.2	2.468	17.699	24.168
1-1	6	38.8	0.82	4.9	20.0	2.1	7.7	11.4	1.12	70.1	129.5	2.686	19.032	26.014
1-1	7	38.0	0.69	5.4	18.9	2.0	7.2	12.2	1.12	75.7	139.8	2.928	20.475	28.016
1-2	1	34.3	1.58	5.8	24.4	2.6	9.4	9.0	1.09	77.4	142.8	3.009	20.888	28.598
1-2	2	32.7	1.38	6.3	22.6	2.4	8.6	9.1	1.09	79.8	147.1	3.118	21.482	29.430
1-2	3	31.4	1.20	6.8	20.8	2.2	8.0	9.2	1.09	82.8	152.6	3.255	22.233	30.479
1-2	4	30.2	1.04	7.3	19.3	2.0	7.4	9.4	1.09	86.4	159.0	3.417	23.125	31.726
1-2	5	29.1	0.90	7.9	17.8	1.9	6.8	9.6	1.10	90.5	166.5	3.605	24.149	33.159
1-2	6	28.2	0.77	8.5	16.4	1.7	6.3	9.8	1.10	95.1	174.8	3.819	25.301	34.772
1-2	7	27.5	0.66	9.2	15 1	16	5.8	99	1 10	100.3	184 2	4 062	26 579	36 563

Stream No.	Flow (gpm)	Pressure (psi)	TDS (mg/l)	Hardness as CaCO3	CI	NO3
1	760	0	324	109	83.1	1.78
2	382	0	324	109	83.1	1.78
3	378	0	324	109	83.1	1.78
4	378	45.6	324	109	83.1	1.78
5	174	37.3	616	224	148	3.11
6	87.1	26.8	1073	422	239	4.92
7	205	15.0	75.7	11.4	28.0	0.651932
8	87.0	5.00	158	26.4	56.7	1.29
9	292	5.00	100	15.9	36.6	0.843312
10	674	5.00	227	68.8	63.0	1.37

Appendix B. Water Quality Analysis

Average and 95th% calculations a	re only based on	non-zero data poin		of our 4 measurei R GW Data	ments is "NL	, avei	age and 95th perc		/ Summary	ca basca o	I tile otilei i	Raw CVP \			Criteria	
ANALYTE	Units	3128 3121		3123	3127		# of Samples		Avg	Min	Max	Avg	95th	MCL	RL	NL
icarbonate Alkalinity as CaCO3	mg/L	340	310	250	300	330	5	0	306.00	250.00	340.00	85.125	96.9 N			
Soron, dissolved Carbonate Alkalinity as CaCO3	ug/L mg/L	4100 0	1900 0	1500 0	4200 0	2500	5 5	0 5	2840.00	1500.00 0.00	4200.00 0.00	200	N/		10,000.00	1000.0
Chloride	mg/L	180	130	130	340	150	5	0	186.00	130.00	340.00	83.125	88	500.00		
Color	cu	0	0	0	0	0	5	5		0.00	0.00	12.5	24.75	15.00		
luoride	mg/L	0.41	0.32	0.21	0	0.46	5		0.35	0.00	0.46	0.091	0.11	2.00		
Hydroxide Alkalinity as CaCO3 Nitrate as N	mg/L mg/L	0 0.82	0 3.7	0 3.1	0 1.2	0 0.27	5 5	5 0	1.82	0.00 0.27	0.00 3.70	0.385	0.5015	10.00		
oulfate as SO4	mg/L	120	220	190	65	150	5		149.00	65.00	220.00	37.625	42.25	500.00		
iulfide	mg/L	0	0	0	0	0	5			0.00	0.00		N/			
Total Alkalinity as CaCO3	mg/L	340	310	250	300	330	5		306.00	250.00	340.00	85.125	96.9 N	A		
Total Coliforms Total Dissolved Solids	MPN/100mL	0	0 940	0	1100	200	5	4	1.00	0.00	1.00	288.75	206 5	500.00		
Furbidity	mg/L NTU	920 0.1	0.1	850 0	1100	880 0.6	5 5		938.00 0.20	850.00 0.00	1100.00 0.60	1.49	306.5 2.61	5.00		
Calcium, dissolved	mg/L	33	47	39	42	41	5	0	40.40	33.00	47.00	22.38	23 N			
Silica (SiO2)	mg/L	27	18	0	33	0	3	0	26.00	18.00	33.00		N/			
Chromium, hexavalent	ug/L	5	11	0	11	0	3	0	9.00	5.00	11.00		N/			
Carbon disulfide Hardness, Total	ug/L mg/L	0 271	0 336	0 259	0 209	0 300	3 5	3 0	275.00	0.00 209.00	0.00 336.00	110	120 N		1600.0	160.0
Ammonia as NH3	mg/L	0	0	0	0	0	3	3	273.00	0.00	0.00	110	120 N/			
Phosphorus, total	mg/L	0.095	0.079	0	0.2	0	3	0	0.12	0.08	0.20		N/			
Aluminum, dissolved	mg/L	0	0	0	0	0	5	5		0.00	0.00	0.21	0.22	0.20		
Antimony, dissolved	ug/L	0	0	0	0.52	0	5	4	0.52	0.00	0.52			6.00		
Arsenic, dissolved	ug/L	7.2	4.9	4.4	14	7.7	5 5		7.64	4.40	14.00	2.49	3.22	10.00		
Barium, dissolved Beryllium, dissolved	ug/L ug/L	62 0	41 0	34 0	180 0	65 0	5	0 5	76.40	34.00 0.00	180.00 0.00	70	70	1000.00 4.00		
Cadmium, dissolved	ug/L ug/L	0	0	0	0	0	5			0.00	0.00		1	5.00		
Chromium, dissolved	ug/L	6.8	12	3	0	0	5	2	7.27	0.00	12.00		1	50.00		
Cobalt	ug/L	0	0	0	1.8	0	3	2	1.80	0.00	1.80		N/			
Copper, dissolved	ug/L	2	24	5.7	3.6	3	5		7.66	2.00	24.00	53.23	95.1	1000.00		
ron, dissolved	mg/L	0	0 0.3	0	0	0	5 5	5 4	0.30	0.00	0.00	0.064	0.118	0.30		
.ead, dissolved Magnesium, dissolved	ug/L mg/L	46	53	39	25	48	5		42.20	25.00	0.30 53.00	10.33 13	20.57 14 N	15.00		
Manganese, dissolved	mg/L	0	0	0	0.05	0.43	5	3	0.24	0.00	0.43	0.083	0.184	0.05	5.0	0.5
Mercury, dissolved	ug/L	0	0	0	0	0	5	5		0.00	0.00			2.00		
Nickel, dissolved	ug/L	0.77	1.2	1.5	0.87	7.1	5		2.29	0.77	7.10	1.5	14	100.00		
Potassium, dissolved	mg/L	2.4	3.2	2.6	3.3	2.9	5	0	2.88	2.40	3.30	3.29	3.47 N			
Selenium, dissolved Silver, dissolved	ug/L ug/L	0	5.4 0	2.7 0	0 0	0	5 5	3 5	4.05	0.00	5.40 0.00			50.00 100.00		
Sodium, dissolved	mg/L	210	180	170	320	190	5	0	214.00	170.00	320.00	5.75	61 N			
Fhallium, dissolved	ug/L	0	0	0	0	0	5	5		0.00	0.00			2.00		
/anadium, dissolved	ug/L	7.3	6.5	5.9	3.2	5.3	5	0	5.64	3.20	7.30		N/	A	500.0	50.0
inc, dissolved	mg/L	0	0.013	0.032		0.0079	5	2	0.02	0.00	0.03	0.25	0.39	5.00		
Acetone	ug/L	0	0	0	0	0	3	3		0.00	0.00		N/ N/			
Acrylonitrile Benzene	ug/L ug/L	0	0	0	0	0	3	3		0.00	0.00		INA	1.00		
Bromobenzene	ug/L	0	0	0	0	0	3	3		0.00	0.00		N			
Bromochloromethane	ug/L	0	0	0	0	0	3	3		0.00	0.00		N/	A		
Bromodichloromethane	ug/L	0	0	0	0	0	5			0.00	0.00		N/			
Bromofluorobenzene	ug/L	24	24.8	25.6	24.5	23.7	5	0	24.52	23.70	25.60		N/			
Bromoform P-Bromopropionic Acid	ug/L ug/L	0 11.7	0 12.3	0 14.4	0 11	12.8	5 5	5 0	12.44	0.00 11.00	0.00 14.40		N/	4		
Bromomethane	ug/L ug/L	0	0	0	0	0	3	3	12.44	0.00	0.00		N/	A		
n-Butylbenzene	ug/L	0	0	0	0	0	3	3		0.00	0.00		N	Α	2600.000	260.00
sec-Butylbenzene	ug/L	0	0	0	0	0	3	3		0.00	0.00		N		2600.000	260.00
ert-Butylbenzene	ug/L	0	0	0	0	0	3	3		0.00	0.00		N/		2600.000	260.00
Carbon tetrachloride Chlorobenzene	ug/L	0	0	0	0	0	3	3		0.00	0.00		N/	0.50		
Chloroethane	ug/L ug/L	0	0	0	0	0	3	3		0.00	0.00		N/			
Chloromethane	ug/L	0	0	0	0	0	3	3		0.00	0.00		N/			
2-Chlorotoluene	ug/L	0	0	0	0	0	3			0.00	0.00		N/		1400.000	140.000
1-Chlorotoluene	ug/L	0	0	0	0	0	3	3		0.00	0.00		N/		1400.000	140.000
Dibromomethane	ug/L	0	0	0	0	0	3 5	3	10.76	0.00	0.00		N/	Α		
2,3-Dibromopropionic Acid	ug/L ug/L	10 0	10.4 0	10.5 0	10.8	12.1 0	3	0 3	10.76	10.00 0.00	12.10 0.00			600.00		
1,3-Dichlorobenzene	ug/L ug/L	0	0	0	0	0	3	3		0.00	0.00		N/			
L,4-Dichlorobenzene	ug/L	0	0	0	0	0	3	3		0.00	0.00			5.00		
Dichlorodifluoromethane	ug/L	0	0	0	0	0	3	3		0.00	0.00		N/	A	10000.000	1000.000
,1-Dichloroethane	ug/L	0	0	0	0	0	3	3		0.00	0.00			5.00		
.,2-Dichloroethane 1-Dichloroethene	ug/L	0	0	0	0	0	3	3		0.00	0.00			0.50		
is-1,2-Dichloroethene	ug/L ug/L	0	0	0	0 0	0	3	3		0.00	0.00		N/ N/			
rans-1,2-Dichloroethene	ug/L	0	0	0	0	0	3	3		0.00	0.00		N/			
.,3-Dichloropropene (total)	ug/L	0	0	0	0	0	3	3		0.00	0.00			0.50		
,2-Dichloropropane	ug/L	0	0	0	0	0	3	3		0.00	0.00			5.00		
1,3-Dichloropropane	ug/L	0	0	0	0	0	3	3		0.00	0.00		N/			
2,2-Dichloropropane	ug/L	0	0	0	0	0	3	3		0.00	0.00		N/ N/			
1,1-Dichloropropene cis-1,3-Dichloropropene	ug/L ug/L	0	0	0	0	0	3	3		0.00	0.00		N/ N/			
rans-1,3-Dichloropropene	ug/L ug/L	0	0	0	0	0	3	3		0.00	0.00		N/			
Chloroform	ug/L	0	0	0	0	0	5	5		0.00	0.00		N/			
ibromoacetic Acid	ug/L	0	0	0	0	0	5	5		0.00	0.00		N/			
ibromochloromethane	ug/L	0	0	0	0	0	5	5		0.00	0.00		N/			
ibromofluoromethane	ug/L	44	46.9	24.5	47.4	22.5	8	0	23.16	21.20	24.50		N/			
ichloroacetic Acid . Coli	ug/L MPN/100mL	0	0	0	0	0	5 5	5 5		0.00	0.00		N/ N/			
:. COII MBAS, calculated as LAS, mw 340	mg/L	0	0	0	0	0	5	5		0.00	0.00		IN/	0.50		
Nolybdenum, dissolved	ug/L	9.4	5.4	5.1	29	8.6	5		11.50	5.10	29.00		N/			
Aonobromoacetic Acid	ug/L	0	0	0	0	0	5	5		0.00	0.00		N/			
Aonochloroacetic Acid	ug/L	0	0	0	0	0	5	5		0.00	0.00		N/			

Perchlorate	ug/L	0	0	0	0	0	5	5		0.00	0.00			NA		
Toluene-d8	ug/L	24.2	24.1	23.7	23.8	24.9	5	0	24.14	23.70	24.90			NA		
Total Haloacetic Acids (HAA5)	ug/L	0	0	0	0	0	5	5		0.00	0.00			NA		
Trichloroacetic Acid	ug/L	0	0	0	0	0	5	5		0.00	0.00			NA		
Trihalomethanes (total)	mg/L	0	0	0	0	0	8	8		0.00	0.00			0.08		
Ethylbenzene	ug/L	0	0	0	0	0	3	3		0.00	0.00			NA		
Hexachlorobutadiene	ug/L	0	0	0	0	0	3	3		0.00	0.00			NA		
Isopropylbenzene	ug/L	0	0	0	0	0	3	3		0.00	0.00			NA	7700.000	770.000
p-Isopropyltoluene	ug/L	0	0	0	0	0	3	3		0.00	0.00			NA		
Methyl ethyl ketone	ug/L	0	0	0	0	0	3	3		0.00	0.00			NA		
Methyl isobutyl ketone	ug/L	0	0	0	0	0	3	3		0.00	0.00			NA	1200.000	120.000
Methyl tert-butyl ether	ug/L	0	0	0	0	0	3	3		0.00	0.00			5.00		
Methylene chloride	ug/L	0	0	0	0	0	3	3		0.00	0.00			5.00		
Naphthalene	ug/L	0	0	0	0	0	3	3		0.00	0.00			NA	170.000	17.000
n-Propylbenzene	ug/L	0	0	0	0	0	3	3		0.00	0.00			NA	2600.000	260,000
Styrene	ug/L	0	0	0	0	0	3	3		0.00	0.00			100.00		
1,1,1,2-Tetrachloroethane	ug/L	0	0	0	0	0	3	3		0.00	0.00			NA		
1,1,2,2-Tetrachloroethane	ug/L	0	0	0	0	0	3	3		0.00	0.00			1.00		
Tetrachloroethene	ug/L	0	0	0	0	0	3	3		0.00	0.00			NA		
Toluene	ug/L	0	0	0	0	0	3	3		0.00	0.00			150.00		
1.2.3-Trichlorobenzene	ug/L	0	0	0	0	0	3	3		0.00	0.00			NA		
1,2,4-Trichlorobenzene	ug/L	0	0	0	0	0	3	3		0.00	0.00			5.00		
1,1,1-Trichloroethane	ug/L	0	0	0	0	0	3	3		0.00	0.00			200.00		
1,1,2-Trichloroethane	ug/L	0	0	0	0	0	3	3		0.00	0.00			5.00		
Trichloroethene	ug/L	0	0	0	0	0	3	3		0.00	0.00			NA		
Trichlorofluoromethane	ug/L	0	0	0	0	0	3	3		0.00	0.00			150.00		
Trichlorotrifluoroethane	ug/L	0	0	0	0	0	3	3		0.00	0.00			1200.00		
1,2,4-Trimethylbenzene	ug/L	0	0	0	0	0	3	3		0.00	0.00			NA	3300.000	330.000
1,3,5-Trimethylbenzene	ug/L	0	0	0	0	0	3	3		0.00	0.00			NA	3300.000	330.000
Vinyl chloride	ug/L	0	0	0	0	0	3	3		0.00	0.00			0.50		
m,p-Xylene	ug/L	0	0	0	0	0	3	3		0.00	0.00			NA		
o-Xylene	ug/L	0	0	0	0	0	3	3		0.00	0.00			NA		
Xylenes (total)	ug/L	0	0	0	0	0	3	3		0.00	0.00			1750.00		
Total Organic Carbon	mg/L	0	0	0	0	0	3	3		0.00	0.00	3.2		NA		
Uranium	pCi/l	1.3	2.9	0	0	0	3	1	2.10	0.00	2.90			20.00		
Conductivity	umhos/sec											520	556.5			
Langelier Index	mg/L											-0.51	-0.17			
Nitrate + Nitrite as N	mg-N/L											0.385	0.5015			
Threshold Odor	T.O.N											1	1			
pH												7.73	7.97			
Temperature	С	ĺ										21.9	22.57			
Dissolved Organic Compounds		ĺ										2.9				
Bromide	ug/L	ĺ										280				
	I	I														

Appendix C. Class 5 OPCC

ASR Facility Plan Capital Cost Estimate

 2.5 MGD
 3 MGD

 Pilot Phase
 Phase I
 Phase II

	Filot Filase Filase i			ase II						
	Unit	Unit Cost	Quantity	Subtotal	Quantity	Subtotal	Quantity	Subtotal	Notes	Full Capacity Total
New Water Treatment Plant (5.5 MGD)				\$0		\$9,300,000		\$6,700,000		\$16,000,000
Influent Flow Control	EA	\$55,000	0	\$0	2	\$110,000	0	\$0		
MF Feed Pumps	EA	\$44,000	0	\$0	2	\$88,000	1.5	\$66,000		
Microfiltration Membranes Skids	MGD	\$517,000	0	\$0	2.5	\$1,292,500	3	\$1,551,000		
Nanofiltration Membrane Skids	MGD	\$815,100	0	\$0	1.3	\$1,059,630	1.5	\$1,222,650	50% Bypass to NF during Injection	
NF Feed Pumps	EA	\$77,000	0	\$0	2	\$154,000	2.4	\$184,800		
Membrane Reject Pumps and Storage Tanks	LS	\$330,000	0	\$0	1	\$330,000	1.2	\$396,000		
Clearwell Steel Tank	EA	\$220,000	0	\$0	1	\$220,000	0	\$0		
Finished Water Pumping Station	LS	\$330,000	0	\$0	1	\$330,000	1.2	\$396,000		
Chemical Processes	LS	\$440,000	0	\$0	1	\$440,000	1	\$440,000		
Solids Drying Beds	LS	\$385,000	0	\$0	1	\$385,000	1	\$385,000		
Plate Settler Sedimentation Basin for Solids	LS	\$220,000	0	\$0	1	\$220,000	1	\$220,000		
Admin/Chemical/Treatment Building	SF	\$220	0	\$0	8000	\$1,760,000	0	\$0		
Sitework and Access Roads	LS	\$220,000	0	\$0	1	\$220,000	1	\$220,000		
Onsite Piping, Valves and Appurtenances	LS	\$880,000	0	\$0	1	\$880,000	0.75	\$660,000		
Electrical	LS	\$1,054,206	0	\$0	1	\$1,054,206	0.5	\$527,103		
Instrumentation and Controls	LS	\$681,024	0	\$0	1	\$681,024	0.5	\$340,512		
Low Head Concentrate Pumps	EA	\$30,000	0	\$0	2	\$60,000	2	\$60,000		
				·		. ,		i í		
ASR Wells (11 x 500 gpm)				\$1,630,000		\$6,010,000		\$9,020,000		\$16,660,000
Sitework	LS	\$82,500	2	\$200,000	4	\$330,000	6	\$495,000	1 Wellsite	
Deep Well with 12" Casing	VLF	\$660	800	\$528,000	3200	\$2,112,000	4800		800' Depth for Each Well	
ASR Well Pumps	EA	\$77,000	1	\$77,000	4	\$308,000	6	\$462,000		
ASR Well Pump VFD	EA	\$33,000	1	\$33,000	4	\$132,000	6	\$198,000		
Prefabricated Enclosure	LS	\$180,000	1	\$180,000	4	\$720,000	6	\$1,080,000		
Down-Hole Control Valve	EA	\$110,000	1	\$110,000	4	\$440,000	6	\$660,000		
Electrical	LS	\$611,353	0.3	\$183,406	1	\$611,353	1.50	\$917.029	3% of Civil and Mechanical	
Instrumentation	LS	\$475,569	0.2	\$95,114	1	\$475,569	1.50		2% of Civil and Mechanical	
Onsite Piping, Valves and Appurtenances	LS	\$220,000	1	\$220,000	4	\$880,000	6	\$1,320,000		
		7==0,000	·	, , , , , , , , , , , , , , , , , , ,		7000,000	-	+ 1,0=0,000		
Transmission and Distribution Pipeline				\$870,000		\$2,400,000		\$4,060,000		\$7,330,000
CVP Diversion Pipe to WTP	FT	\$230	0	\$0	3120	\$717,600	0	\$0	20" HDPE	• • •
Wellfield Transmission Pipe	FT	\$120	0	\$0		\$0	6400	\$768,000		
Wellfield Transmission Pipe	FT	\$160	0	\$0	4300	\$688,000	11200	\$1,792,000		
Wellfield Transmission Pipe	FT	\$180	0	\$0	2700	\$486,000	0		18" HDPE	
Distribution Pipe to Hollister System	FT	\$180	4500	\$810,000	0	\$0	0		18" HDPE	
Parallel Distribution Pipe along San Felipe Rd	FT	\$120	0	\$0	2386	\$286,320	10605	\$1,272,600		
Connection to Existing Systems	LS	\$110,000	0.2	\$22,000	1	\$110,000	1	\$110,000		
Misc Valves, Fittings and Appurtenances	LS	\$110,000	0.3	\$33,000	1	\$110,000	1	\$110,000		
mos varros, mange ana rippanenanese		\$110,000	0.0	\$50,000	•	ψσ,σσσ		\$110,000		
Concentrate Management	1	†		\$0		\$1,050,000		\$0		\$1,050,000
Concentrate to Hollister Conduit Pipe	FT	\$110	0	\$0	9504	\$1,045,440	0		6" HDPE	4 1,000,000
Consonitate to Homoter Conduit 1 tpe	 ''	Ψιισ		φυ	5504	Ψ1,040,440		ΨΟ	0 11D1 L	
WHWTP Expansion (4.5 to 9 MGD)		 		\$0		\$0		\$0		
Site Civil	LS	\$154,000	0	\$0 \$0	0	\$0		\$0		
Actiflo Carb	LS	\$2,860,000	0	\$0 \$0	0	\$0 \$0	0	\$0		
Gravity Filters	LS	\$3,025,000	0	\$0 \$0	0	\$0 \$0	0	\$0		
Clearwell	LS	\$1,650,000	0	\$0 \$0	0	\$0 \$0	0	\$0		
Chemical Feed/Storage Equipment	LS	\$229,900	0	\$0 \$0	0	\$0 \$0	0	\$0		
Onemical reed/Storage Equipment	L LS	⊅∠∠9,900	U	ΦU	U	\$0	L U	\$0		

Drying Beds	LS	\$385,000	0	\$0	0	\$()	0	\$0)		
Yard Piping	LS	\$435,600	0	\$0	0	\$(0	\$0			
Electrical	LS	\$1,309,000	0	\$0	0	\$()	0	\$0			
Instrumentation	LS	\$435,600	0	\$0	0	\$0		0	\$0			
Subtotal Capital Cost			\$2,50	00,000	\$18,7	60,000		\$19,780	0,000		\$41,04	0,000
Contractor OH&P	12%	12%		\$300,000		\$2,251,200		\$2,373,600			\$4,924	4,800
General Conditions	6%	6%		\$150,000		\$1,125,600		\$1,186,800			\$2,462	2,400
Mobilization, Bonds & Insurance	6%	6%		\$150,000		\$1,125,600		\$1,186,800			\$2,462	2,400
Subtotal			\$3,10	00,000	\$23,3	00,000		\$24,600	0,000		\$51,00	0,000
Contingency	30%		\$930,000		\$6,990,000			\$7,380,000			\$15,30	0,000
Subtotal w/Contingency			\$4,0	30,000	\$30,2	90,000		\$31,980	0,000		\$66,30	0,000
Engineering, Permitting, Admin & CM	30%		\$1,20	09,000	\$9,08	7,000		\$9,600	,000		\$19,89	6,000
Total Conceptual Capital Cost			\$5,300,000		\$39,400,000			\$41,600,000			\$86,30	0,000
High End of Range			\$7,9	50,000	\$59,1	00,000		\$62,400	0,000		\$129,4	50,000
Low End of Range			\$3,9	75,000	\$29,5	50,000		\$31,200	0,000		\$64,72	5,000

⁽¹⁾ All costs are in \$2021 and do not include inflation or escalation to mid-point of construction.(2) Capital costs do not include land or right of way acquisition costs.

MAR Facility Plan Capital Cost Estimate

MAR Facility Plan Capital Cost Estimate			Pilot Phase			ase I	Ph	ase II		
	Unit	Unit Cost	Quantity	Subtotal	Quantity	Subtotal	Quantity	Subtotal	Notes	Full Capacity Total
New Water Treatment Plant (3.5 MGD)				\$0		\$0		\$9,800,000		\$9,800,000
nfluent Flow Control	EA	\$12,222	0	\$0	0	\$0	3	\$36,667		
actiflo Carb	LS	\$635,556	0	\$0	0	\$0	3	\$1,906,667		
Gravity Filters	LS	\$672,222	0	\$0	0	\$0	3	\$2,016,667		
Clearwell	LS	\$1,000,000	0	\$0	0	\$0	1	\$1,000,000		
Chemical Feed/Storage Equipment	LS	\$300,000	0	\$0	0	\$0	1	\$300,000		
Drying Beds	LS	\$385,000	0	\$0	0	\$0	1	\$385,000		
/ard Piping	LS	\$500,000	0	\$0	0	\$0	1	\$500,000		
Electrical	LS	\$290,889	0	\$0	0	\$0	1	\$1,129,000		
nstrumentation	LS	\$96,800	0	\$0	0	\$0	1	\$564,500		
Finished Water Pumping Station	LS	\$165,000	0	\$0	0	\$0	1	\$165,000		
Admin/Chemical/Treatment Building	SF	\$220	0	\$0	0	\$0	5000	\$1,100,000		
Sitework and Access Roads	LS	\$500,000	0	\$0	0	\$0	1	\$500,000		
ow Head Concentrate Pumps	EA	\$30,000	0	\$0	0	\$0	1	\$30,000		
Forcemain from WTP to City Collection System	LF	\$94	0	\$0	0	\$0	1775		8" PVC; Concentrate Disposal	
orcemain from wife to city collection system	LF	φ34	U	φυ	0	φυ	1773	\$100,900	6 FVC, Concentrate Disposar	
IAP Walls (11 v 500 gpm)				\$1,180,000		\$5,670,000		\$5.670.000		\$12,520,000
MAR Wells (11 x 500 gpm)	1.0	\$113,438	4	\$1,160,000	F		-	\$5,670,000	4 \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	φ 12,320,000
Sitework	LS VLF	,	1 800		5	\$567,188	5			
Deep Well with 12" Casing		\$660		\$528,000	4000	\$2,640,000	4000		800' Depth for Each Well	
MAR Well Pumps	EA	\$77,000	0	\$0	0	\$0	0	\$0		
MAR Well Pump VFD	EA	\$33,000	0	\$0	0	\$0	0	\$0		
Prefabricated Enclosure	LS	\$132,000	0	\$0	0	\$0	0	\$0		
Down-Hole Control Valve	EA	\$110,000	1	\$110,000	5	\$550,000	5	\$550,000		
Electrical	LS	\$413,291	0.3	\$123,987	1	\$413,291	1		3% of Civil and Mechanical	
nstrumentation	LS	\$396,362	0.2	\$79,272	1	\$396,362	1		2% of Civil and Mechanical	
Onsite Piping, Valves and Appurtenances	LS	\$220,000	1	\$220,000	5	\$1,100,000	5	\$1,100,000		
				****		40.040.000		40.000		
Transmission and Distribution Pipeline				\$250,000		\$2,340,000		\$2,760,000		\$5,350,000
CVP Diversion Pipe to WTP	FT	\$160	0	\$0	0	\$0	720	\$115,200		
NTP to MAR Wells	FT	\$121	200	\$24,200	3320	\$401,720	2650	\$320,650		
VTP to MAR Wells	FT	\$165	0	\$0	1500	\$247,500	1950		12" HDPE	
VTP to MAR Wells	FT	\$160	0	\$0	9160	\$1,465,600	11115	\$1,778,400	16" HDPE	
Connection to Existing Systems	LS	\$110,000	1.0	\$110,000	1	\$110,000	1	\$110,000		
Misc Valves, Fittings and Appurtenances	LS	\$110,000	1.0	\$110,000	1	\$110,000	1	\$110,000		
VHWTP Expansion (4.5 to 9 MGD)				\$0		\$10,484,100		\$0		\$10,484,100
Site Civil	LS	\$154,000	0	\$0	1	\$154,000	0	\$0		
actiflo Carb	LS	\$2,860,000	0	\$0	1	\$2,860,000	0	\$0		
Gravity Filters	LS	\$3,025,000	0	\$0	1	\$3,025,000	0	\$0		
Clearwell	LS	\$1,650,000	0	\$0	1	\$1,650,000	0	\$0		
Chemical Feed/Storage Equipment	LS	\$229,900	0	\$0	1	\$229,900	0	\$0		
Orying Beds	LS	\$385,000	0	\$0	1	\$385,000	0	\$0		
ard Piping	LS	\$435,600	0	\$0	1	\$435,600	0	\$0		
lectrical	LS	\$1,309,000	0	\$0	1	\$1,309,000	0	\$0		
estrumentation	LS	\$435,600	0	\$0	1	\$435,600	0	\$0		
subtotal Capital Cost		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		0,000	\$18,500,000		\$18,230,000			\$38,160,000
Contractor OH&P 12%				1,600	\$18,300,000		\$2,187,600			\$4,579,200
Seneral Conditions	6%			,800	\$2,220,000		\$2,187,600			\$2,289,600
Mobilization, Bonds & Insurance	6%			,800		10,000	\$1,093,800 \$1,093,800			\$2,289,600
Subtotal	0 /0		\$1,77	,	. ,	00,000	. ,	700,000		\$47,473,200
	30%									
Contingency	30%		ֆ Ͻ <i>3</i> 2	2,000	\$0,90	00,000	\$0,8	10,000		\$14,242,000

Subtotal w/Contingency		\$2,305,200	\$29,900,000	\$29,510,000		\$61,715,200				
Engineering, Permitting, Admin & CM	30%	\$692,000	\$8,970,000	\$8,860,000		\$18,522,000				
Total Conceptual Capital Cost		\$3,000,000	\$38,900,000	\$38,400,000		\$80,300,000				
High End of Range		\$4,500,000	\$58,350,000	\$57,600,000		\$120,450,000				
Low End of Range		\$2,250,000	\$29,175,000	\$28,800,000		\$60,225,000				
(1) All costs are in \$2020 and do not include inflation or escalation to mid-point of construction.										

⁽²⁾ Capital costs do not include land or right of way acquisition costs.